51
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed‐Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902229] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | - Ali Morsali
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia Valencia 46022 Spain
| |
Collapse
|
52
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019; 58:15188-15205. [PMID: 30977953 DOI: 10.1002/anie.201902229] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 01/14/2023]
Abstract
Mixed-metal metal-organic frameworks (MM-MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM-MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single-metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reactions.
Collapse
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y, Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
53
|
Mhadmhan S, Marquez-Medina MD, Romero AA, Reubroycharoen P, Luque R. Fe-Containing MOFs as Seeds for the Preparation of Highly Active Fe/Al-SBA-15 Catalysts in the NAlkylation of Aniline. Molecules 2019; 24:molecules24152695. [PMID: 31344936 PMCID: PMC6695969 DOI: 10.3390/molecules24152695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
We have successfully incorporated iron species into mesoporous aluminosilicates (Al-SBA-15) using a simple mechanochemical milling method. The catalysts were characterized by nitrogen physisorption, inductively coupled plasma mass spectrometry (ICP-MS), pyridine (PY) and 2,6-dimethylpyridine (DMPY) pulse chromatography titration, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The catalysts were tested in the N-alkylation reaction of aniline with benzyl alcohol for imine production. According to the results, the iron sources, acidity of catalyst and reaction conditions were important factors influencing the reaction. The catalyst showed excellent catalytic performance, achieving 97% of aniline conversion and 96% of imine selectivity under optimized conditions.
Collapse
Affiliation(s)
- Sareena Mhadmhan
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | - Maria Dolores Marquez-Medina
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | - Antonio A Romero
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | - Prasert Reubroycharoen
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain.
- People's Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198 Moscow, Russia.
| |
Collapse
|
54
|
Fiaz M, Kashif M, Majeed S, Ashiq MN, Farid MA, Athar M. Facile Fabrication of Highly Efficient Photoelectrocatalysts M
x
O
y
@NH
2
‐MIL‐125(Ti) for Enhanced Hydrogen Evolution Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Muhammad Fiaz
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
- School of ChemistryUniversity of Glasgow Glasgow UK
| | - Muhammad Kashif
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Saadat Majeed
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Asim Farid
- Department of ChemistryUniversity of Education Lahore (Vehari Campus) Vehari Pakistan
| | - Muhammad Athar
- Institute of Chemical SciencesBahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
55
|
Liu Y, Liu Z, Huang D, Cheng M, Zeng G, Lai C, Zhang C, Zhou C, Wang W, Jiang D, Wang H, Shao B. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.031] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Malouche A, Zlotea C, Szilágyi PÁ. Interactions of Hydrogen with Pd@MOF Composites. Chemphyschem 2019; 20:1282-1295. [DOI: 10.1002/cphc.201801092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Abdelmalek Malouche
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182)Université Paris EstCNRSUPEC 2–8 Rue Henri Dunant F-94320 Thiais France
| | - Claudia Zlotea
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182)Université Paris EstCNRSUPEC 2–8 Rue Henri Dunant F-94320 Thiais France
| | - Petra Ágota Szilágyi
- School of Engineering and Materials ScienceQueen Mary University of London Mile End Road E1 4NS London United Kingdom
| |
Collapse
|
57
|
Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. J Colloid Interface Sci 2019; 535:214-226. [DOI: 10.1016/j.jcis.2018.09.099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
|
58
|
Xia Q, Wang H, Huang B, Yuan X, Zhang J, Zhang J, Jiang L, Xiong T, Zeng G. State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803088. [PMID: 30548176 DOI: 10.1002/smll.201803088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Metal organic frameworks (MOFs), as an original kind of organic-inorganic porous material, are constructed with metal centers and organic linkers via a coordination complexation reaction. Among uncountable MOF materials, iron-containing metal organic frameworks (Fe-MOFs) have excellent potential in practical applications owing to their many fascinating properties, such as diverse structure types, low toxicity, preferable stability, and tailored functionality. Here, recent research progresses of Fe-MOFs in attractive features, synthesis, and multifunctional applications are described. Fe-MOFs with porosity and tailored functionality are discussed according to the design of building blocks. Four types of synthetic methods including solvothermal, hydrothermal, microwave, and dry gel conversion synthesis are illustrated. Finally, the applications of Fe-MOFs in Li-ion batteries, sensors, gas storage, separation in gas and liquid phases, and catalysis are elucidated, focusing on the mechanism. The aim is to provide prospects for extending Fe-MOFs in more practical applications.
