51
|
Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1004:98-107. [DOI: 10.1016/j.jchromb.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 01/05/2023]
|
52
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
53
|
Riffault L, Colas C, Destandau E, Pasquier L, André P, Elfakir C. Non-targeted molecular characterisation of a rose flower ethyl acetate extract using Ultra-HPLC with atmospheric pressure photoionisation and quadrupole time-of-flight MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:189-201. [PMID: 25645670 DOI: 10.1002/pca.2552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/13/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
INTRODUCTION A non-targeted approach to characterise the phytochemical composition of the flower organ of an original rose cultivar 'Jardin de Granville'® was developed. Particular attention was paid to the less documented molecular families of intermediate polarity, compared with the polyphenol family (anthocyanins, flavonoids, tannins) and volatile compounds. OBJECTIVE To develop a molecular fingerprinting method for the rapid qualitative phytochemical characterisation of the rose flower ethyl acetate extract. MATERIAL AND METHODS An ultra-HPLC with atmospheric pressure photoionisation (APPI) and quadrupole time-of-flight (QTOF) MS/MS combined with microwave-assisted extraction was carried out for ethyl acetate extracts as an intermediate polarity extraction solvent in order to obtain the most exhaustive extract containing a large range of molecular families. An optimised methodology based on the coupling of the UHPLC and APPI source with a QTOF analyser was developed to characterise the extracted molecules. RESULTS Sixty-one compounds were identified in the extract, covering eight molecular families of intermediate polarity ranging from polyphenols to triglycerides. The presence of flavonoids with anti-oxidant properties and of triterpenoids with potential anti-inflammatory activity was evidenced and cell-wall constituents such as fatty acids, glycolipids, sphingolipids and acylated sterol glycosides were characterised. Some chlorophyll derivatives were also detected. CONCLUSION The method developed is appropriate for fast phytochemical evaluation of rose ethyl acetate extract. It produced accurate mass and MS/MS spectra, which permitted identification of a wide range of compounds of intermediate polarity.
Collapse
Affiliation(s)
- Ludivine Riffault
- Université Orléans, CNRS, ICOA, UMR 7311, F-45067,, Orléans, France; LVMH Recherche, département Innovation Ethnobotanique, 185 avenue de Verdun,, 45800, Saint-Jean-de-Braye, France
| | | | | | | | | | | |
Collapse
|
54
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
55
|
Deciphering metabolic abnormalities associated with Alzheimer's disease in the APP/PS1 mouse model using integrated metabolomic approaches. Biochimie 2015; 110:119-128. [DOI: 10.1016/j.biochi.2015.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023]
|
56
|
Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer's disease. Electrophoresis 2015; 36:577-87. [DOI: 10.1002/elps.201400450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/21/2010] [Indexed: 12/19/2022]
|
57
|
Garcia-Gil M, Lazzarini A, Lazzarini R, Floridi E, Cataldi S, Floridi A, Albi E. Serum deprivation alters lipid profile in HN9.10e embryonic hippocampal cells. Neurosci Lett 2014; 589:83-7. [PMID: 25556686 DOI: 10.1016/j.neulet.2014.12.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
The understanding of the mechanism of apoptosis is important to improve the use of stem cells for the treatment of neurodegenerative disorders. Sphingolipids are bioactive molecules involved in the regulation of cell fate. In HN9.10e embryonic hippocampal cells, serum deprivation induces apoptosis preceded by sphingomyelinase activation and raise of ceramide levels. Increasing evidence indicates that individual ceramide species regulated by specific pathways in distinct subcellular compartments might carry out distinct cellular functions, but the ceramides species involved in embryonic hippocampal cell death induced by growth factor deprivation are unknown. In the present paper, by using the UFLC-MS/MS methodology, we have investigated the effect of serum deprivation on the lipid profile in HN9.10e cells. At 48h of serum deprivation, we detected a decrease in cholesterol and increase in sphingosine-1-phoshate 18:1, phosphatidylcholine 18:1 18:0, sphingomyelin 18:1 16:0 and in ceramides 18:1 16:0; we also found an increase in saturated/unsaturated fatty acid ratio in sphingomyelin. We hypothesize that the rearrangement of sphingo- and glycerolipids with increase of saturated fatty acids in serum-deprivated, neural cells might represent a cellular response aimed at holding cholesterol inside the cells.
