51
|
Chen X, Li Y, Wang C, Tang Y, Mok SA, Tsai RM, Rojas JC, Karydas A, Miller BL, Boxer AL, Gestwicki JE, Arkin M, Cuervo AM, Gan L. Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol Neurodegener 2020; 15:2. [PMID: 31906970 PMCID: PMC6945522 DOI: 10.1186/s13024-019-0354-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The trans-neuronal propagation of tau has been implicated in the progression of tau-mediated neurodegeneration. There is critical knowledge gap in understanding how tau is released and transmitted, and how that is dysregulated in diseases. Previously, we reported that lysine acetyltransferase p300/CBP acetylates tau and regulates its degradation and toxicity. However, whether p300/CBP is involved in regulation of tau secretion and propagation is unknown. METHOD We investigated the relationship between p300/CBP activity, the autophagy-lysosomal pathway (ALP) and tau secretion in mouse models of tauopathy and in cultured rodent and human neurons. Through a high-through-put compound screen, we identified a new p300 inhibitor that promotes autophagic flux and reduces tau secretion. Using fibril-induced tau spreading models in vitro and in vivo, we examined how p300/CBP regulates tau propagation. RESULTS Increased p300/CBP activity was associated with aberrant accumulation of ALP markers in a tau transgenic mouse model. p300/CBP hyperactivation blocked autophagic flux and increased tau secretion in neurons. Conversely, inhibiting p300/CBP promoted autophagic flux, reduced tau secretion, and reduced tau propagation in fibril-induced tau spreading models in vitro and in vivo. CONCLUSIONS We report that p300/CBP, a lysine acetyltransferase aberrantly activated in tauopathies, causes impairment in ALP, leading to excess tau secretion. This effect, together with increased intracellular tau accumulation, contributes to enhanced spreading of tau. Our findings suggest that inhibition of p300/CBP as a novel approach to correct ALP dysfunction and block disease progression in tauopathy.
Collapse
Affiliation(s)
- Xu Chen
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158 USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Yinyan Tang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
| | - Sue-Ann Mok
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158 USA
| | - Richard M. Tsai
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Memory and Aging Center, University of California, San Francisco, CA 94158 USA
| | - Julio C. Rojas
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Memory and Aging Center, University of California, San Francisco, CA 94158 USA
| | - Anna Karydas
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Memory and Aging Center, University of California, San Francisco, CA 94158 USA
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Memory and Aging Center, University of California, San Francisco, CA 94158 USA
| | - Adam L. Boxer
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Memory and Aging Center, University of California, San Francisco, CA 94158 USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158 USA
| | - Michelle Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
52
|
Davidowitz EJ, Krishnamurthy PK, Lopez P, Jimenez H, Adrien L, Davies P, Moe JG. In Vivo Validation of a Small Molecule Inhibitor of Tau Self-Association in htau Mice. J Alzheimers Dis 2020; 73:147-161. [PMID: 31771053 PMCID: PMC6957711 DOI: 10.3233/jad-190465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
Tau oligomers have been shown to transmit tau pathology from diseased neurons to healthy neurons through seeding, tau misfolding, and aggregation that is thought to play an influential role in the progression of Alzheimer's disease (AD) and related tauopathies. To develop a small molecule therapeutic for AD and related tauopathies, we have developed in vitro and cellular assays to select molecules inhibiting the first step in tau aggregation, the self-association of tau into oligomers. In vivo validation studies of an optimized lead compound were independently performed in the htau mouse model of tauopathy that expresses the human isoforms of tau without inherited tauopathy mutations that are irrelevant to AD. Treated mice did not show any adverse events related to the compound. The lead compound significantly reduced the level of self-associated tau and total and phosphorylated insoluble tau aggregates. The dose response was linear with respect to levels of compound in the brain. A confirmatory study was performed with male htau mice that gave consistent results. The results validated our screening approach by showing that targeting tau self-association can inhibit the entire tau aggregation pathway by using the selected and optimized lead compound whose activity translated from in vitro and cellular assays to an in vivo model of tau aggregation.