Collapse
Affiliation(s)
- Qi Xia
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Jingjing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Jin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
59
|
Zhao SN, Wang G, Poelman D, Van Der Voort P. Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules 2018; 23:molecules23112947. [PMID: 30424499 PMCID: PMC6278367 DOI: 10.3390/molecules23112947] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022] Open
Abstract
The increase in environmental pollution due to the excessive use of fossil fuels has prompted the development of alternative and sustainable energy sources. As an abundant and sustainable energy, solar energy represents the most attractive and promising clean energy source for replacing fossil fuels. Metal organic frameworks (MOFs) are easily constructed and can be tailored towards favorable photocatalytic properties in pollution degradation, organic transformations, CO2 reduction and water splitting. In this review, we first summarize the different roles of MOF materials in the photoredox chemical systems. Then, the typical applications of MOF materials in heterogeneous photocatalysis are discussed in detail. Finally, the challenges and opportunities in this promising field are evaluated.
Collapse
Affiliation(s)
- Shu-Na Zhao
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.
- LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Guangbo Wang
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.
| | - Dirk Poelman
- LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.
| |
Collapse
|
60
|
Zhao X, Xie J, Liu X, Liu X. Facilitating a high-performance photocatalyst for Suzuki reaction: Palladium nanoparticles immobilized on reduced graphene oxide-doped graphitic carbon nitride. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohua Zhao
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jiateng Xie
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xin Liu
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xiang Liu
- Zhenjiang Key Laboratory of Functional Chemistry and Institute of Medicine and Chemical Engineering; Zhenjiang College; Zhenjiang 212000 China
- Biofuels Institute of Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
61
|
Chen M, Wang H, Zhao Y, Luo W, Li L, Bian Z, Wang L, Jiang W, Yang J. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline. NANOSCALE 2018; 10:19023-19030. [PMID: 30280163 DOI: 10.1039/c8nr06360e] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Complex porous carbon nanostructures with homogeneously embedded nanoparticles and intricate architectures show promise as high-performance catalysts. Herein, we demonstrate a direct surfactant co-assembly approach for the fabrication of well-dispersed PdCu nanoparticles encapsulated in N-doped porous carbon with three-dimensional coralline structures. Owing to their porous features and unique frameworks, the PdxCuy@N-pC coralline-like nanostructures offer large surface areas, accessible active sites, and excellent nitrate electrocatalytic ability. The composite catalyst Pd4Cu4@N-pC exhibits outstanding catalytic performance with a high nitrate removal rate of ∼95%, nitrogen selectivity of ∼80%, and removal capacity of 22 000 mg N per g PdCu. More importantly, the present work opens up a broad horizon for architectures of nanoparticles confined in coralline-like 3D porous carbon structures with superior performance and promising large-scale applications.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Zhang J, Li D, Lu G, Deng T, Cai C. Reversible Dehydrogenation and Hydrogenation of N‐Heterocycles Catalyzed by Bimetallic Nanoparticles Encapsulated in MIL‐100(Fe). ChemCatChem 2018. [DOI: 10.1002/cctc.201801311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia‐Wei Zhang
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Dan‐Dan Li
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Tao Deng
- Institute of Tropical MedicineGuangzhou University of Chinese Medicine Guangzhou 510405 P. R. China
| | - Chun Cai
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| |
Collapse
|
63
|
Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
64
|
Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704303. [PMID: 29430732 DOI: 10.1002/adma.201704303] [Citation(s) in RCA: 1154] [Impact Index Per Article: 192.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Indexed: 05/17/2023]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in gas storage, separations, catalysis, and chemical sensing. Despite numerous advantages, applications of many MOFs are ultimately limited by their stability under harsh conditions. Herein, the recent advances in the field of stable MOFs, covering the fundamental mechanisms of MOF stability, design, and synthesis of stable MOF architectures, and their latest applications are reviewed. First, key factors that affect MOF stability under certain chemical environments are introduced to guide the design of robust structures. This is followed by a short review of synthetic strategies of stable MOFs including modulated synthesis and postsynthetic modifications. Based on the fundamentals of MOF stability, stable MOFs are classified into two categories: high-valency metal-carboxylate frameworks and low-valency metal-azolate frameworks. Along this line, some representative stable MOFs are introduced, their structures are described, and their properties are briefly discussed. The expanded applications of stable MOFs in Lewis/Brønsted acid catalysis, redox catalysis, photocatalysis, electrocatalysis, gas storage, and sensing are highlighted. Overall, this review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Kecheng Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Matheiu Bosch
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Christina Lollar
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yujia Sun
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Junsheng Qin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Xinyu Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Lanfang Zou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yingmu Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Liangliang Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yu Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
65
|
Deng X, Albero J, Xu L, García H, Li Z. Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO2 Reduction. Inorg Chem 2018; 57:8276-8286. [DOI: 10.1021/acs.inorgchem.8b00896] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoyu Deng
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Josep Albero
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Lizhi Xu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
66
|
Wang D, Pan Y, Xu L, Li Z. PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. J Catal 2018. [DOI: 10.1016/j.jcat.2018.02.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Gu Y, Li J, Xie A, Zhang K, Jiao Y, Dong W. Superfine palladium nanocrystals on a polyphenylene framework for photocatalysis. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01513a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To enable the recycling and recovery of these nanosized noble metals, various carriers are adopted for catalyst design.