Collapse
Affiliation(s)
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| | - Emanuela Floridi
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| | - Samuela Cataldi
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| | - Alessandro Floridi
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| | - Elisabetta Albi
- Laboratory of Nuclear Lipid BioPathology, Research Center of Biochemical-Specialized Analyses, 06100 Perugia, Italy
| |
Collapse
|
58
|
Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2395-402. [DOI: 10.1016/j.bbadis.2014.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/22/2014] [Accepted: 09/28/2014] [Indexed: 11/21/2022]
|
59
|
Li M, Tong X, Lv P, Feng B, Yang L, Wu Z, Cui X, Bai Y, Huang Y, Liu H. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients. J Chromatogr A 2014; 1372C:110-119. [DOI: 10.1016/j.chroma.2014.10.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 01/19/2023]
|
60
|
Li Y, Li S, Qin X, Hou W, Dong H, Yao L, Xiong L. The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 2014; 5:e1245. [PMID: 24853423 PMCID: PMC4047895 DOI: 10.1038/cddis.2014.215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
The autophagic process involves encompassing damaged proteins and organelles within double- or multi-membraned structures and delivering these molecules to the lytic compartments of vacuoles. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including rafts, caveolae, and cytosolic vesicles. SLs are a complex family of molecules that have a growing number of members, including ceramide, sphingosine-1-phosphate, and dihydroceramide, which have been associated with the essential cellular process of autophagy. This review highlights recent studies focusing on the regulation and function of SL-associated autophagy and its role in cell fate, diseases, and therapeutic interventions.
Collapse
Affiliation(s)
- Y Li
- 1] The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China [2] Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - S Li
- 1] The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China [2] Department of Oral Biology, Stomatology School, The Fourth Military Medical University, Xi'an 710032, China
| | - X Qin
- Department of Chemistry, Pharmacy School, The Fourth Military Medical University, Xi'an 710032, China
| | - W Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - H Dong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - L Yao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - L Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
61
|
Comparative Analysis of Biological Sphingolipids with Glycerophospholipids and Diacylglycerol by LC-MS/MS. Metabolites 2014; 4:98-114. [PMID: 24958389 PMCID: PMC4018675 DOI: 10.3390/metabo4010098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 01/07/2023] Open
Abstract
Liquid chromatography-electrospray ionization mass spectrometry (LC-MS) is an effective and popular technique used in lipid metabolomic studies. Although many LC-MS methods enabling the determination of sphingolipid molecular species have been reported, they do not cover a broad range of sphingolipid metabolites with expanding glycerophospholipids (GPLs) and diacylglycerol (DAG). In this study, we developed an approach for the comprehensive analysis of sphingolipids, GPLs and DAG molecular species in a biological sample, without alkaline hydrolysis. After validating the reliability of this approach, we analyzed tissue lipids of sphingomyelin synthase 2-knockout mice and found that changes in sphingolipid metabolism in the liver affect the level of docosahexaenoic acid-containing GPLs. Our method analyzes GPLs and DAG, as well as sphingolipids within biological samples and, thus, will facilitate more comprehensive studies of sphingolipid metabolism in pathology and diagnostics.
Collapse
|
62
|
Xu C, Pinto EC, Armstrong DW. Separation and sensitive determination of sphingolipids at low femtomole level by using HPLC-PIESI-MS/MS. Analyst 2014; 139:4169-75. [DOI: 10.1039/c4an00775a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive paired ion electrospray ionization mass spectrometry (PIESI-MS) approach was developed for the trace determination of sphingolipids.
Collapse
Affiliation(s)
- Chengdong Xu
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington, USA
| | - Eduardo Costa Pinto
- Department of Pharmaceutics
- Faculty of Pharmacy
- Federal University of Rio de Janeiro
- Rio de Janeiro, Brazil
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington, USA
| |
Collapse
|
63
|
Guerra Y, Aljohani AJ, Edwards G, Bhattacharya SK. A comparison of trabecular meshwork sphingolipids and ceramides of ocular normotensive and hypertensive states of DBA/2J mice. J Ocul Pharmacol Ther 2013; 30:283-90. [PMID: 24320088 DOI: 10.1089/jop.2013.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To determine the differential profiles of sphingomyelin, sphingoid base, sphingoid base-1-phosphate, and ceramide and their quantitative differences between trabecular meshwork (TM) derived from normotensive and hypertensive intraocular pressure states of DBA/2J mice. METHODS Normotensive and hypertensive state TM were collected from mice and analyzed. Lipid extraction was performed using the Bligh and Dyer method, and the protein concentrations were determined using the Bradford method. The lipids were identified and quantified using appropriate standards with a TSQ Quantum Access Max triple quadrupole mass spectrometer applying class-specific lipid identification settings. RESULTS The comparative profiles of sphingomyelin, sphingoid base, sphingoid base-1-phosphate, and ceramide between normotensive and hypertensive TM showed several species unique to a phase and as well common between states. CONCLUSION The presence or absence of several sphingolipids and ceramides in the normotensive or hypertensive states may contribute to better understanding of the glaucomas.