Collapse
Affiliation(s)
| | | | | | - Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
53
|
Pampuscenko K, Morkuniene R, Sneideris T, Smirnovas V, Budvytyte R, Valincius G, Brown GC, Borutaite V. Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. J Neurochem 2019; 154:316-329. [PMID: 31834946 DOI: 10.1111/jnc.14940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
Tau is a microtubule-associated protein, found at high levels in neurons, and its aggregation is associated with neurodegeneration. Recently, it was found that tau can be actively secreted from neurons, but the effects of extracellular tau on neuronal viability are unclear. In this study, we investigated whether extracellular tau2N4R can cause neurotoxicity in primary cultures of rat brain neurons and glial cells. Cell cultures were examined for neuronal loss, death, and phosphatidylserine exposure, as well as for microglial phagocytosis by fluorescence microscopy. Aggregation of tau2N4R was assessed by atomic force microscopy. We found that extracellular addition of tau induced a gradual loss of neurons over 1-2 days, without neuronal necrosis or apoptosis, but accompanied by proliferation of microglia in the neuronal-glial co-cultures. Tau addition caused exposure of the 'eat-me' signal phosphatidylserine on the surface of living neurons, and this was prevented by elimination of the microglia or by inhibition of neutral sphingomyelinase. Tau also increased the phagocytic activity of pure microglia, and this was blocked by inhibitors of neutral sphingomyelinase or protein kinase C. The neuronal loss induced by tau was prevented by inhibitors of neutral sphingomyelinase, protein kinase C or the phagocytic receptor MerTK, or by eliminating microglia from the cultures. The data suggest that extracellular tau induces primary phagocytosis of stressed neurons by activated microglia, and identifies multiple ways in which the neuronal loss induced by tau can be prevented.
Collapse
Affiliation(s)
- Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tomas Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rima Budvytyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gintaras Valincius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
54
|
Devitt G, Rice W, Crisford A, Nandhakumar I, Mudher A, Mahajan S. Conformational Evolution of Molecular Signatures during Amyloidogenic Protein Aggregation. ACS Chem Neurosci 2019; 10:4593-4611. [PMID: 31661242 DOI: 10.1021/acschemneuro.9b00451] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregation is a pathological hallmark of proteinopathies such as Alzheimer's disease and results in the deposition of β-sheet-rich amyloidogenic protein aggregates. Such proteinopathies can be classified by the identity of one or more aggregated proteins, with recent evidence also suggesting that distinct molecular conformers (strains) of the same protein can be observed in different diseases, as well is in subtypes of the same disease. Therefore, methods for the quantification of pathological changes in protein conformation are central to understanding and treating proteinopathies. In this work, the evolution of Raman spectroscopic molecular signatures of three conformationally distinct proteins, bovine serum albumin (α-helical-rich), β2-microglobulin (β-sheet-rich), and tau (natively disordered), was assessed during aggregation into oligomers and fibrils. The morphological evolution was tracked using atomic force microscopy and corresponding conformational changes were assessed by their Raman signatures acquired in both wet and dried conditions. A deconvolution model was developed which allowed us to quantify the conformation of the nonregular protein tau, as well as for the oligomeric and fibrillar species of each of the proteins. Principle component analysis of the fingerprint region allowed further identification of the distinguishing spectral features and unsupervised distinction. While an increase in β-sheet is seen on aggregation, crucially, however, each protein also retains a significant proportion of its native monomeric structure after aggregation. Thus, spectral analysis of each aggregated species, oligomeric, as well as fibrillar, for each protein resulted in a unique and quantitative "conformational fingerprint". This approach allowed us to provide the first differential detection of both oligomers and fibrils of the three different amyloidogenic proteins, including tau, whose aggregates have never before been interrogated using spontaneous Raman spectroscopy. Quantitative "conformational fingerprinting" by Raman spectroscopy thus demonstrates its huge potential and utility in understanding proteinopathic disease mechanisms and for providing strain-specific early diagnostic markers and targets for disease-modifying therapies.
