51
|
Hsu FC, Shapiro MJ, Chen MW, McWilliams DC, Seaburg LM, Tangen SN, Shapiro VS. Immature recent thymic emigrants are eliminated by complement. THE JOURNAL OF IMMUNOLOGY 2014; 193:6005-15. [PMID: 25367120 DOI: 10.4049/jimmunol.1401871] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent thymic emigrants (RTEs) must undergo phenotypic and functional maturation to become long-lived mature naive T cells. In CD4-cre NKAP conditional knockout mice, NKAP-deficient RTEs fail to complete T cell maturation. In this study, we demonstrate that NKAP-deficient immature RTEs do not undergo apoptosis, but are eliminated by complement. C3, C4, and C1q are bound to NKAP-deficient peripheral T cells, demonstrating activation of the classical arm of the complement pathway. As thymocytes mature and exit to the periphery, they increase sialic acid incorporation into cell surface glycans. This is essential to peripheral lymphocyte survival, as stripping sialic acid with neuraminidase leads to the binding of natural IgM and complement fixation. NKAP-deficient T cells have a defect in sialylation on cell surface glycans, leading to IgM recruitment. We demonstrate that the defect in sialylation is due to aberrant α2,8-linked sialylation, and the expression of three genes (ST8sia1, ST8sia4, and ST8sia6) that mediate α2,8 sialylation are downregulated in NKAP-defcient RTEs. The maturation of peripheral NKAP-deficient T cells is partially rescued in a C3-deficient environment. Thus, sialylation during T cell maturation is critical to protect immature RTEs from complement in the periphery.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | - Sarah N Tangen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
52
|
FADD regulates thymocyte development at the β-selection checkpoint by modulating Notch signaling. Cell Death Dis 2014; 5:e1273. [PMID: 24901044 PMCID: PMC4611708 DOI: 10.1038/cddis.2014.198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/08/2022]
Abstract
Non-apoptotic functions of Fas-associated protein with death domain (FADD) have been implicated in T lineage lymphocytes, but the nature of FADD-dependent non-apoptotic mechanism in early T-cell development has not been completely elucidated. In this study, we show that tissue-specific deletion of FADD in immature (CD44–CD25+) thymocytes results in severe perturbation of αβ lineage development. Meanwhile, loss of FADD signaling at a later (CD44–CD25–) developmental stage does not affect subsequent T-cell development. Collectively, our work presents that FADD deficiency induces failed survival in double-negative 4 (DN4) cells, while pre-T-cell receptor (TCR) signal remains intact. In addition, Notch signaling is positive regulated on DN4 and double-positive thymocytes in T-cell-specific FADD-knockout mice, which express higher levels of a subset of Notch-target genes, including Hes1, Deltex1 and CD25. Moreover, a transcriptional repressor of Notch1, NKAP is downregulated coupled with the loss of FADD in thymocytes and is found to associate with FADD. These data suggest that as a death receptor, FADD is also required for cell survival in β-selection as a regulator of Notch1 expression.
Collapse
|
53
|
Abstract
Worldwide, ∼ 74,000 women die from endometrial cancer each year. Understanding the somatic genomic alterations that drive endometrial tumorigenesis may provide new opportunities to identify targeted therapies for specific subsets of patients. Since 2012, the use of next-generation sequencing to decode the mutational landscape of endometrial tumors has not only confirmed prior knowledge of established genetic targets for serous and endometrioid endometrial carcinomas (ECs), but has also uncovered novel significantly mutated genes, referred to herein as novel genetic targets, which represent candidate cancer genes in these tumors. This editorial summarizes the novel genetic targets that have been identified in serous and endometrioid ECs, according to their unifying functional characteristics. An expert opinion section comments on remaining knowledge gaps that will undoubtedly be filled in future genomic studies of endometrial cancer.
Collapse
Affiliation(s)
- Daphne W Bell
- National Human Genome Research Institute/NIH , Bethesda, MD , USA
| |
Collapse
|
54
|
Pontin is required for pre-TCR signaling at the β-selection checkpoint in T cell development. Biochem Biophys Res Commun 2014; 447:44-50. [PMID: 24680824 DOI: 10.1016/j.bbrc.2014.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 11/24/2022]
Abstract
Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontin(f/f);Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αβ T cells at the β-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)β chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αβ T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.