Collapse
Affiliation(s)
- Yenifer Guerra
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | |
Collapse
|
64
|
Tanaka K, Tamiya-Koizumi K, Yamada M, Murate T, Kannagi R, Kyogashima M. Individual profiles of free ceramide species and the constituent ceramide species of sphingomyelin and neutral glycosphingolipid and their alteration according to the sequential changes of environmental oxygen content in human colorectal cancer Caco-2 cells. Glycoconj J 2013; 31:209-19. [PMID: 24310545 DOI: 10.1007/s10719-013-9511-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/01/2013] [Accepted: 11/03/2013] [Indexed: 12/27/2022]
Abstract
We previously performed a systematic analysis of free ceramide (Cers) species, the constituent ceramide species of sphingomyelins and neutral glycosphingolipids (NGSLs) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with high-energy collision-induced dissociation. As a result, distinct species differences were found among Cers, sphingomyelins and NGSLs in the kidneys. Using this method, we investigated various sphingolipid species from human colon cancer Caco-2 cells as well as the influence of environmental oxygen on these species in detail. Unexpectedly, even in normoxia, all Cers species were composed of dihydrosphingosine (d18:0) and non-hydroxy fatty acid (NFA), and 34% of sphingomyelins were composed of dihydrosphingomyelins with NFA. In contrast, major constituent ceramide species of NGSLs were composed of the usual long-chain base of sphingosine (d18:1) and hydroxy fatty acid (HFA). When the cells were cultured under hypoxic condition for 3 days, all the Cers and nearly 80% of the sphingomyelins were dihydrosphingolipids composed of d18:0-NFAs, but a significant proportion of d18:1-HFAs still remained in the NGSLs. When the cells were transferred from conditions of hypoxia to normoxia again (reoxygenation), Cer species composed of d18:1-NFAs, which were not found in Cers under the original normoxic conditions, appeared. Such Cers were probably synthesized as precursors for the constituent ceramides of sphingomyelins and NGSLs.
Collapse
Affiliation(s)
- Kouji Tanaka
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Daiko-Minami 1-1-20, Higashi-ku, Nagoya, 461-8673, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1542-54. [DOI: 10.1016/j.bbalip.2013.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/06/2023]
|
66
|
Development and validation of LC-MS/MS method for determination of very long acyl chain (C22:0 and C24:0) ceramides in human plasma. Anal Bioanal Chem 2013; 405:7357-65. [PMID: 23857140 DOI: 10.1007/s00216-013-7166-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 01/14/2023]
Abstract
Ceramide is a key metabolite in both anabolic and catabolic pathways of sphingolipids. The very long fatty acyl chain ceramides N-(docosanoyl)-sphing-4-enine (Cer(22:0)) and N-(tetracosanoyl)-sphing-4-enine (Cer(24:0)) are associated with multiple biological functions. Elevated levels of these sphingolipids in tissues and in the circulation have been associated with insulin resistance and diabetes. To facilitate quantification of these very long chain ceramides in clinical samples from human subjects, we have developed a sensitive, accurate, and high-throughput assay for determination of Cer(22:0) and Cer(24:0) in human plasma. Cer(22:0) and Cer(24:0) and their deuterated internal standards were extracted by protein precipitation and chromatographically separated by HPLC. The analytes and their internal standards were ionized using positive-ion electrospray mass spectrometry, then detected by multiple-reaction monitoring with a tandem mass spectrometer. Total liquid chromatography-tandem mass spectrometry (LC-MS/MS) runtime was 5 min. The assay exhibited a linear dynamic range of 0.02-4 and 0.08-16 μg/ml for Cer(22:0) and Cer(24:0), respectively, in human plasma with corresponding absolute recoveries from plasma at 109 and 114 %, respectively. The lower limit of quantifications were 0.02 and 0.08 μg/ml for Cer(22:0) and Cer(24:0), respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. With the semi-automated format and short LC runtime for the assay, a throughput of ∼200 samples/day can easily be achieved.
Collapse
|
67
|
Tian R, Jin J, Taylor L, Larsen B, Quaggin SE, Pawson T. Rapid and sensitive MRM-based mass spectrometry approach for systematically exploring ganglioside-protein interactions. Proteomics 2013; 13:1334-8. [PMID: 23401482 DOI: 10.1002/pmic.201200410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/12/2012] [Accepted: 11/24/2012] [Indexed: 12/31/2022]
Abstract
Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions.
