51
|
Abstract
The structural analysis of viruses is often a complex task. In many cases, the details of the viral architecture, especially for enveloped viruses, are limited to low-resolution techniques such as electron microscopy. These structural proteins and assemblies of viruses often populate multiple conformational states and undergo dramatic structural changes, making them difficult to study by most structural methods. They also frequently include highly dynamic regions that are of key functional importance. Many viruses present large surface glycoproteins, which have also proved to be challenging for structural biology due to the intrinsic flexibility and heterogeneity of the glycan decorations. Over the past two decades, hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) has provided a wealth of information on many diverse viral proteins, glycoproteins, and complexes, in many cases, in multiple conformational states. Here, we describe the methodology for using HDX-MS to investigate the rich structural dynamics of viral systems, and we briefly review the type of systems that have been examined through this type of approach. Though the technique is relatively simple, several potential pitfalls exist at both the sample preparation and the data analysis stage that investigators should be aware of for obtaining reliable data.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
52
|
Lindner R, Heintz U, Winkler A. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors. Front Mol Biosci 2015; 2:33. [PMID: 26157802 PMCID: PMC4477167 DOI: 10.3389/fmolb.2015.00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
Rational design of optogenetic tools is inherently linked to the understanding of photoreceptor function. Structural analysis of elements involved in signal integration in individual sensor domains provides an initial idea of their mode of operation, but understanding how local structural rearrangements eventually affect signal transmission to output domains requires inclusion of the effector regions in the characterization. However, the dynamic nature of these assemblies renders their structural analysis challenging and therefore a combination of high- and low-resolution techniques is required to appreciate functional aspects of photoreceptors. This review focuses on the potential of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) for complementing the structural characterization of photoreceptors. In this respect, the ability of HDX-MS to provide information on conformational dynamics and the possibility to address multiple functionally relevant states in solution render this methodology ideally suitable. We highlight recent examples demonstrating the potential of HDX-MS and discuss how these results can help to improve existing optogenetic systems or guide the design of novel optogenetic tools.
Collapse
Affiliation(s)
- Robert Lindner
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Udo Heintz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology Graz, Austria
| |
Collapse
|
53
|
Pan J, Zhang S, Chou A, Hardie DB, Borchers CH. Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen-Deuterium Exchange and Electron Transfer Dissociation. Anal Chem 2015; 87:5884-90. [PMID: 25927482 DOI: 10.1021/ac504809r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Higher-order structural characterization plays an important role in many stages of therapeutic antibody production. Herein, we report a new top-down mass spectrometry approach for characterizing the higher-order structure of intact antibodies, by combining hydrogen/deuterium exchange (HDX), subzero temperature chromatography, and electron transfer dissociation on the Orbitrap mass spectrometer. Individual IgG domain-level deuteration information was obtained for 6 IgG domains on Herceptin (HER), which included the antigen binding sites. This is the first time that top-down HDX has been applied to an intact protein as large as 150 kDa, which has never been done before on any instrument. Ligand-binding induced structural differences in HER were determined to be located only on the variable region of the light chain. Global glycosylation profile of antibodies and HDX property of the glycoforms were also determined by accurate intact mass measurements. Although the presence of disulfide bonds prevent the current approach from being able to obtain amino acid level structural information within the disulfide-linked regions, the advantages such as minimal sample manipulation, fast workflow, very low level of back exchange, and simple data analysis, make it well-suited for fast comparative structural evaluation of intact antibodies.
Collapse
Affiliation(s)
- Jingxi Pan
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Albert Chou
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl B Hardie
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H Borchers
- †University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
54
|
Keppel TR, Weis DD. Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:547-554. [PMID: 25481641 DOI: 10.1007/s13361-014-1033-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Measurement of residual structure in intrinsically disordered proteins can provide insights into the mechanisms by which such proteins undergo coupled binding and folding. The present work describes an approach to measure residual structure in disordered proteins using millisecond hydrogen/deuterium (H/D) exchange in a conventional bottom-up peptide-based workflow. We used the exchange mid-point, relative to a totally deuterated control, to quantify the rate of H/D exchange in each peptide. A weighted residue-by-residue average of these midpoints was used to map the extent of residual structure at near single-residue resolution. We validated this approach both by simulating a disordered protein and experimentally using the p300 binding domain of ACTR, a model disordered protein already well-characterized by other approaches. Secondary structure elements mapped in the present work are in good agreement with prior nuclear magnetic resonance measurements. The new approach was somewhat limited by a loss of spatial resolution and subject to artifacts because of heterogeneities in intrinsic exchange. Approaches to correct these limitations are discussed.
Collapse
Affiliation(s)
- Theodore R Keppel
- Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | | |
Collapse
|
55
|
Going CC, Williams ER. Supercharging with m-Nitrobenzyl Alcohol and Propylene Carbonate: Forming Highly Charged Ions with Extended, Near-Linear Conformations. Anal Chem 2015; 87:3973-80. [DOI: 10.1021/acs.analchem.5b00071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Catherine C. Going
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
56
|
Gülbakan B, Barylyuk K, Zenobi R. Determination of thermodynamic and kinetic properties of biomolecules by mass spectrometry. Curr Opin Biotechnol 2015; 31:65-72. [DOI: 10.1016/j.copbio.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 01/13/2023]
|
57
|
Xiao C, Pérez LM, Russell DH. Effects of charge states, charge sites and side chain interactions on conformational preferences of a series of model peptide ions. Analyst 2015; 140:6933-44. [DOI: 10.1039/c5an00826c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The factors affecting conformational preference of gas phase peptide ions are investigated by IM-MS and molecular dynamics simulation.