Collapse
|
55
|
Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Crowe J, Hill EJ, Moffat KG. Distinct Conformations, Aggregation and Cellular Internalization of Different Tau Strains. Front Cell Neurosci 2019; 13:296. [PMID: 31338022 PMCID: PMC6629824 DOI: 10.3389/fncel.2019.00296] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
The inter-cellular propagation of tau aggregates in several neurodegenerative diseases involves, in part, recurring cycles of extracellular tau uptake, initiation of endogenous tau aggregation, and extracellular release of at least part of this protein complex. However, human brain tau extracts from diverse tauopathies exhibit variant or “strain” specificity in inducing inter-cellular propagation in both cell and animal models. It is unclear if these distinctive properties are affected by disease-specific differences in aggregated tau conformation and structure. We have used a combined structural and cell biological approach to study if two frontotemporal dementia (FTD)-associated pathologic mutations, V337M and N279K, affect the aggregation, conformation and cellular internalization of the tau four-repeat domain (K18) fragment. In both heparin-induced and native-state aggregation experiments, each FTD variant formed soluble and fibrillar aggregates with remarkable morphological and immunological distinctions from the wild type (WT) aggregates. Exogenously applied oligomers of the FTD tau-K18 variants (V337M and N279K) were significantly more efficiently taken up by SH-SY5Y neuroblastoma cells than WT tau-K18, suggesting mutation-induced changes in cellular internalization. However, shared internalization mechanisms were observed: endocytosed oligomers were distributed in the cytoplasm and nucleus of SH-SY5Y cells and the neurites and soma of human induced pluripotent stem cell-derived neurons, where they co-localized with endogenous tau and the nuclear protein nucleolin. Altogether, evidence of conformational and aggregation differences between WT and disease-mutated tau K18 is demonstrated, which may explain their distinct cellular internalization potencies. These findings may account for critical aspects of the molecular pathogenesis of tauopathies involving WT and mutated tau.
Collapse
Affiliation(s)
- Thomas K Karikari
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, United Kingdom
| | - David A Nagel
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Alastair Grainger
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | - James Crowe
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
56
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
57
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
58
|
Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:341-357. [PMID: 32096048 DOI: 10.1007/978-981-32-9358-8_25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is an intrinsically unfolded protein that, aside from its important role in the regulation of microtubule stability, harbors an emerging number of other functions. In order to find explanations for some longtime unsolved aspects of neuronal tau biology in the brain, we may have to step aside from observing tau molecules in dilute solutions, and from assuming a mono-molecular physicochemical behavior of molecules in the cell. Liquid condensed phases of tau proteins, which form through the biophysical process of liquid-liquid phase separation (LLPS), behave like liquids and thereby offer a new regime of interactions in the cell. So far, there is evidence that tau condensates (i) play a role for neurodegenerative diseases by transitioning into aggregated forms of tau, (ii) are involved in microtubule binding, nucleation, and bundling, and (iii) are interacting with RNA molecules, which could impact RNA homeostasis and transcription. Likewise the functions of monomeric tau, also tau condensation is regulated by post-translational modifications and can be influenced by the local environment, for example in neuronal sub-compartments. However, we are just beginning to understand the physicochemistry of tau LLPS, and the biological role of tau condensation has to be explored in the next years.
Collapse
|
59
|
Abstract
The accumulation of tau filaments in neurons is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease. However, it is not the filamentous aggregates themselves, but non-filamentous tau species, tau oligomer, that is thought to be the culprit in tau-mediated neurodegeneration. The definition of and methodology for isolating tau oligomers vary among researchers. Here we describe how tau oligomers are identified, summarize the differences of tau oligomers among research groups, and discuss their hypothesized functions.
Collapse
|
60
|
Rudenko LK, Wallrabe H, Periasamy A, Siller KH, Svindrych Z, Seward ME, Best MN, Bloom GS. Intraneuronal Tau Misfolding Induced by Extracellular Amyloid-β Oligomers. J Alzheimers Dis 2019; 71:1125-1138. [PMID: 31524157 PMCID: PMC7464573 DOI: 10.3233/jad-190226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-β oligomers (AβOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AβOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aβ and tau at seminal stages of AD pathogenesis.