Collapse
|
55
|
Worlitzer MMA, Schwamborn JC. The Notch co-repressor protein NKAP is highly expressed in adult mouse subventricular zone neural progenitor cells. Neuroscience 2014; 266:138-49. [PMID: 24583034 DOI: 10.1016/j.neuroscience.2014.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Abstract
In the adult mammalian brain niches for neural stem cells are maintained, which enable a steady-state neurogenesis. This process is tightly regulated by multiple niche factors, including Notch and NF-κB signaling. The NF-κB-activating-protein (NKAP) has previously been shown to act as Notch co-repressor component by binding CIR and recruiting HDAC3 in T-cell development and furthermore to regulate NF-κB-dependent transcription. Here, we provide first evidence for the expression of NKAP in neurogenic cells of the adult mammalian brain. NKAP is highly expressed in Mash1(+) transit amplifying cells and PSA-NCAM(+) migrating neuroblasts throughout the subventricular zone (SVZ) and the rostral migratory stream (RMS), as well as in the hippocampus. We further show that NKAP expression levels are downregulated during the course of the RMS. Eventually, most differentiated cells in the olfactory bulb (OB) and the corpus callosum only display low levels of NKAP expression. Finally, large subsets of mature neurons in the OB, the hippocampus and the thalamus express NKAP at high levels, suggesting an additional role of NKAP outside of SVZ progenitor cells.
Collapse
Affiliation(s)
- M M A Worlitzer
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Straße 56, 48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF) Münster, Germany
| | - J C Schwamborn
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Straße 56, 48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF) Münster, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
56
|
Kim J, Shapiro MJ, Bamidele AO, Gurel P, Thapa P, Higgs HN, Hedin KE, Shapiro VS, Billadeau DD. Coactosin-like 1 antagonizes cofilin to promote lamellipodial protrusion at the immune synapse. PLoS One 2014; 9:e85090. [PMID: 24454796 PMCID: PMC3890291 DOI: 10.1371/journal.pone.0085090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and subsequently found that it associates with F-actin and localizes at the IS in response to TCR+CD28 stimulation. Live cell microscopy showed that depletion of COTL1 protein impaired T cell spreading in response to TCR ligation and abrogated lamellipodial protrusion at the T cell – B cell contact site, producing only a band of F-actin. Significantly, re-expression of wild type COTL1, but not a mutant deficient in F-actin binding could rescue these defects. In addition, COTL1 depletion reduced T cell migration. In vitro studies showed that COTL1 and cofilin compete with each other for binding to F-actin, and COTL1 protects F-actin from cofilin-mediated depolymerization. While depletion of cofilin enhanced F-actin assembly and lamellipodial protrusion at the IS, concurrent depletion of both COTL1 and cofilin restored lamellipodia formation. Taken together, our results suggest that COTL1 regulates lamellipodia dynamics in part by protecting F-actin from cofilin-mediated disassembly.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Adebowale O. Bamidele
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pinar Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Puspa Thapa
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Henry N. Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karen E. Hedin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Virginia S. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| | - Daniel D. Billadeau
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| |
Collapse
|
57
|
Ravi P, Jiang J, Liew WC, Orbán L. Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates calcarifer). Reprod Biol Endocrinol 2014; 12:5. [PMID: 24405829 PMCID: PMC3896769 DOI: 10.1186/1477-7827-12-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Asian seabass (Lates calcarifer) is a protandrous hermaphrodite that typically matures as a male at approximately 2-4 years of age and then changes sex in subsequent years. Although several sexual maturation stages have been described histologically for both testis and ovary, the underlying gene expression profiles remain lacking. The development of a gene expression platform is therefore necessary to improve our understanding of the gonad development of this cultured teleost species. METHODS Thirty Asian seabass gonads were collected from farms in Singapore, examined histologically and staged according to their sex and gonadal maturation status. Partial coding sequences of 24 sex-related genes were cloned using degenerate primers and were sequenced. Additional 13 cDNA sequences were obtained through next-generation sequencing. A real-time qPCR was then performed using the microfluidic-based Fluidigm 48.48 Dynamic arrays. RESULTS We obtained 17 ovaries and 13 testes at various stages of sexual maturation. Of the 37 genes that were tested, 32 (86%) showed sexually dimorphic expression. These genes included sex-related genes, sox9, wt1, amh, nr5a2, dmrt1 and nr0b1, which showed testis-enhanced expression similar to other vertebrate species. Known male- and female-enhanced germ cells markers, which were established from studies in other species, similarly showed testis- and ovary-enhanced expression, respectively, in the Asian seabass. Three pro-Wnt signaling genes were also upregulated in the ovary, consistent with existing studies that suggested the role of Wnt signaling in ovarian differentiation in teleosts and mammals. The expression patterns of genes involved in steroidogenesis, retinoic acid metabolism, apoptosis and NF-κB signaling were also described. We were able to classify gonads according to sex and gonadal maturation stages, based on their small-scale transcriptomic profiles, and to uncover a wide variation in expression profiles among individuals of the same sex. CONCLUSIONS The analysis of a selected set of genes related to reproduction and in sufficient number of individuals using a qPCR array can elucidate new insights into the molecular mechanisms involved in Asian seabass gonad development. Given the conservation of gene expression patterns found in this study, these insights may also help us draw parallels with other teleosts.