Collapse
Affiliation(s)
- Chunying Xiao
- Texas A&M University
- Department of Chemistry
- College Station
- USA
| | - Lisa M. Pérez
- Texas A&M University
- Department of Chemistry
- College Station
- USA
| | | |
Collapse
|
58
|
Mistarz UH, Brown JM, Haselmann KF, Rand KD. Simple setup for gas-phase H/D exchange mass spectrometry coupled to electron transfer dissociation and ion mobility for analysis of polypeptide structure on a liquid chromatographic time scale. Anal Chem 2014; 86:11868-76. [PMID: 25375223 DOI: 10.1021/ac5035456] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
59
|
A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding. PLoS One 2014; 9:e110810. [PMID: 25401506 PMCID: PMC4234509 DOI: 10.1371/journal.pone.0110810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/21/2014] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tardavirulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.
Collapse
|
60
|
Song H, Olsen OH, Persson E, Rand KD. Sites involved in intra- and interdomain allostery associated with the activation of factor VIIa pinpointed by hydrogen-deuterium exchange and electron transfer dissociation mass spectrometry. J Biol Chem 2014; 289:35388-96. [PMID: 25344622 DOI: 10.1074/jbc.m114.614297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Factor VIIa (FVIIa) is a trypsin-like protease that plays an important role in initiating blood coagulation. Very limited structural information is available for the free, inactive form of FVIIa that circulates in the blood prior to vascular injury and the molecular details of its activity enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form, as induced either by its cofactor tissue factor or a covalent active site inhibitor. Identified regulatory residues are situated at key sites across one continuous surface of the protease domain spanning the TF-binding helix across the activation pocket to the calcium binding site and are embedded in elements of secondary structure and at the base of flexible loops. Thus these residues are optimally positioned to mediate crosstalk between functional sites in FVIIa, particularly the cofactor binding site and the active site. Our results unambiguously show that the conformational allosteric activation signal extends to the EGF1 domain in the light chain of FVIIa, underscoring a remarkable intra- and interdomain allosteric regulation of this trypsin-like protease.
Collapse
Affiliation(s)
- Hongjian Song
- From the Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark and
| | - Ole H Olsen
- Haemostasis Biology, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Egon Persson
- Haemostasis Biology, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Kasper D Rand
- From the Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark and
| |
Collapse
|
61
|
Rand KD, Zehl M, Jørgensen TJD. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc Chem Res 2014; 47:3018-27. [PMID: 25171396 DOI: 10.1021/ar500194w] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ∼7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology.
Collapse
Affiliation(s)
- Kasper D. Rand
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Zehl
- Department
of Pharmacognosy and Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
62
|
Pan J, Zhang S, Parker CE, Borchers CH. Subzero Temperature Chromatography and Top-Down Mass Spectrometry for Protein Higher-Order Structure Characterization: Method Validation and Application to Therapeutic Antibodies. J Am Chem Soc 2014; 136:13065-71. [DOI: 10.1021/ja507880w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jingxi Pan
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Suping Zhang
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Carol E. Parker
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, 3101-4464 Markham St., Victoria, British Columbia V8Z 7X8, Canada
- Department
of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
63
|
Wang G, Kaltashov IA. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry. Anal Chem 2014; 86:7293-8. [PMID: 24988145 PMCID: PMC4144750 DOI: 10.1021/ac501789e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Top-down hydrogen/deuterium exchange
(HDX) with mass spectrometric
(MS) detection has recently matured to become a potent biophysical
tool capable of providing valuable information on higher order structure
and conformational dynamics of proteins at an unprecedented level
of structural detail. However, the scope of the proteins amenable
to the analysis by top-down HDX MS still remains limited, with the
protein size and the presence of disulfide bonds being the two most
important limiting factors. While the limitations imposed by the physical
size of the proteins gradually become more relaxed as the sensitivity,
resolution and dynamic range of modern MS instrumentation continue
to improve at an ever accelerating pace, the presence of the disulfide
linkages remains a much less forgiving limitation even for the proteins
of relatively modest size. To circumvent this problem, we introduce
an online chemical reduction step following completion and quenching
of the HDX reactions and prior to the top-down MS measurements of
deuterium occupancy of individual backbone amides. Application of
the new methodology to the top-down HDX MS characterization of a small
(99 residue long) disulfide-containing protein β2-microglobulin allowed the backbone amide protection to be probed
with nearly a single-residue resolution across the entire sequence.
The high-resolution backbone protection pattern deduced from the top-down
HDX MS measurements carried out under native conditions is in excellent
agreement with the crystal structure of the protein and high-resolution
NMR data, suggesting that introduction of the chemical reduction step
to the top-down routine does not trigger hydrogen scrambling either
during the electrospray ionization process or in the gas phase prior
to the protein ion dissociation.
Collapse
Affiliation(s)
- Guanbo Wang
- Department of Chemistry, University of Massachusetts-Amherst , 710 North Pleasant Street, LGRT 104, Amherst, Massachusetts 01003 United States
| | | |
Collapse
|
64
|
Bobst CE, Kaltashov IA. Enhancing the quality of H/D exchange measurements with mass spectrometry detection in disulfide-rich proteins using electron capture dissociation. Anal Chem 2014; 86:5225-31. [PMID: 24820935 PMCID: PMC4051250 DOI: 10.1021/ac500904p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Hydrogen/deuterium exchange (HDX)
mass spectrometry (MS) has become
a potent technique to probe higher-order structures, dynamics, and
interactions of proteins. While the range of proteins amenable to
interrogation by HDX MS continues to expand at an accelerating pace,
there are still a few classes of proteins whose analysis with this
technique remains challenging. Disulfide-rich proteins constitute
one of such groups: since the reduction of thiol–thiol bonds
must be carried out under suboptimal conditions (to minimize the back-exchange),
it frequently results in incomplete dissociation of disulfide bridges
prior to MS analysis, leading to a loss of signal, inadequate sequence
coverage, and a dramatic increase in the difficulty of data analysis.