Collapse
Affiliation(s)
- Lauren K. Rudenko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- W.M.Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ammasi Periasamy
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- W.M.Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA, USA
| | - Karsten H. Siller
- Advanced Research Computing Services, University of Virginia, Charlottesville, VA, USA
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Matthew E. Seward
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Merci N. Best
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
61
|
Balaji V, Kaniyappan S, Mandelkow E, Wang Y, Mandelkow EM. Pathological missorting of endogenous MAPT/Tau in neurons caused by failure of protein degradation systems. Autophagy 2018; 14:2139-2154. [PMID: 30145931 DOI: 10.1080/15548627.2018.1509607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Missorting of MAPT/Tau represents one of the early signs of neurodegeneration in Alzheimer disease. The triggers for this are still a matter of debate. Here we investigated the sorting mechanisms of endogenous MAPT in mature primary neurons using microfluidic chambers (MFCs) where cell compartments can be observed separately. Blocking protein degradation pathways with proteasomal or autophagy inhibitors dramatically increased the missorting of MAPT in dendrites on the neuritic side, suggesting that degradation of MAPT in dendrites is a major determinant for the physiological axonal distribution of MAPT. Such missorted dendritic MAPT differed in its phosphorylation pattern from axonal MAPT. By contrast, enhancing autophagy or proteasomal pathways strongly reduced MAPT missorting, thereby confirming the role of protein degradation pathways in the polar distribution of MAPT. Dendritic missorting of MAPT by blocking protein degradation resulted in the loss of spines but not in overall cell toxicity. Inhibition of local protein synthesis in dendrites eliminated the missorting of MAPT, indicating that the accumulation of dendritic MAPT is locally generated. In support of this, a substantial fraction of Mapt/Tau mRNA was detected in dendrites. Taken together, our results indicate that the autophagy and proteasomal pathways play important roles in fine-tuning dendritic MAPT levels and thereby prevent synaptic toxicity caused by MAPT accumulation. Abbreviations Ani: anisomycin; Baf: bafilomycin A1; BSA: bovine serum albumin; cAMP: cyclic adenosine monophosphate; CHX: cycloheximide; DMSO: dimethyl sulfoxide; DIV: days in vitro; Epo: epoxomicin; E18: embryonic day 18; FISH: fluorescence in situ hybridization; IgG: immunoglobulin; kDa: kilodalton; Lac: lactacystin; LDH: lactate dehydrogenase; MFC: microfluidic chambers; MAPs: microtubule-associated proteins; MAPT/Tau: microtubule-associated protein tau; PVDF: polyvinylidene difluoride; PBS: phosphate-buffered saline; PRKA: protein kinase AMP-activated; RD150: round device 150; RT: room temperature; SDS: sodium dodecyl sulfate; SEM: standard error of the mean; Wor: wortmannin.
Collapse
Affiliation(s)
- Varun Balaji
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany
| | | | - Eckhard Mandelkow
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany.,b CAESAR Research Center , Bonn , Germany.,c MPI for Metabolism Research, Hamburg Outstation c/o DESY , Hamburg , Germany
| | - Yipeng Wang
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany
| | - Eva-Maria Mandelkow
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany.,b CAESAR Research Center , Bonn , Germany.,c MPI for Metabolism Research, Hamburg Outstation c/o DESY , Hamburg , Germany
| |
Collapse
|
62
|
Pir GJ, Choudhary B, Kaniyappan S, Chandupatla RR, Mandelkow E, Mandelkow EM, Wang Y. Suppressing Tau Aggregation and Toxicity by an Anti-Aggregant Tau Fragment. Mol Neurobiol 2018; 56:3751-3767. [PMID: 30196394 PMCID: PMC6476873 DOI: 10.1007/s12035-018-1326-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022]
Abstract
Tau aggregation is a hallmark of a group of neurodegenerative diseases termed Tauopathies. Reduction of aggregation-prone Tau has emerged as a promising therapeutic approach. Here, we show that an anti-aggregant Tau fragment (F3ΔKPP, residues 258–360) harboring the ΔK280 mutation and two proline substitutions (I277P & I308P) in the repeat domain can inhibit aggregation of Tau constructs in vitro, in cultured cells and in vivo in a Caenorhabditis elegans model of Tau aggregation. The Tau fragment reduced Tau-dependent cytotoxicity in a N2a cell model, suppressed the Tau-mediated neuronal dysfunction and ameliorated the defective locomotion in C. elegans. In vitro the fragment competes with full-length Tau for polyanionic aggregation inducers and thus inhibits Tau aggregation. Our combined in vitro and in vivo results suggest that the anti-aggregant Tau fragment may potentially be used to address the consequences of Tau aggregation in Tauopathies.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany. .,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Ram Reddy Chandupatla