Collapse
Affiliation(s)
- Preethi Ravi
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Present address: National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| | - Junhui Jiang
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Agri-Food and Veterinary Authority of Singapore, 5 Maxwell Rd, Singapore 069110, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, H-8360, Keszthely, Hungary
| |
Collapse
|
58
|
Burgute BD, Peche VS, Steckelberg AL, Glöckner G, Gaßen B, Gehring NH, Noegel AA. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res 2013; 42:3177-93. [PMID: 24353314 PMCID: PMC3950704 DOI: 10.1093/nar/gkt1311] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS–NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing.
Collapse
Affiliation(s)
- Bhagyashri D Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), 50931 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, Institute of Genetics, University of Cologne, 50931 Cologne, Germany and Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301, 12587 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
The transcriptional repressor NKAP is required for the development of iNKT cells. Nat Commun 2013; 4:1582. [PMID: 23481390 PMCID: PMC3615467 DOI: 10.1038/ncomms2580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Invariant natural killer T cells have a distinct developmental pathway from conventional αβ T cells. Here we demonstrate that the transcriptional repressor NKAP is required for invariant natural killer T cell but not conventional T cell development. In CD4-cre NKAP conditional knockout mice, invariant natural killer T cell development is blocked at the double-positive stage. This cell-intrinsic block is not due to decreased survival or failure to rearrange the invariant Vα14-Jα18 T cell receptor-α chain, but is rescued by overexpression of a rec-Vα14-Jα18 transgene at the double-positive stage, thus defining a role for NKAP in selection into the invariant natural killer T cell lineage. Importantly, deletion of the NKAP-associated protein histone deacetylase 3 causes a similar block in the invariant natural killer T cell development, indicating that NKAP and histone deacetylase 3 functionally interact to control invariant natural killer T cell development.
Collapse
|
60
|
Berkley AM, Hendricks DW, Simmons KB, Fink PJ. Recent thymic emigrants and mature naive T cells exhibit differential DNA methylation at key cytokine loci. THE JOURNAL OF IMMUNOLOGY 2013; 190:6180-6. [PMID: 23686491 DOI: 10.4049/jimmunol.1300181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naive peripheral T cell pool. We show in this study that the Il2 and Il4 promoter regions of naive CD4(+) RTEs are characterized by site-specific hypermethylation compared with those of both mature naive (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared with MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for postthymic maturation.