In this work, the dissociation of disulfide-linked peptide dimers
produced by peptic digestion of the 80 kDa glycoprotein transferrin
in the course of HDX MS experiments is carried out using electron
capture dissociation (ECD). ECD results in efficient cleavage of the
thiol–thiol bonds in the gas phase on the fast LC time scale
and allows the deuterium content of the monomeric constituents of
the peptide dimers to be measured individually. The measurements appear
to be unaffected by hydrogen scrambling, even when high collisional
energies are utilized. This technique will benefit HDX MS measurements
for any protein that contains one or more disulfides and the potential
gain in sequence coverage and spatial resolution would increase with
disulfide bond number.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
65
|
Pan J, Borchers CH. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics 2014; 14:1249-58. [DOI: 10.1002/pmic.201300341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/14/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jingxi Pan
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
66
|
Kadek A, Mrazek H, Halada P, Rey M, Schriemer DC, Man P. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2014; 86:4287-94. [DOI: 10.1021/ac404076j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alan Kadek
- Institute of Microbiology,
Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Hynek Mrazek
- Institute of Microbiology,
Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology,
Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martial Rey
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - David C. Schriemer
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Petr Man
- Institute of Microbiology,
Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
67
|
Cassou CA, Williams ER. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series. Anal Chem 2014; 86:1640-7. [PMID: 24410546 PMCID: PMC3983018 DOI: 10.1021/ac403398j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
effects of different anions on the extent of electrothermal
supercharging of proteins from aqueous ammonium and sodium salt solutions
were investigated. Sulfate and hydrogen phosphate are the most effective
anions at producing high charge state protein ions from buffered aqueous
solution, whereas iodide and perchlorate are ineffective with electrothermal
supercharging. The propensity for these anions to produce high charge
state protein ions follows the following trend: sulfate > hydrogen
phosphate > thiocyanate > bicarbonate > chloride > formate
≈
bromide > acetate > iodide > perchlorate. This trend correlates
with
the reverse Hofmeister series over a wide range of salt concentrations
(1 mM to 2 M) and with several physical properties, including solvent
surface tension, anion viscosity B-coefficient, and anion surface/bulk
partitioning coefficient, all of which are related to the Hofmeister
series. The effectiveness of electrothermal supercharging does not
depend on bubble formation, either from thermal degradation of the
buffer or from coalescence of dissolved gas. These results provide
evidence that the effect of different ions in the formation of high
charge state ions by electrothermal supercharging is largely a result
of Hofmeister effects on protein stability leading to protein unfolding
in the heated ESI droplet.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
68
|
Liu Q, Easterling ML, Agar JN. Resolving isotopic fine structure to detect and quantify natural abundance- and hydrogen/deuterium exchange-derived isotopomers. Anal Chem 2013; 86:820-5. [PMID: 24328359 DOI: 10.1021/ac403365g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) is used for analyzing protein dynamics, protein folding/unfolding, and molecular interactions. Until this study, HDX MS experiments employed mass spectral resolving powers that afforded only one peak per nominal mass in a given peptide's isotope distribution, and HDX MS data analysis methods were developed accordingly. A level of complexity that is inherent to HDX MS remained unaddressed, namely, various combinations of natural abundance heavy isotopes and exchanged deuterium shared the same nominal mass and overlapped at previous resolving powers. For example, an A + 2 peak is comprised of (among other isotopomers) a two-(2)H-exchanged/zero-(13)C isotopomer, a one-(2)H-exchanged/one-(13)C isotopomer, and a zero-(2)H-exchanged/two-(13)C isotopomer. Notably, such isotopomers differ slightly in mass as a result of the ∼3 mDa mass defect between (2)H and (13)C atoms. Previous HDX MS methods did not resolve these isotopomers, requiring a natural-abundance-only (before HDX or "time zero") spectrum and data processing to remove its contribution. It is demonstrated here that high-resolution mass spectrometry can be used to detect isotopic fine structure, such as in the A + 2 profile example above, deconvolving the isotopomer species resulting from deuterium incorporation. Resolving isotopic fine structure during HDX MS therefore permits direct monitoring of HDX, which can be calculated as the sum of the fractional peak magnitudes of the deuterium-exchanged isotopomers. This obviates both the need for a time zero spectrum as well as data processing to account for natural abundance heavy isotopes, saving instrument and analysis time.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, Brandeis University , Waltham, Massachusetts 02453, United States
| | | | | |
Collapse
|
69
|
Hentze N, Mayer MP. Analyzing protein dynamics using hydrogen exchange mass spectrometry. J Vis Exp 2013. [PMID: 24326301 DOI: 10.3791/50839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-(1)H/(2)H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.