Collapse
Affiliation(s)
- Ruijun Tian
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
68
|
Acosta DM, Soprano LL, Ferrero MR, Esteva MI, Riarte A, Couto AS, Duschak VG. Structural and immunological characterization of sulphatides: relevance of sulphate moieties in Trypanosoma cruzi glycoconjugates. Parasite Immunol 2013; 34:499-510. [PMID: 22738032 DOI: 10.1111/j.1365-3024.2012.01378.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sulphoglycosphingolipids, present on the surface of diverse cells, participate in the regulation of various cellular events. However, little is known about the structure and the role of sulphoglycosphingolipids in trypanosomatids. Herein, sulphated dihexosylceramide structures - composed mainly of sphingosine as the long chain base acylated with stearic acid - have been determined for the first time in Trypanosoma cruzi epimastigotes by UV-MALDI-TOF-MS analysis. Interestingly, inhibition ELISA assays using cruzipain as antigen and polyclonal rabbit antibodies specific for cruzipain, the major cysteine proteinase of T. cruzi, or for its C-terminal domain, have demonstrated (i) that sulphate epitopes are shared between cruzipain and sulphatides of T. cruzi, (ii) that cross-reactivity maps to the C-terminal domain and (iii) the existence of other antigenic determinants in the glycolipidic structures. These features provide evidence that sulphate groups are antigenic in sulphate-containing parasite glycoconjugates. Furthermore, IgG2 antibody levels inversely correlate with disease severity in chronic Chagas disease patients, suggesting that IgG2 antibodies specific for sulphated epitopes might be associated with protective immunity and might be considered as potential surrogates of the course of chronic Chagas disease.
Collapse
Affiliation(s)
- D M Acosta
- Instituto Nacional de Parasitología Dr Mario Fatala Chaben, ANLIS-Malbrán, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
69
|
Kim YM, Park TS, Kim SG. The role of sphingolipids in drug metabolism and transport. Expert Opin Drug Metab Toxicol 2013; 9:319-31. [PMID: 23289866 DOI: 10.1517/17425255.2013.748749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Sphingolipids represent a diverse class of lipid molecules. In addition to their function as membrane structural components, they serve as signaling molecules involved in various biological processes such as cell metabolism, growth, differentiation, stress and inflammatory responses and apoptosis. Sphingolipids may modulate the activity and/or expression of cytochrome P450s (CYPs) and transporters, which suggests that they may affect drug metabolism and excretion. AREAS COVERED In this review, the authors provide an overview of the properties of sphingolipid structures and metabolism. They also describe the effects of sphingolipids on the activity and expression of CYPs and transporters. In addition, the authors discuss the pathologic conditions where the sphingolipid metabolism is dysregulated particularly in association with inflammation and cancer. EXPERT OPINION Sphingolipidomic approaches have become accessible with the aid of advances in analytical technology. Sphingolipid profiles are modified by diseases, genetic disorders or certain drug treatment. The consequent changes in sphingolipid contents may alter the activities of detoxifying enzymes and those associated with cell viability. Since CYPs and transporters play roles in xenobiotics metabolism and excretion, sphingolipidomic information may be of use in understanding drug effect and toxicity.
Collapse
Affiliation(s)
- Young Mi Kim
- Seoul National University, Research Institute of Pharmaceutical Sciences, College of Pharmacy, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
70
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Santinha DR, Marques DR, Maciel EA, Simões CSO, Rosa S, Neves BM, Macedo B, Domingues P, Cruz MT, Domingues MRM. Profiling changes triggered during maturation of dendritic cells: a lipidomic approach. Anal Bioanal Chem 2012; 403:457-71. [PMID: 22402731 DOI: 10.1007/s00216-012-5843-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/11/2012] [Accepted: 02/06/2012] [Indexed: 12/11/2022]
Abstract
Lipids are important in several biological processes because they act as signalling and regulating molecules, or, locally, as membrane components that modulate protein function. This paper reports the pattern of lipid composition of dendritic cells (DCs), a cell type of critical importance in inflammatory and immune responses. After activation by antigens, DCs undergo drastic phenotypical and functional transformations, in a process known as maturation. To better characterize this process, changes of lipid profile were evaluated by use of a lipidomic approach. As an experimental model of DCs, we used a foetal skin-derived dendritic cell line (FSDC) induced to mature by treatment with lipopolysaccharide (LPS). The results showed that LPS treatment increased ceramide (Cer) and phosphatidylcholine (PC) levels and reduced sphingomyelin (SM) and phosphatidylinositol (PI) content. Mass spectrometric analysis of a total lipid extract and of each class of lipids revealed that maturation promoted clear changes in ceramide profile. Quantitative analysis enabled identification of an increase in the total ceramide content and enhanced Cer at m/z 646.6, identified as Cer(d18:1/24:1), and at m/z 648.6, identified as Cer(d18:1/24:0). The pattern of change of these lipids give an extremely rich source of data for evaluating modulation of specific lipid species triggered during DC maturation.