Collapse
Affiliation(s)
- Amy M Berkley
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
61
|
Affiliation(s)
- Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
62
|
Zhang Y, Lu T, Yan H, Ruan Y, Wang L, Zhang D, Yue W, Lu L. Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS One 2013; 8:e56732. [PMID: 23437227 PMCID: PMC3578928 DOI: 10.1371/journal.pone.0056732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 01/14/2023] Open
Abstract
Chromosome 6p21-p22.1, spanning the extended major histocompatibility complex (MHC) region, is a highly polymorphic, gene-dense region. It has been identified as a susceptibility locus of schizophrenia in Europeans, Japanese, and Chinese. In our previous two-stage genome-wide association study (GWAS), polymorphisms of zinc finger with KRAB and SCAN domains 4 (ZKSCAN4), nuclear factor-κB-activating protein-like (NKAPL), and piggyBac transposable element derived 1 (PGBD1), localized to chromosome 6p21-p22.1, were strongly associated with schizophrenia. To further investigate the association between polymorphisms at this locus and schizophrenia in the Chinese Han population, we selected eight other single-nucleotide polymorphisms (SNPs) distributed in or near these genes for a case-control association study in an independent sample of 902 cases and 1,091 healthy controls in an attempt to replicate the GWAS results. Four of these eight SNPs (rs12214383, rs1150724, rs3800324, and rs1997660) displayed a nominal difference in allele frequencies between the case and control groups. The association between two of these SNPs and schizophrenia were significant even after Bonferroni correction (rs12000: allele A>G, P = 2.50E-04, odds ratio [OR] = 1.27, 95% confidence interval [CI] = 1.12-1.45; rs1150722: allele C>T, P = 4.28E-05, OR = 0.55, 95% CI = 0.41-0.73). Haplotype ATTGACGC, comprising these eight SNPs (rs2235359, rs2185955, rs12214383, rs12000, rs1150724, rs1150722, rs3800324, and rs1997660), was significantly associated with schizophrenia (P = 6.60E-05). We also performed a combined study of this replication sample and the first-stage GWAS sample. The combined study revealed that rs12000 and rs1150722 were still strongly associated with schizophrenia (rs12000: allele G>A, P(combined) = 0.0019, OR = 0.81; rs1150722: allele G>A, P(combined) = 3.00E-04, OR = 0.61). These results support our findings that locus 6p21-p22.1 is significantly associated with schizophrenia in the Chinese Han population and encourage further studies of the functions of these genetic factors.
Collapse
Affiliation(s)
- Yang Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tianlan Lu
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yan
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yanyan Ruan
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Dai Zhang
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- * E-mail: (LL); (WY)
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- * E-mail: (LL); (WY)
| |
Collapse
|
63
|
Xie G, Lu Y, Sun Y, Zhang SS, Keystone EC, Gregersen PK, Plenge RM, Amos CI, Siminovitch KA. Identification of the NF-κB activating protein-like locus as a risk locus for rheumatoid arthritis. Ann Rheum Dis 2012; 72:1249-54. [PMID: 23223422 PMCID: PMC3686260 DOI: 10.1136/annrheumdis-2012-202076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective To fine-map the NF-κB activating protein-like (NKAPL) locus identified in a prior genome-wide study as a possible rheumatoid arthritis (RA) risk locus and thereby delineate additional variants with stronger and/or independent disease association. Methods Genotypes for 101 SNPs across the NKAPL locus on chromosome 6p22.1 were obtained on 1368 Canadian RA cases and 1471 controls. Single marker associations were examined using logistic regression and the most strongly associated NKAPL locus SNPs then typed in another Canadian and a US-based RA case/control cohort. Results Fine-mapping analyses identified six NKAPL locus variants in a single haplotype block showing association with p≤5.6×10−8 in the combined Canadian cohort. Among these SNPs, rs35656932 in the zinc finger 193 gene and rs13208096 in the NKAPL gene remained significant after conditional logistic regression, contributed independently to risk for disease, and were replicated in the US cohort (Pcomb=4.24×10−10 and 2.44×10−9, respectively). These associations remained significant after conditioning on SNPs tagging the HLA-shared epitope (SE) DRB1*0401 allele and were significantly stronger in the HLA-SE negative versus positive subgroup, with a significant negative interaction apparent between HLA-DRB1 SE and NKAPL risk alleles. Conclusions By illuminating additional NKAPL variants with highly significant effects on risk that are distinct from, but interactive with those arising from the HLA-DRB1 locus, our data conclusively identify NKAPL as an RA susceptibility locus.
Collapse
Affiliation(s)
- Gang Xie
- Mount Sinai Hospital Samuel Lunenfeld Research Institute and Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The issue of heterozygosity continues to be a challenge in the analysis of genome sequences. In this article, we describe the use of allele ratios to distinguish biologically significant single-nucleotide variants from background noise. An application of this approach is the identification of lethal mutations in Caenorhabditis elegans essential genes, which must be maintained by the presence of a wild-type allele on a balancer. The h448 allele of let-504 is rescued by the duplication balancer sDp2. We readily identified the extent of the duplication when the percentage of read support for the lesion was between 70 and 80%. Examination of the EMS-induced changes throughout the genome revealed that these mutations exist in contiguous blocks. During early embryonic division in self-fertilizing C. elegans, alkylated guanines pair with thymines. As a result, EMS-induced changes become fixed as either G→A or C→T changes along the length of the chromosome. Thus, examination of the distribution of EMS-induced changes revealed the mutational and recombinational history of the chromosome, even generations later. We identified the mutational change responsible for the h448 mutation and sequenced PCR products for an additional four alleles, correlating let-504 with the DNA-coding region for an ortholog of a NFκB-activating protein, NKAP. Our results confirm that whole-genome sequencing is an efficient and inexpensive way of identifying nucleotide alterations responsible for lethal phenotypes and can be applied on a large scale to identify the molecular basis of essential genes.