Collapse
Affiliation(s)
- Nikolai Hentze
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg
| | | |
Collapse
|
70
|
Conformer-specific characterization of nonnative protein states using hydrogen exchange and top-down mass spectrometry. Proc Natl Acad Sci U S A 2013; 110:20087-92. [PMID: 24277803 DOI: 10.1073/pnas.1315029110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Characterization of structure and dynamics of nonnative protein states is important for understanding molecular mechanisms of processes as diverse as folding, binding, aggregation, and enzyme catalysis to name just a few; however, selectively probing local minima within rugged energy landscapes remains a problem. Mass spectrometry (MS) coupled with hydrogen/deuterium exchange (HDX) offers a unique advantage of being able to make a distinction among multiple protein conformers that coexist in solution; however, detailed structural interrogation of such states previously remained out of reach of HDX MS. In this work, we exploited the aforementioned unique feature of HDX MS in combination with the ability of MS to isolate narrow populations of protein ions to characterize individual protein conformers coexisting in solution in equilibrium. Subsequent fragmentation of the protein ions using electron-capture dissociation allowed us to allocate the deuterium distribution along the protein backbone, yielding a backbone-amide protection map for the selected conformer unaffected by contributions from other protein states present in solution. The method was tested with the small regulatory protein ubiquitin (Ub), which is known to form nonnative intermediate states under a variety of mildly denaturing conditions. Protection maps of these intermediate states obtained at residue-level resolution provide clear evidence that they are very similar to the so-called A-state of Ub that is formed in solutions with low pH and high alcohol. Method validation was carried out by comparing the backbone-amide protection map of native Ub with those deduced from high-resolution NMR measurements.
Collapse
|
71
|
O'Brien JP, Mayberry LK, Murphy PA, Browning KS, Brodbelt JS. Evaluating the conformation and binding interface of cap-binding proteins and complexes via ultraviolet photodissociation mass spectrometry. J Proteome Res 2013; 12:5867-77. [PMID: 24200290 DOI: 10.1021/pr400869u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped. The results indicate that there are particular lysine residues whose environment changes in the presence of dithiothreitol or eIF4G, suggesting that changes in the structure of eIF4E are occurring. On the basis of the crystal structure of wheat eIF4E and a constructed homology model of the structure for eIFiso4E, the reactivities of lysines in each protein are rationalized. Our results suggest that chemical probe/UVPD mass spectrometry can successfully predict dynamic structural changes in solution that are consistent with known crystal structures. Our findings reveal that the binding of m(7)GTP to eIF4E and eIFiso4E appears to be dependent on the redox state of a pair of cysteines near the m(7)GTP binding site. In addition, tertiary structural changes of eIF4E initiated by the formation of a complex containing a fragment of eIF4G and eIF4E were observed.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry and ‡Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
72
|
Abzalimov RR, Bobst CE, Kaltashov IA. A new approach to measuring protein backbone protection with high spatial resolution using H/D exchange and electron capture dissociation. Anal Chem 2013; 85:9173-80. [PMID: 23978257 DOI: 10.1021/ac401868b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inadequate spatial resolution remains one of the most serious limitations of hydrogen/deuterium exchange-mass spectrometry (HDX-MS), especially when applied to larger proteins (over 30 kDa). Supplementing proteolytic fragmentation of the protein in solution with ion dissociation in the gas phase has been used successfully by several groups to obtain near-residue level resolution. However, the restrictions imposed by the LC-MS/MS mode of operation on the data acquisition time frame makes it difficult in many cases to obtain a signal-to-noise ratio adequate for reliable assignment of the backbone amide protection levels at individual residues. This restriction is lifted in the present work by eliminating the LC separation step from the workflow and taking advantage of the high resolving power and dynamic range of a Fourier transform ion cyclotron resonance-mass spectrometer (FTICR-MS). A residue-level resolution is demonstrated for a peptic fragment of a 37 kDa recombinant protein (N-lobe of human serum transferrin), using electron-capture dissociation as an ion fragmentation tool. The absence of hydrogen scrambling in the gas phase prior to ion dissociation is verified using redundant HDX-MS data generated by FTICR-MS. The backbone protection pattern generated by direct HDX-MS/MS is in excellent agreement with the known crystal structure of the protein but also provides information on conformational dynamics, which is not available from the static X-ray structure.
Collapse
Affiliation(s)
- Rinat R Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, MA 01003, United States
| | | | | |
Collapse
|
73
|
Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci U S A 2013; 110:16438-43. [PMID: 24019478 DOI: 10.1073/pnas.1315532110] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen exchange technology provides a uniquely powerful instrument for measuring protein structural and biophysical properties, quantitatively and in a nonperturbing way, and determining how these properties are implemented to produce protein function. A developing hydrogen exchange-mass spectrometry method (HX MS) is able to analyze large biologically important protein systems while requiring only minuscule amounts of experimental material. The major remaining deficiency of the HX MS method is the inability to deconvolve HX results to individual amino acid residue resolution. To pursue this goal we used an iterative optimization program (HDsite) that integrates recent progress in multiple peptide acquisition together with previously unexamined isotopic envelope-shape information and a site-resolved back-exchange correction. To test this approach, residue-resolved HX rates computed from HX MS data were compared with extensive HX NMR measurements, and analogous comparisons were made in simulation trials. These tests found excellent agreement and revealed the important computational determinants.