Collapse
Affiliation(s)
- Deolinda R Santinha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
LC–MS/MS determination of FTY720 and FTY720-phosphate in murine intracellular compartments and human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 887-888:122-7. [DOI: 10.1016/j.jchromb.2012.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/24/2022]
|
73
|
Farwanah H, Kolter T. Lipidomics of glycosphingolipids. Metabolites 2012; 2:134-64. [PMID: 24957371 PMCID: PMC3901200 DOI: 10.3390/metabo2010134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 01/14/2023] Open
Abstract
Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.
Collapse
Affiliation(s)
- Hany Farwanah
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| | - Thomas Kolter
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
74
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
75
|
Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. LC–MS-based metabolomics in the clinical laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 883-884:68-75. [DOI: 10.1016/j.jchromb.2011.10.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
|
76
|
Masood MA, Rao RP, Acharya JK, Blonder J, Veenstra TD. Quantitation of multiple sphingolipid classes using normal and reversed-phase LC-ESI-MS/MS: comparative profiling of two cell lines. Lipids 2012; 47:209-26. [PMID: 22124806 PMCID: PMC7480952 DOI: 10.1007/s11745-011-3633-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/04/2011] [Indexed: 12/17/2022]
Abstract
Sphingolipids are an important class of compounds that regulate signal transduction and other vital cellular processes. Herein, we report sensitive normal and reversed phase LC-MS/MS methods for quantitation of multiple sphingolipid classes. In the normal-phase ESI/MS/MS method, a high content of organic solvents was utilized, which, although it included hexane, ethyl acetate, acetonitrile containing 2% methanol, 1-2% acetic acid, and 5 mM ammonium acetate, resulted in a very efficient electrospray ionization of the ceramides (Cers) and hexosylceramides (MHCers). Three normal-phase LC-MS/MS methods using segmented phases were developed to specifically target Cers, MHCers, or sphingomyelins (SMs). This segmentation scheme increases the number of data points acquired for a given analyte and enhances the sensitivity and specificity of the measurements. Nine separate reversed phase chromatography methods were developed for the three classes of compounds. These assays were used for comparing the levels of Cers, SMs, and MHCers from mouse embryonic fibroblast (pMEF) and human embryonic kidney (HEK293) cells. These findings were then compared with the reported data from RAW264.7 mouse macrophage cells, BHK21 hamster cells, and human plasma and serum samples. The analysis of cell lines, using both normal and reversed phase chromatography, revealed discrimination based on the type of chromatography chosen, while sphingolipid assays of samples containing different amounts of protein showed different results, even after normalizing for protein content. Also, LC/MS/MS profiles were provided for the classes and individual compounds so that they could be used as "molecular profiles" for class or individual sample analysis.
Collapse
Affiliation(s)
- M Athar Masood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
77
|
t'Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, Sandra K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 2011; 84:403-11. [PMID: 22111752 DOI: 10.1021/ac202646v] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%).
Collapse
Affiliation(s)
- Ruben t'Kindt
- Metablys, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
78
|
Barreto-Bergter E, Sassaki GL, de Souza LM. Structural analysis of fungal cerebrosides. Front Microbiol 2011; 2:239. [PMID: 22164155 PMCID: PMC3230030 DOI: 10.3389/fmicb.2011.00239] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/13/2011] [Indexed: 11/13/2022] Open
Abstract
Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
79
|
Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol 2011; 27:496-504. [DOI: 10.1016/j.pt.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/04/2023]
|
80
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
81
|
Delvolve AM, Colsch B, Woods AS. Highlighting anatomical sub-structures in rat brain tissue using lipid imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:1729-1736. [PMID: 21961026 PMCID: PMC3181089 DOI: 10.1039/c1ay05107e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cell membranes are made up of a mixture of glycerolipids, sphingolipids, gangliosides and cholesterol. Lipids play important roles in a cell's life. However many of their functions have still to be discovered. In the present work, we describe an efficient, easy and rapid methodology to accurately localize phosphatidylcholines and sphingomyelins from a single coronal rat brain section in the cerebrum area. Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to profile and image lipids. The best resolved structure was 25-50 μm in the hippocampus.