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.,CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany. .,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany. .,Max-Planck-Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
63
|
Mondragón-Rodríguez S, Salas-Gallardo A, González-Pereyra P, Macías M, Ordaz B, Peña-Ortega F, Aguilar-Vázquez A, Orta-Salazar E, Díaz-Cintra S, Perry G, Williams S. Phosphorylation of Tau protein correlates with changes in hippocampal theta oscillations and reduces hippocampal excitability in Alzheimer's model. J Biol Chem 2018; 293:8462-8472. [PMID: 29632073 DOI: 10.1074/jbc.ra117.001187] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Tau hyperphosphorylation at several sites, including those close to the microtubule domain region (MDr), is considered a key pathological event in the development of Alzheimer's disease (AD). Recent studies indicate that at the very early stage of this disease, increased phosphorylation in Tau's MDr domain correlates with reduced levels of neuronal excitability. Mechanistically, we show that pyramidal neurons and some parvalbumin-positive interneurons in 1-month-old triple-transgenic AD mice accumulate hyperphosphorylated Tau protein and that this accumulation correlates with changes in theta oscillations in hippocampal neurons. Pyramidal neurons from young triple-transgenic AD mice exhibited less spike accommodation and power increase in subthreshold membrane oscillations. Furthermore, triple-transgenic AD mice challenged with the potassium channel blocker 4-aminopyridine had reduced theta amplitude compared with 4-aminopyridine-treated control mice and, unlike these controls, displayed no seizure-like activity after this challenge. Collectively, our results provide new insights into AD pathogenesis and suggest that increases in Tau phosphorylation at the initial stages of the disease represent neuronal responses that compensate for brain circuit overexcitation.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- From the CONACYT National Council for Science and Technology, 03940 México, México, .,UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Anahí Salas-Gallardo
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Perla González-Pereyra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Martín Macías
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Benito Ordaz
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Fernando Peña-Ortega
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Azucena Aguilar-Vázquez
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Erika Orta-Salazar
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - Sofía Díaz-Cintra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, 76230 Querétaro, México
| | - George Perry
- the UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249, and
| | - Sylvain Williams
- the Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Quebec H4H 1R3, Canada
| |
Collapse
|
64
|
The Neurotoxic Role of Extracellular Tau Protein. Int J Mol Sci 2018; 19:ijms19040998. [PMID: 29584657 PMCID: PMC5979432 DOI: 10.3390/ijms19040998] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the microtubule-associated protein tau, with Alzheimer’s disease (AD) being the most prevalent related disorder. Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks present in the brains of AD patients. Because NFTs are aberrant intracellular inclusions formed by hyperphosphorylated tau, it was initially proposed that phosphorylated and/or aggregated intracellular tau protein was causative of neuronal death. However, recent studies suggest a toxic role for non-phosphorylated and non-aggregated tau when it is located in the brain extracellular space. In this work, we will discuss the neurotoxic role of extracellular tau as well its involvement in the spreading of tau pathologies.
Collapse
|
65
|
Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M, Shammas SL, Jackson SE, Dobson CM, Klenerman D. Hsp70 Inhibits the Nucleation and Elongation of Tau and Sequesters Tau Aggregates with High Affinity. ACS Chem Biol 2018; 13:636-646. [PMID: 29300447 PMCID: PMC6374916 DOI: 10.1021/acschembio.7b01039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
As a key player of
the protein quality control network of the cell,
the molecular chaperone Hsp70 inhibits the aggregation of the amyloid
protein tau. To date, the mechanism of this inhibition and the tau
species targeted by Hsp70 remain unknown. This is partly due to the
inherent difficulty of studying amyloid aggregates because of their
heterogeneous and transient nature. Here, we used ensemble and single-molecule
fluorescence measurements to dissect how Hsp70 counteracts the self-assembly
process of the K18 ΔK280 tau variant. We found that Hsp70 blocks
the early stages of tau aggregation by suppressing the formation of
tau nuclei. Additionally, Hsp70 sequesters oligomers and mature tau
fibrils with nanomolar affinity into a protective complex, efficiently
neutralizing their ability to damage membranes and seed further tau
aggregation. Our results provide novel insights into the molecular
mechanisms by which the chaperone Hsp70 counteracts the formation,
propagation, and toxicity of tau aggregates.