Collapse
|
74
|
Lemaire P, Debois D, Smargiasso N, Quinton L, Gabelica V, De Pauw EA. Use of 1,5-diaminonaphthalene to combine matrix-assisted laser desorption/ionization in-source decay fragmentation with hydrogen/deuterium exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1837-1846. [PMID: 23857929 DOI: 10.1002/rcm.6627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE In-Source Decay (ISD) in Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry is a fast and easy top-down activation method. Our objective is to find a suitable matrix to locate the deuterons following in-solution hydrogen/deuterium exchange (HDX). This matrix must circumvent the commonly encountered undesired back-exchange reactions, in order to preserve the regioselective deuteration pattern. METHODS The 1,5-diaminonaphthalene (1,5-DAN) matrix is known to be suitable for MALDI-ISD fragmentation. MALDI Mass Spectrometry Imaging (MSI) was employed to compare 1,5-DAN and other commonly used MALDI matrices with respect to the extent of back-exchange and the uniformity of the H/D exchange profiles within the MALDI spots. We tested the back-exchange on the highly sensitive amyloid-beta peptide (1-40), and proved the regioselectivity on ubiquitin and β-endorphin. RESULTS MALDI-MSI results show that 1,5-DAN leads to the least back-exchange over all the spot. MALDI-ISD fragmentation combined with H/D exchange using 1,5-DAN matrix was validated by localizing deuterons in native ubiquitin. Results agree with previous data obtained by Nuclear Magnetic Resonance (NMR) and Electron Transfer Dissociation (ETD). Moreover, 1,5-DAN matrix was used to study the H/D exchange profile of the methanol-induced helical structure of β-endorphin, and the relative protection can be explained by the polarity of residues involved in hydrogen bond formation. CONCLUSIONS We found that controlling crystallization is the most important parameter when combining H/D exchange with MALDI. The 1,5-DAN matrix is characterized by a fast crystallization kinetics, and therefore gives robust and reliable H/D exchange profiles using MALDI-ISD.
Collapse
Affiliation(s)
- Pascale Lemaire
- GIGA-R, Mass Spectrometry Laboratory, Department of Chemistry, Chemistry Building B6c, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
77
|
Hedges JB, Vahidi S, Yue X, Konermann L. Effects of Ammonium Bicarbonate on the Electrospray Mass Spectra of Proteins: Evidence for Bubble-Induced Unfolding. Anal Chem 2013; 85:6469-76. [DOI: 10.1021/ac401020s] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jason B. Hedges
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
78
|
Woods L, Radford S, Ashcroft A. Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1257-68. [PMID: 23063533 PMCID: PMC3787735 DOI: 10.1016/j.bbapap.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 10/28/2022]
Abstract
Interfacing ion mobility spectrometry to mass spectrometry (IMS-MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS-MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS-MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
| | - S.E. Radford
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - A.E. Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
79
|
Kaltashov IA, Bobst CE, Abzalimov RR. Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 2013; 22:530-44. [PMID: 23436701 DOI: 10.1002/pro.2238] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from protein sequencing and mapping of post-translational modifications to studies of higher order structure, conformational dynamics, and interactions of proteins with small molecule ligands and other biopolymers. This mini-review highlights several popular mass spectrometry-based tools that are now commonly used for structural studies of proteins beyond their covalent structure with a particular emphasis on hydrogen exchange and direct electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
80
|
Pan J, Borchers CH. Top-down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonance-MS with hydrogen/deuterium exchange and electron capture dissociation. Proteomics 2013; 13:974-81. [PMID: 23319428 DOI: 10.1002/pmic.201200246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 11/08/2022]
Abstract
High-resolution structural characterization of posttranslationally modified proteins represents a challenge for traditional structural biology methods such as crystallography and NMR. In this study, we have used top-down hydrogen/deuterium exchange MS (HDX-MS) with precursor ion selection and electron capture dissociation to determine the impact of oxidative modification on calmodulin (CaM) at an average resolution of 2.5 residues, with complete sequence coverage. The amide deuteration status of native CaM determined by this method correlates well with previously reported crystallographic and NMR data. In contrast, methionine oxidation caused almost complete deuteration of all residues in the protein in 10 s. The oxidative-modification-induced secondary and tertiary structure loss can be largely recovered upon calcium ligation, which also resulted in a substantial increase of amide protection in three of the four calcium-binding loops in oxidatively modified CaM (CaMox ). However, the structure of α-helix VI is not restored by cofactor binding. These results are discussed in terms of different target binding and activation capabilities displayed by CaM and CaMox . The isoform-specific top-down HDX structural analysis strategy demonstrated in this study should be readily applicable to other oxidatively modified proteins and other types of PTMs, and may help decipher the structure and function of specific protein isoforms.
Collapse
Affiliation(s)
- Jingxi Pan
- UVic-Genome BC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
81
|
Kaaki W, Woudstra M, Gontero B, Halgand F. Exploration of CP12 conformational changes and of quaternary structural properties using electrospray ionization traveling wave ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:179-186. [PMID: 23239332 DOI: 10.1002/rcm.6442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE CP12 is a small chloroplast protein involved in the Benson-Calvin cycle. Since it was demonstrated that the CP12 protein shared different conformational properties between reduced and oxidized states we took advantage of the segregational properties of the Traveling Wave Ion Mobility (TWIM) guide to study subtle conformational changes related to redox changes. METHODS Electrospray ionization mass (ESI-MS) spectra of the CP12 protein were recorded in the positive ion mode using an ESI source fitted on a quadrupole time-of-flight (QToF) hybrid mass spectrometer equipped with a TWIM cell (Synapt HDMS G1, Waters Corp., Manchester) under non-denaturing conditions. Non-covalent experiments were performed using the same instrument without the use of the TWIM device. RESULTS Whatever the CP12 form studied, our results showed that CP12 protein was represented by two conformers in equilibrium that displayed very slight differences. These observations led us to propose that CP12 protein structure is rather undergoing transient subtle structural changes than having two different conformational populations in solution. In addition, using non-denaturing experiments, NAD and CP12 stoichiometry were determined with respect to the GAPDH tetramer and the redox state of CP12. CONCLUSIONS In this study we showed that the use of the segregational property of the ion mobility (TWIM, Synapt G1 HDMS, Waters, Manchester, UK) allowed differentiation of subtle conformational changes between redox states of the CP12 protein. Standard non-denaturing experiments revealed different binding stoichiometry according to the redox state of the CP12 protein.