Collapse
Affiliation(s)
- Alice M. Delvolve
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| | - Benoit Colsch
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| | - Amina S. Woods
- Cellular Neurobiology, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, MD, 21224, USA
| |
Collapse
|
82
|
Sullards MC, Liu Y, Chen Y, Merrill AH. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:838-53. [PMID: 21749933 DOI: 10.1016/j.bbalip.2011.06.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023]
Abstract
Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or "sphingolipidomic" methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices.
Collapse
Affiliation(s)
- M Cameron Sullards
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| | | | | | | |
Collapse
|
83
|
Blaas N, Schüürmann C, Bartke N, Stahl B, Humpf HU. Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6018-6024. [PMID: 21534545 DOI: 10.1021/jf200943n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The sphingolipid composition of food as well as of physiological samples has received considerable interest due to their positive biological activities. This study quantified the total amount of sphingomyelin (SM) in 20 human breast milk samples from healthy volunteers and determined the structures of SM by detailed mass spectrometric studies in combination with enzymatic cleavage. The quantification of SM was performed by hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS) measuring the characteristic fragment ion of the phosphorylcholine group at m/z 184.2 and by using hexanoylsphingomyelin (C6-SM) and heptadecanoylsphingomyelin (C17-SM) as internal standards. The structures of SM species were identified after enzymatic cleavage with alkaline sphingomyelinase (SMase) to the corresponding ceramides. Structure elucidation of the sphingoid base and fatty acid backbone was performed by reversed-phase HPLC-ESI-MS/MS. The method includes the sphingoid bases dihydrosphingosine (d18:0), sphingosine (d18:1(Δ4)), 4,8-sphingadienine (d18:2(Δ4,8)), 4-hydroxysphinganine (phytosphingosine (t18:0)), and 4-hydroxy-8-sphingenine (t18:1(Δ8)) and fatty acids with even-numbered carbon atoms (C12-C26) as well as their (poly)unsaturated and monohydroxylated analogues. The total amount of SM in human breast milk varied from 3.87 to 9.07 mg/100 g fresh weight. Sphingosine (d18:1) was the predominant sphingoid base, with 83.6 ± 3.5% in human breast milk, followed by 4,8-sphingadienine (d18:2) (7.2 ± 1.9%) and 4-hydroxysphinganine (t18:0) (5.7 ± 0.7%). The main SM species contained sphingosine and palmitic acid (14.9 ± 2.2%), stearic acid (12.7 ± 1.5%), docosanoic acid (16.2 ± 3.6%), and tetracosenoic acid (15.0 ± 3.1%). Interestingly, the fatty acid composition of SM species in this study differs from the total fatty acids in human breast milk, and the fatty acids are not consistently distributed among the different sphingoid bases.
Collapse
Affiliation(s)
- Nina Blaas
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
84
|
Highkin MK, Yates MP, Nemirovskiy OV, Lamarr WA, Munie GE, Rains JW, Masferrer JL, Nagiec MM. High-throughput screening assay for sphingosine kinase inhibitors in whole blood using RapidFire® mass spectrometry. ACTA ACUST UNITED AC 2011; 16:272-7. [PMID: 21297110 DOI: 10.1177/1087057110391656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To facilitate discovery of compounds modulating sphingosine-1-phosphate (S1P) signaling, the authors used high-throughput mass spectrometry technology to measure S1P formation in human whole blood. Since blood contains endogenous sphingosine (SPH) and S1P, mass spectrometry was chosen to detect the conversion of an exogenously added 17-carbon-long variant of sphingosine, C17SPH, into C17S1P. The authors developed procedures to achieve homogeneous mixing of whole blood in 384-well plates and for a method requiring minimal manipulations to extract S1P from blood in 96- and 384-well plates prior to analyses using the RapidFire(®) mass spectrometry system.
Collapse
|
85
|
Haynes CA, Allegood JC, Wang EW, Kelly SL, Sullards MC, Merrill AH. Factors to consider in using [U-C]palmitate for analysis of sphingolipid biosynthesis by tandem mass spectrometry. J Lipid Res 2011; 52:1583-94. [PMID: 21586681 DOI: 10.1194/jlr.d015586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study describes the use of a stable-isotope labeled precursor ([U-¹³C]palmitate) to analyze de novo sphingolipid biosynthesis by tandem mass spectrometry. It also describes factors to consider in interpreting the data, including the isotope's location (¹³C appears in three isotopomers and isotopologues: [M + 16] for the sphingoid base or N-acyl fatty acid, and [M + 32] for both); the isotopic enrichment of palmitoyl-CoA; and its elongation, desaturation, and incorporation into N-acyl-sphingolipids. For HEK293 cells incubated with 0.1 mM [U-¹³C]palmitic acid, ∼60% of the total palmitoyl-CoA was ¹³C-labeled by 3 h (which was near isotopic equilibrium); with this correction, the rates of de novo biosynthesis of C16:0-ceramide, C16:0-monohexosylceramide, and C16:0-sphingomyelins were 62 ± 3, 13 ± 2, and 60 ± 11 pmol/h per mg protein, respectively, which are consistent with an estimated rate of appearance of C16:0-ceramide using exponential growth modeling (119 ± 11 pmol/h per mg protein). Including estimates for the very long-chain fatty acyl-CoAs, the overall rate of sphingolipid biosynthesis can be estimated to be at least ∼1.6-fold higher. Thus, consideration of these factors gives a more accurate picture of de novo sphingolipid biosynthesis than has been possible to-date, while acknowledging that there are inherent limitations to such approximations.