Collapse
Affiliation(s)
- Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Suman De
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mathew H. Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Magnus Kjaergaard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah L. Shammas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sophie E. Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
66
|
Dunkelmann T, Teichmann K, Ziehm T, Schemmert S, Frenzel D, Tusche M, Dammers C, Jürgens D, Langen KJ, Demuth HU, Shah NJ, Kutzsche J, Willuweit A, Willbold D. Aβ oligomer eliminating compounds interfere successfully with pEAβ(3-42) induced motor neurodegenerative phenotype in transgenic mice. Neuropeptides 2018; 67:27-35. [PMID: 29273382 DOI: 10.1016/j.npep.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
Currently, there are no causative or disease modifying treatments available for Alzheimer's disease (AD). Previously, it has been shown that D3, a small, fully d-enantiomeric peptide is able to eliminate low molecular weight Aβ oligomers in vitro, enhance cognition and reduce plaque load in AD transgenic mice. To further characterise the therapeutic potential of D3 towards N-terminally truncated and pyroglutamated Aβ (pEAβ(3-42)) we tested D3 and its head-to-tail tandem derivative D3D3 both in vitro and in vivo in the new mouse model TBA2.1. These mice produce human pEAβ(3-42) leading to a strong, early onset motor neurodegenerative phenotype. In the present study, we were able to demonstrate 1) strong binding affinity of both D3 and D3D3 to pEAβ(3-42) in comparison to Aβ(1-42) and 2) increased affinity of the tandem derivative D3D3 in comparison to D3. Subsequently we tested the therapeutic potentials of both peptides in the TBA2.1 animal model. Truly therapeutic, non-preventive treatment with D3 and D3D3 clearly slowed the progression of the neurodegenerative TBA2.1 phenotype, indicating the strong therapeutic potential of both peptides against pEAβ(3-42) induced neurodegeneration.
Collapse
Affiliation(s)
- Tina Dunkelmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Kerstin Teichmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Daniel Frenzel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Christina Dammers
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Dagmar Jürgens
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany; Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute of Cell Therapy and Immunology (IZI), Leipzig, Department of Drug Design and Target Validation (MWT), Biozentrum, Weinbergweg 22, 06120 Halle, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen Straße, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
67
|
Kaniyappan S, Chandupatla RR, Mandelkow E. Purification and Characterization of Low-n Tau Oligomers. Methods Mol Biol 2018; 1779:99-111. [PMID: 29886530 DOI: 10.1007/978-1-4939-7816-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deposition of Tau aggregates in patient's brains is a hallmark of several neurodegenerative diseases collectively called Tauopathies. One of the most studied Tauopathies is Alzheimer disease (AD) in which Tau protein aggregates into filaments and coalesces into neurofibrillary tangles. The distribution of Tau filaments is a reliable indicator of the clinical stages of AD (Braak stages), but intermediate oligomeric assemblies of Tau are considered to be more directly toxic to neurons than late stage filaments. Studying the elusive role of Tau oligomers has been difficult because of their dynamic nature and paucity of methods to purify them in vitro. In this chapter, we describe methods to purify Tau oligomers to near homogeneity and to characterize them by hydrophobic interaction chromatography and biophysical methods such as fluorescence spectrophotometry, dynamic light scattering, atomic force microscopy, and others. Functional characterization includes the assessment of synapses and toxicity assays which show that oligomers can damage synapses locally but show little toxicity to neurons globally.
Collapse
Affiliation(s)
- Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg, Germany
| | - Ram Reddy Chandupatla
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg, Germany.
- Caesar Research Center, Bonn, Germany.
| |
Collapse
|
68
|
Khachaturian AS. Letter. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 9:84-87. [PMID: 29255790 PMCID: PMC5725207 DOI: 10.1016/j.dadm.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ara S. Khachaturian
- Corresponding author. Tel.: 301-309-6730; Fax: (844) 309-6730. http://www.alzheimersanddementia.orghttp://adj.edmgr.com
| |
Collapse
|