Collapse
Affiliation(s)
- Wassim Kaaki
- Unité de Bioénergétique et Ingénierie des Protéines (UMR 7281), Institut de Microbiologie de la Méditerranée, CNRS & AMU Aix-Marseille Univ, France
| | | | | | | |
Collapse
|
82
|
Cassou CA, Sterling HJ, Susa AC, Williams ER. Electrothermal supercharging in mass spectrometry and tandem mass spectrometry of native proteins. Anal Chem 2012. [PMID: 23194134 DOI: 10.1021/ac302256d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrothermal supercharging of protein ions formed by electrospray ionization from buffered aqueous solutions results in significant increases to both the maximum and average charge states compared to native mass spectrometry in which ions are formed from the same solutions but with lower spray potentials. For eight of the nine proteins investigated, the maximum charge states of protonated ions formed from native solutions with electrothermal supercharging is greater than those obtained from conventional denaturing solutions consisting of water/methanol/acid, although the average charging is slightly lower owing to contributions of small populations of more folded low charge-state structures. Under these conditions, electrothermal supercharging is slightly less effective for anions than for cations. Equivalent sequence coverage (80%) is obtained with electron transfer dissociation of the same high charge-state ion of cytochrome c formed by electrothermal supercharging from native solutions and from denaturing solutions. Electrothermal supercharging should be advantageous for combining structural studies of proteins in native environments with mass spectrometers that have limited high m/z capabilities and for significantly improving tandem mass spectrometry performance for protein ions formed from solutions in which the molecules have native structures and activities.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California, Berkeley, 94720-1460, United States
| | | | | | | |
Collapse
|
83
|
Walters BT, Ricciuti A, Mayne L, Englander SW. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2132-9. [PMID: 22965280 PMCID: PMC3515739 DOI: 10.1007/s13361-012-0476-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 05/11/2023]
Abstract
The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2%, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90% ± 5%.
Collapse
Affiliation(s)
- Benjamin T Walters
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 1006 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
84
|
Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun (Camb) 2012. [PMID: 23183499 DOI: 10.1039/c2cc36755f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) are important therapeutics, targeting a variety of diseases ranging from cancers to neurodegenerative disorders. In developmental stages and prior to clinical use, these molecules require thorough structural characterisation, but their large size and heterogeneity present challenges for most analytical techniques. Over the past 20 years, mass spectrometry (MS) has transformed from a tool for small molecule analysis to a technique that can be used to study large intact proteins and non-covalent protein complexes. Here, we review several MS-based techniques that have emerged for the analysis of intact mAbs and discuss the prospects of using these technologies for the analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
85
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
86
|
Amon S, Trelle MB, Jensen ON, Jørgensen TJD. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Chem 2012; 84:4467-73. [PMID: 22536891 DOI: 10.1021/ac300268r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mass spectrometry has become a valuable method for studying structural dynamics of proteins in solution by measuring their backbone amide hydrogen/deuterium exchange (HDX) kinetics. In a typical exchange experiment one or more proteins are incubated in deuterated buffer at physiological conditions. After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example, only 4% and 6% deuterium loss for fully deuterated ubiquitin and β(2)-microglobulin were observed after 10 min of back-exchange. The practical value of our subzero-cooled setup for top-down fragmentation HDX analyses is demonstrated by electron-transfer dissociation of ubiquitin ions under carefully optimized mass spectrometric conditions where gas-phase hydrogen scrambling is negligible. Our results show that the known dynamic behavior of ubiquitin in solution is accurately reflected in the deuterium contents of the fragment ions.
Collapse
Affiliation(s)
- Sabine Amon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
87
|
Pan J, Han J, Borchers CH, Konermann L. Structure and dynamics of small soluble Aβ(1-40) oligomers studied by top-down hydrogen exchange mass spectrometry. Biochemistry 2012; 51:3694-703. [PMID: 22486153 DOI: 10.1021/bi3002049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ peptides can assemble into amyloid fibrils, which represent one of the hallmarks of Alzheimer's disease. Recent studies, however, have focused on the behavior of small soluble Aβ oligomers that possess a much greater neurotoxicity than mature fibrils. The structural characterization of these oligomers remains difficult because of their highly dynamic and polymorphic nature. This work explores the behavior of Aβ(1-40) in a slightly basic solution (pH 9.3) at a low salt concentration (10 mM ammonium acetate). These conditions lead to the formation of small oligomers, without any signs of fibrillation for several hours. The structure and dynamics of these oligomers were characterized by circular dichroism spectroscopy, size exclusion chromatography, and millisecond time-resolved hydrogen exchange mass spectrometry (MS). Our results reveal rapid interconversion between Aβ(1-40) oligomers and monomers. The mole fraction of monomeric molecules is on the order of 40%. Oligomers consist of ~4 Aβ(1-40) molecules on average, and the resulting assemblies have a predominantly β-sheet secondary structure. Hydrogen exchange proceeds in the EX1 regime. This feature allows the application of conformer-specific top-down MS. Electron capture dissociation is used for interrogating the deuteration behavior of the Aβ(1-40) oligomers. This approach provides a spatial resolution of ~2 residues. The backbone amide deuteration pattern uncovered in this way is consistent with a β-turn-β motif for L17-M35. The N-terminus is involved in hydrogen bonding, as well, whereas protection gradually tapers off for C-terminal residues 35-40. Our data are consistent with earlier proposals, according to which Aβ(1-40) oligomers adopt a β-barrel structure. In general terms, this study demonstrates how top-down MS with precursor ion selection can be employed for structural studies of specific protein conformers within a heterogeneous mix.