Collapse
Affiliation(s)
- Christopher A Haynes
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
86
|
Wang HY, Chu X, Zhao ZX, He XS, Guo YL. Analysis of low molecular weight compounds by MALDI-FTICR-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1166-79. [DOI: 10.1016/j.jchromb.2011.03.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
|
87
|
Butovich IA. Lipidomics of human Meibomian gland secretions: Chemistry, biophysics, and physiological role of Meibomian lipids. Prog Lipid Res 2011; 50:278-301. [PMID: 21458488 DOI: 10.1016/j.plipres.2011.03.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
Abstract
Human Meibomian gland secretions (MGS) are a complex mixture of diverse lipids that are produced by Meibomian glands that are located in the upper and the lower eyelids. During blinking, MGS are excreted onto the ocular surface, spread and mix with aqueous tears that are produced by lachrymal glands, and form an outermost part of an ocular structure called "the tear film" (TF). The main physiological role of TF is to protect delicate ocular structures (such as cornea and conjunctiva) from desiccating. Lipids that are produced by Meibomian glands are believed to "seal" the aqueous portion of TF by creating a hydrophobic barrier and, thus, retard evaporation of water from the ocular surface, which enhances the protective properties of TF. As lipids of MGS are interacting with underlying aqueous sublayer of TF, the chemical composition of MGS is critical for maintaining the overall stability of TF. There is a consensus that a small, but important part of Meibomian lipids, namely polar, or amphiphilic lipids, is of especial importance as it forms an intermediate layer between the aqueous layer of TF and its upper (and much thicker) lipid layer formed mostly of very nonpolar lipids, such as wax esters and cholesteryl esters. The purpose of this review is to summarize the current knowledge on the lipidomics of human MGS, including the discussions of the most effective modern analytical techniques, chemical composition of MGS, biophysical properties of Meibomian lipid films, and their relevance for the physiology of TF. Previously published results obtained in numerous laboratories, as well as novel data generated in the author's laboratory, are discussed. It is concluded that despite a substantial progress in the area of Meibomian glands lipidomics, there are large areas of uncertainty that need to be addressed in future experiments.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and the Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA.
| |
Collapse
|
88
|
Momin AA, Park H, Portz BJ, Haynes CA, Shaner RL, Kelly SL, Jordan IK, Merrill JAH. A method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 2011; 52:1073-1083. [PMID: 21415121 PMCID: PMC3090229 DOI: 10.1194/jlr.m010454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are structurally diverse and their metabolic pathways highly complex, which makes it difficult to follow all of the subspecies in a biological system, even using “lipidomic” approaches. This report describes a method to use transcriptomic data to visualize and predict potential differences in sphingolipid composition, and it illustrates its use with published data for cancer cell lines and tumors. In addition, several novel sphingolipids that were predicted to differ between MDA-MB-231 and MCF7 cells based on published microarray data for these breast cancer cell lines were confirmed by mass spectrometry. For the data that we were able to find for these comparisons, there was a significant match between the gene expression data and sphingolipid composition (P < 0.001 by Fisher's exact test). Upon considering the large number of gene expression datasets produced in recent years, this simple integration of two types of “omic” technologies (“transcriptomics” to direct “sphingolipidomics”) might facilitate the discovery of useful relationships between sphingolipid metabolism and disease, such as the identification of new biomarkers.