Collapse
|
65
|
Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011; 43:1228-31. [PMID: 22037552 DOI: 10.1038/ng.979] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/21/2011] [Indexed: 12/12/2022]
Abstract
To identify susceptibility loci for schizophrenia, we performed a two-stage genome-wide association study (GWAS) of schizophrenia in the Han Chinese population (GWAS: 746 individuals with schizophrenia and 1,599 healthy controls; validation: 4,027 individuals with schizophrenia and 5,603 healthy controls). We identified two susceptibility loci for schizophrenia at 6p21-p22.1 (rs1233710 in an intron of ZKSCAN4, P(combined) = 4.76 × 10(-11), odds ratio (OR) = 0.79; rs1635 in an exon of NKAPL, P(combined) = 6.91 × 10(-12), OR = 0.78; rs2142731 in an intron of PGBD1, P(combined) = 5.14 × 10(-10), OR = 0.79) and 11p11.2 (rs11038167 near the 5' UTR of TSPAN18, P(combined) = 1.09 × 10(-11), OR = 1.29; rs11038172, P(combined) = 7.21 × 10(-10), OR = 1.25; rs835784, P(combined) = 2.73 × 10(-11), OR = 1.27). These results add to previous evidence of susceptibility loci for schizophrenia at 6p21-p22.1 in the Han Chinese population. We found that NKAPL and ZKSCAN4 were expressed in postnatal day 0 (P0) mouse brain. These findings may lead to new insights into the pathogenesis of schizophrenia.
Collapse
|
66
|
Thompson PK, Zúñiga-Pflücker JC. On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin Immunol 2011; 23:350-9. [PMID: 21981947 DOI: 10.1016/j.smim.2011.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 08/19/2011] [Indexed: 12/18/2022]
Abstract
The thymus is seeded by bone marrow-derived progenitors, which undergo a series of differentiation and proliferation events in order to generate functional T lymphocytes. The Notch signaling pathway, together with multiple transcription factors, act in concert to commit progenitors to a T-lineage fate, extinguishing non-T cell potential, inducing thymocyte differentiation and supporting proliferation and survival along the way to becoming a mature T cell. This review focuses on recent evidence regarding the complex interplay between the Notch pathway and other key transcription factors at specific lineage-decision points during the program of T cell development.
Collapse
Affiliation(s)
- Patrycja K Thompson
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | |
Collapse
|
67
|
Cave JW. Selective repression of Notch pathway target gene transcription. Dev Biol 2011; 360:123-31. [PMID: 21963536 DOI: 10.1016/j.ydbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/28/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway regulates metazoan development, in part, by directly controlling the transcription of target genes. For a given cellular context, however, only subsets of the known target genes are transcribed when the pathway is activated. Thus, there are context-dependent mechanisms that selectively maintain repression of target gene transcription when the Notch pathway is activated. This review focuses on molecular mechanisms that have been recently reported to mediate selective repression of Notch pathway target gene transcription. These mechanisms are essential for generating the complex spatial and temporal expression patterns of Notch target genes during development.