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | | | | |
Collapse
|
88
|
Rand KD, Pringle SD, Morris M, Brown JM. Site-Specific Analysis of Gas-Phase Hydrogen/Deuterium Exchange of Peptides and Proteins by Electron Transfer Dissociation. Anal Chem 2012; 84:1931-40. [DOI: 10.1021/ac202918j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kasper D. Rand
- The Department of
Pharmaceutics
and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Steven D. Pringle
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Michael Morris
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Jeffery M. Brown
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| |
Collapse
|
89
|
Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VL. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:43-56. [PMID: 22012689 PMCID: PMC3889642 DOI: 10.1007/s13361-011-0267-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 05/12/2023]
Abstract
Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca(2+)-independent phospholipase A(2). The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.
Collapse
Affiliation(s)
- Tong Liu
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, 9500 Gilman Drive, mc 0656, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
90
|
Pan J, Heath BL, Jockusch RA, Konermann L. Structural Interrogation of Electrosprayed Peptide Ions by Gas-Phase H/D Exchange and Electron Capture Dissociation Mass Spectrometry. Anal Chem 2011; 84:373-8. [DOI: 10.1021/ac202730d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London,
Ontario, N6A 5B7, Canada
| | - Brittany L. Heath
- Department of Chemistry, University of Toronto, Toronto, Ontario
M5S 3H6, Canada
| | - Rebecca A. Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario
M5S 3H6, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London,
Ontario, N6A 5B7, Canada
| |
Collapse
|
91
|
Rand KD, Bache N, Nedertoft MM, Jørgensen TJD. Spatially Resolved Protein Hydrogen Exchange Measured by Matrix-Assisted Laser Desorption Ionization In-Source Decay. Anal Chem 2011; 83:8859-62. [DOI: 10.1021/ac202468v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kasper D. Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nicolai Bache
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Morten M. Nedertoft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
92
|
Mayne L, Kan ZY, Chetty PS, Ricciuti A, Walters BT, Englander SW. Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1898-905. [PMID: 21952777 PMCID: PMC3396559 DOI: 10.1007/s13361-011-0235-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 05/19/2023]
Abstract
Measurement of the naturally occurring hydrogen exchange (HX) behavior of proteins can in principle provide highly resolved thermodynamic and kinetic information on protein structure, dynamics, and interactions. The HX fragment separation-mass spectrometry method (HX-MS) is able to measure hydrogen exchange in biologically important protein systems that are not accessible to NMR methods. In order to achieve high structural resolution in HX-MS experiments, it will be necessary to obtain many sequentially overlapping peptide fragments and be able to identify and analyze them efficiently and accurately by mass spectrometry. This paper describes operations which, when applied to four different proteins ranging in size from 140 to 908 residues, routinely provides hundreds of useful unique peptides, covering the entire protein length many times over. Coverage in terms of the average number of peptide fragments that span each amino acid exceeds 10. The ability to achieve these results required the integrated application of experimental methods that are described here and a computer analysis program, called ExMS, described in a following paper.
Collapse
Affiliation(s)
- Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 1006 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
93
|
Cui W, Rohrs HW, Gross ML. Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 2011; 136:3854-64. [PMID: 21826297 PMCID: PMC3505190 DOI: 10.1039/c1an15286f] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes. Traditionally, mass spectrometry has usually started with intact molecules, and in this regard, top-down approaches reflect the spirit of mass spectrometry. This article provides an overview of the methodologies in top-down mass spectrometry and then reviews applications covering protein posttranslational modifications, protein biophysics, DNAs/RNAs, and protein assemblies. Finally, challenges and future directions are discussed.
Collapse
Affiliation(s)
- Weidong Cui
- NIH NCRR Center for Biomedical and Bio-Organic Mass Spectrometry, Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
94
|
Rand KD, Pringle SD, Morris M, Engen JR, Brown JM. ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1784-93. [PMID: 21952892 PMCID: PMC3438897 DOI: 10.1007/s13361-011-0196-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/27/2011] [Accepted: 06/14/2011] [Indexed: 05/11/2023]
Abstract
The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry.
Collapse
Affiliation(s)
- Kasper D Rand
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
95
|
Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 2011; 477:611-5. [PMID: 21956331 DOI: 10.1038/nature10488] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/17/2011] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human β(2) adrenergic receptor (β(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the β(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the β(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the β-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.
Collapse
|
96
|
Halgand F, Habchi J, Cravello L, Martinho M, Guigliarelli B, Longhi S. Dividing to unveil protein microheterogeneities: traveling wave ion mobility study. Anal Chem 2011; 83:7306-15. [PMID: 21800924 DOI: 10.1021/ac200994c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of a protein in a foreign host is often the only route toward an exhaustive characterization, especially when purification from the natural source(s) is hardly achievable. The key issue in these studies relies on quality control of the purified recombinant protein to precisely determining its identity as well as any undesirable microheterogeneities. While standard proteomics approaches preclude unbiased search for modifications, the optional technique of top-down tandem mass spectrometry (MSMS) requires the use of highly accurate and highly resolved experiments to reveal subtle sequence modifications. In the present study, the top-down MSMS approach combined with traveling wave ion mobility (TWIM) separation was evaluated for its ability to achieve high sequence coverage and to reveal subtle microheterogeneities that were hitherto only accessible with Fourier-transform ion cyclotron resonance-MS instruments. The power of this approach is herein illustrated in an in-depth analysis of both the wild type and K496C variant of the recombinant X domain (XD; aa's 459-507) of the measles virus phosphoprotein expressed in Escherichia coli . Using top-down MSMS combined with TWIM, we show that XD samples occasionally exhibit a microheterogeneity that could not be anticipated from the nucleotide sequence of the encoding constructs and that likely reflects a genetic drift, neutral or not, occurring during expression. In addition, a 1-oxyl-2,2,5,5-tetramethyl-δ3-pyrroline-3-methyl methanethiosulfonate nitroxide probe that was grafted onto the K496C XD variant was shown to undergo oxidation and/or protonation in the electrospray ionization source, leading to artifactual mass increases.