Collapse
Affiliation(s)
- Yufan Gu
- School of Mechanical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
- School of Chemical Engineering
| | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education
- Department of Pharmacy, College of Marine Science
- Hainan University
- Haikou
- China
| | - Aming Xie
- School of Mechanical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Kun Zhang
- School of Mechanical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
- School of Chemical Engineering
| | - Yingzhi Jiao
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Wei Dong
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
68
|
Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 2018; 47:8134-8172. [DOI: 10.1039/c8cs00256h] [Citation(s) in RCA: 835] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide different strategies employed to use MOFs as solid catalysts and photocatalysts in organic transformations.
Collapse
Affiliation(s)
| | - Zhaohui Li
- Research Institute of Photocatalysis
- State Key Laboratory on Photocatalysis
- Fuzhou University
- Fuzhou 350002
- People's Republic of China
| | - Hermenegildo Garcia
- Department of Chemistry and Instituto de Tecnología Química
- Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| |
Collapse
|
69
|
Lajevardi A, Hossaini Sadr M, Tavakkoli Yaraki M, Badiei A, Armaghan M. A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin. NEW J CHEM 2018. [DOI: 10.1039/c8nj01375f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, a novel magnetic and pH-responsive porous nanocomposite was prepared by the surface grafting of β-cyclodextrin onto Fe3O4@silica@MIL-100(Fe).
Collapse
Affiliation(s)
- Aseman Lajevardi
- Department of Chemistry
- Islamic Azad University
- Science and Research Branch
- Tehran
- Iran
| | - Moayad Hossaini Sadr
- Department of Chemistry
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of Materials Research and Engineering
| | - Alireaza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Mahsa Armaghan
- Department of Chemistry
- Islamic Azad University
- Science and Research Branch
- Tehran
- Iran
| |
Collapse
|
70
|
Deng X, Li Z, García H. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry 2017; 23:11189-11209. [DOI: 10.1002/chem.201701460] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoyu Deng
- Research Institute of Photocatalysis; State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis; State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P. R. China
| | - Hermenegildo García
- Instituto de Tecnología Química; CSIV-UPV; Av. Delos Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
71
|
Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3042-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
72
|
Vohra MI, Li DJ, Gu ZG, Zhang J. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis. NANOSCALE 2017; 9:7734-7738. [PMID: 28574075 DOI: 10.1039/c7nr02284k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.
Collapse
Affiliation(s)
- M Ismail Vohra
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | | | |
Collapse
|
73
|
Li S, Wen M, Chen H, Ni Z, Xu J, Shen J. Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
74
|
Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. J Catal 2017. [DOI: 10.1016/j.jcat.2017.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
75
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03386] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Abdullah M. Asiri
- Centre
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hermenegildo Garcia
- Instituto
Universitario de Tecnología Química CSIV-UPV, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- Centre
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
76
|
Yu X, Wang L, Cohen SM. Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm 2017. [DOI: 10.1039/c7ce00398f] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic frameworks (MOFs) have attracted increasing attention for applications in heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Nanoengineering
- University of California
- San Diego
- USA
- Department of Chemistry and Biochemistry
| | - Le Wang
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- USA
| |
Collapse
|