Collapse
Affiliation(s)
- John W Cave
- Dept. of. Neurology and Neuroscience, Weill Cornell Medical College, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| |
Collapse
|
68
|
Hsu FC, Pajerowski AG, Nelson-Holte M, Sundsbak R, Shapiro VS. NKAP is required for T cell maturation and acquisition of functional competency. ACTA ACUST UNITED AC 2011; 208:1291-304. [PMID: 21624937 PMCID: PMC3173250 DOI: 10.1084/jem.20101874] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Newly generated T cells are unable to respond to antigen/MHC. Rather, post-selection single-positive thymocytes must undergo T cell maturation to gain functional competency and enter the long-lived naive peripheral T cell pool. This process is poorly understood, as no gene specifically required for T cell maturation has been identified. Here, we demonstrate that loss of the transcriptional repressor NKAP results in a complete block in T cell maturation. In CD4-cre NKAP conditional knockout mice, thymic development including positive selection occurs normally, but there is a cell-intrinsic defect in the peripheral T cell pool. All peripheral naive CD4-cre NKAP conditional knockout T cells were found to be functionally immature recent thymic emigrants. This defect is not simply in cell survival, as the T cell maturation defect was not rescued by a Bcl-2 transgene. Thus, NKAP is required for T cell maturation and the acquisition of functional competency.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | | |
Collapse
|
69
|
Shapiro MJ, Shapiro VS. Transcriptional repressors, corepressors and chromatin modifying enzymes in T cell development. Cytokine 2010; 53:271-81. [PMID: 21163671 DOI: 10.1016/j.cyto.2010.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 01/13/2023]
Abstract
Gene expression is regulated by the combined action of transcriptional activators and transcriptional repressors. Transcriptional repressors function by recruiting corepressor complexes containing histone-modifying enzymes to specific sites within DNA. Chromatin modifying complexes are subsequently recruited, either directly by transcriptional repressors, or indirectly via corepressor complexes and/or histone modifications, to remodel chromatin into either a transcription-friendly 'open' form or an inhibitory 'closed' form. Transcriptional repressors, corepressors and chromatin modifying complexes play critical roles throughout T cell development. Here, we highlight those genes that function to repress transcription and that have been shown to be required for T cell development.
Collapse
|
70
|
Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res 2010; 21:754-69. [PMID: 21119685 DOI: 10.1038/cr.2010.165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2 (Asb2). Asb2 promotes the ubiquitination of Notch targets such as E2A and Janus kinase (Jak) 2, and a dominant-negative (DN) mutant of Asb2 blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin (Cul) 5, but also the F-box-containing protein, Skp2, which is known to associate with Skp1 and Cul1. Consistently, ablating the function of Cul1 or Cul5 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3 ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Steady-state hematopoiesis is sustained through differentiation balanced with proliferation and self-renewal of hematopoietic stem cells (HSCs). Disruption of this balance can lead to hematopoietic failure, as hematopoietic differentiation without self-renewal leads to loss of the HSC pool. We find that conditional knockout mice that delete the transcriptional repressor NKAP in HSCs and all hematopoietic lineages during embryonic development exhibit perinatal lethality and abrogation of hematopoiesis as demonstrated by multilineage defects in lymphocyte, granulocyte, erythrocyte and megakaryocyte development. Inducible deletion of NKAP in adult mice leads to lethality within 2 weeks, at which point hematopoiesis in the bone marrow has halted and HSCs have disappeared. This hematopoietic failure and lethality is cell intrinsic, as radiation chimeras reconstituted with inducible Mx1-cre NKAP conditional knockout bone marrow also succumb with a similar time course. Even in the context of a completely normal bone marrow environment using mixed radiation chimeras, NKAP deletion results in HSC failure. NKAP deletion leads to decreased proliferation and increased apoptosis of HSCs, which is likely due to increased expression of the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p19Ink4d. These data establish NKAP as one of a very small number of transcriptional regulators that is absolutely required for adult HSC maintenance and survival.
Collapse
|
72
|
Sultana DA, Bell JJ, Zlotoff DA, De Obaldia ME, Bhandoola A. Eliciting the T cell fate with Notch. Semin Immunol 2010; 22:254-60. [PMID: 20627765 DOI: 10.1016/j.smim.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Multipotent progenitors arrive at the thymus via the blood. Constraining the non-T cell fates of these progenitors while promoting the T cell fate is a major task of the thymus. Notch appears to be the initial trigger for a developmental program that eventually results in T cell lineage commitment. Several downstream targets of Notch are known, but the specific roles of each are poorly understood. A greater understanding of how Notch and other thymic signals direct progenitors to a T cell fate could be useful for translational work. For example, such work could eventually allow for the generation of fully competent T cells in vitro that could supplement the waning T cell numbers and function in the elderly and boost T cell-mediated immunity in patients with immunodeficiency and after stem cell transplantation.
Collapse
Affiliation(s)
- Dil Afroz Sultana
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
73
|
Chari S, Umetsu SE, Winandy S. Notch target gene deregulation and maintenance of the leukemogenic phenotype do not require RBP-J kappa in Ikaros null mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:410-7. [PMID: 20511547 DOI: 10.4049/jimmunol.0903688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
74
|
Cruickshank MN, Ulgiati D. The role of notch signaling in the development of a normal B‐cell repertoire. Immunol Cell Biol 2009; 88:117-24. [DOI: 10.1038/icb.2009.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark N Cruickshank
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Daniela Ulgiati
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|