Collapse
Affiliation(s)
- F Halgand
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Equipe de Protéomique Fonctionnelle et Dynamique, UPR 9036-CNRS, 31 Chemin Joseph Aiguier, 13420 Marseille Cedex, France.
| | | | | | | | | | | |
Collapse
|
97
|
Pan J, Han J, Borchers CH, Konermann L. Conformer-specific hydrogen exchange analysis of Aβ(1-42) oligomers by top-down electron capture dissociation mass spectrometry. Anal Chem 2011; 83:5386-93. [PMID: 21635007 DOI: 10.1021/ac200906v] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein structural studies are particularly challenging under conditions in which several conformational species (e.g., monomers and aggregated forms) coexist in solution. Most spectroscopic techniques provide population-averaged data. Hence, it is usually not possible to obtain detailed structural information on individual protein species in heterogeneous samples. The current work employs an experimental strategy that addresses this issue. Solution-phase hydrogen exchange (HX) is used in combination with tandem mass spectrometry. Electrosprayed intact ions exhibiting specific HX mass shifts are selected in the gas phase, followed by electron capture dissociation. The resulting fragment ion deuteration pattern provides amide hydrogen bonding information in a conformer-specific and spatially resolved fashion. The feasibility of this approach is demonstrated by applying it to neurotoxic Aβ(1-42) oligomers that coexist with disordered monomers in solution. The findings of this study point to similarities between oligomers and mature amyloid fibrils with regard to the Aβ(1-42) backbone organization. Specifically, fibrils and oligomers appear to share a β-loop-β secondary structure motif. The spatial resolution obtained with the "top-down" approach used here exceeds that of earlier proteolysis-based HX data on Aβ.
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | | | | | | |
Collapse
|
98
|
Pan J, Han J, Borchers CH, Konermann L. Characterizing short-lived protein folding intermediates by top-down hydrogen exchange mass spectrometry. Anal Chem 2011; 82:8591-7. [PMID: 20849085 DOI: 10.1021/ac101679j] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work combines pulsed hydrogen/deuterium exchange (HDX) and top-down mass spectrometry for the structural characterization of short-lived protein folding intermediates. A custom-built flow device with three sequential mixing steps is used for (i) triggering protein folding, (ii) pulsed D(2)O labeling, and (iii) acid quenching. The earliest folding time point that can be studied with this system is 10 ms. The mixing device was coupled online to the electrospray source of a Fourier transform mass spectrometer, where intact protein ions are fragmented by electron capture dissociation (ECD). The viability of this experimental strategy is demonstrated by applying it to the refolding of horse apo-myoglobin (aMb), a reaction known to involve a transient intermediate. Cooling of the mixing device to 0 °C reduces the reaction rate such that the folding process occurs within the experimentally accessible time window. Top-down ECD provides an average spatial resolution of ca. 2 residues, surpassing the resolution typically achieved in traditional proteolytic digestion/HDX studies. Amide back exchange is virtually eliminated by the short (∼1 s) duration of the acid quenching step. The aMb folding intermediate exhibits HDX protection in helices G and H, whereas the remainder of the protein is largely unfolded. Marginal protection is seen for helix A. Overall, the top-down ECD approach used here offers insights into the sequence of events leading from the unfolded state to the native conformation, with envisioned future applications in the areas of protein misfolding and aggregation. The time-resolved experiments reported herein represent an extension of our previous work, where HDX/MS with top-down ECD was employed for monitoring "static" protein structures under equilibrium conditions (Pan et al. J. Am. Chem. Soc. 2009, 131, 12801).
Collapse
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
99
|
Sterling HJ, Williams ER. Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry. Anal Chem 2010; 82:9050-7. [PMID: 20942406 PMCID: PMC3049191 DOI: 10.1021/ac101957x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amide hydrogen/deuterium exchange (HDX) rate constants of bovine ubiquitin in an ammonium acetate solution containing 1% of the electrospray ionization (ESI) "supercharging" reagent m-nitrobenzyl alcohol (m-NBA) were obtained using top-down, electron transfer dissociation (ETD) tandem mass spectrometry (MS). The supercharging reagent replaces the acid and temperature "quench" step in the conventional MS approach to HDX experiments by causing rapid protein denaturation to occur in the ESI droplet. The higher charge state ions that are produced with m-NBA are more unfolded, as measured by ion mobility, and result in higher fragmentation efficiency and higher sequence coverage with ETD. Single amino acid resolution was obtained for 44 of 72 exchangeable amide sites, and summed kinetic data were obtained for regions of the protein where adjacent fragment ions were not observed, resulting in an overall spatial resolution of 1.3 residues. Comparison of these results with previous values from NMR indicates that the supercharging reagent does not cause significant structural changes to the protein in the initial ESI solution and that scrambling or back-exchange is minimal. This new method for top-down HDX-MS enables real-time kinetic data measurements under physiological conditions, similar to those obtained using NMR, with comparable spatial resolution and significantly better sensitivity.
Collapse
Affiliation(s)
- Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
100
|
Rand KD, Zehl M, Jensen ON, Jørgensen TJD. Loss of Ammonia during Electron-Transfer Dissociation of Deuterated Peptides as an Inherent Gauge of Gas-Phase Hydrogen Scrambling. Anal Chem 2010; 82:9755-62. [DOI: 10.1021/ac101889b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kasper D. Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martin Zehl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, and Swiss Institute of Bioinformatics, Batiment Genopode, 1015, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|