Collapse
Affiliation(s)
- Amin A Momin
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Hyejung Park
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Brent J Portz
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | | | - Rebecca L Shaner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Samuel L Kelly
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - I King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Jr Alfred H Merrill
- School of Biology, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
89
|
Tanaka K, Yamada M, Tamiya-Koizumi K, Kannagi R, Aoyama T, Hara A, Kyogashima M. Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycoconj J 2011; 28:67-87. [DOI: 10.1007/s10719-011-9325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/11/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
|
90
|
Targeted analysis of sphingoid precursors in human biofluids by solid-phase extraction with in situ derivatization prior to μ-LC-LIF determination. Anal Bioanal Chem 2011; 400:757-65. [DOI: 10.1007/s00216-011-4821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/19/2011] [Indexed: 11/26/2022]
|
91
|
Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues. Methods Mol Biol 2011; 708:247-57. [PMID: 21207295 DOI: 10.1007/978-1-61737-985-7_15] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this paper, analytical methodologies for the global profiling of lipids in serum and tissue samples are reported. The sample preparation is based on a modified Folch extraction, and the analysis is carried out with ultrahigh-performance liquid chromatography combined with mass spectrometry (UPLC-MS). For further identification, MS(n) mass spectrometry is carried out utilizing an LTQ-Orbitrap mass spectrometry as the detector. Such a system affords determination of accurate masses and is thus a highly useful tool for lipid identification. The repeatability of the analysis proved to be good, with relative standard errors for spiked samples being between 4.51 and 10.44%. The throughput of the methodology described here is over 100 samples a day.
Collapse
|
92
|
Sphingolipid metabolism and analysis in metabolic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:1-17. [PMID: 21910079 DOI: 10.1007/978-1-4614-0650-1_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sphingolipids are an important class of structural and signaling molecules within the cell. As sphingolipids have been implicated in the development and pathogenesis of insulin resistance and the metabolic syndrome, it is important to understand their regulation and metabolism. Although these lipids are initially produced through a common pathway, there is no "generic" sphingolipid. Indeed, the biophysical and signaling properties of lipids may be manipulated by the subunit composition or isoform of their synthetic enzymes, via regulation of substrate integration. Functionally distinct pools of chemically-equivalent lipids may also be generated by de novo synthesis and recycling of existing complex sphingolipids. The highly integrated metabolism of the many bioactive sphingolipids means that manipulation of one enzyme or metabolite can result in a ripple effect, causing unforeseen changes in metabolite levels, enzyme activities, and cellular programmes. Fortunately, a suite of techniques, ranging from thin-layer chromatography to liquid chromatography-mass spectrometry approaches, allows investigators to undertake a functional characterization of all or part of the sphingolipidome in their systems of interest.
Collapse
|
93
|
Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 2010; 44:1172-202. [PMID: 20836661 DOI: 10.3109/10715762.2010.498476] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F(2)-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.
Collapse
Affiliation(s)
- Corinne M Spickett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | |
Collapse
|
94
|
Kindt E, Wetterau J, Mueller SB, Castle C, Boustany-Kari CM. Quantitative sphingosine measurement as a surrogate for total ceramide concentration-preclinical and potential translational applications. Biomed Chromatogr 2010; 24:752-8. [PMID: 19908207 DOI: 10.1002/bmc.1359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomarkers are an increasingly important constituent of the drug development process, offering the potential of increased efficiency through reduced compound attrition and earlier proof of mechanism and/or efficacy. Assays developed for compound screening that can be directly translated for clinical trials are especially valuable, but their successful adoption requires a careful balance between assay performance and implementation costs. One such 'fit-for-purpose' biomarker assay, the indirect measurement of pharmacological modulation of sphingolipid biosynthesis and disposition, is presented here. Among sphingolipids, numerous ceramide species are readily detectable in different lipoprotein fractions of mammalian plasma, but their parallel quantification can be prohibitively expensive and time consuming. Ceramides differ in their fatty acid moiety, which is readily removed by hydrolysis, yielding a common sphingosine derivative, the measurement of which serves as an indicator of total ceramide. When followed by liquid chromatography tandem mass spectrometry (LC/MS/MS) for detection, robust analyte quantification becomes relatively straightforward. The practical utility of a method developed to be fit for the purpose of rapidly and quantitatively measuring treatment-induced variations in total ceramide from hamster plasma and individual lipoprotein fractions is described. With a linear calibration range from 0.003 to 33.4 microm sphingosine, precision and accuracy error in plasma-based quality controls spiked with ceramides was less than 15%. The specificity of the assay for ceramides was also assessed. The simplicity of the method would allow for its potential translation to other preclinical species, as well as for clinical applications in later-stage drug development.
Collapse
Affiliation(s)
- Erick Kindt
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
95
|
Chen Y, Liu Y, Sullards MC, Merrill AH. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 2010; 12:306-19. [PMID: 20680704 PMCID: PMC2982954 DOI: 10.1007/s12017-010-8132-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/20/2010] [Indexed: 01/20/2023]
Abstract
Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Wallace H. Coulter Department of Biomedical Engineering and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
96
|
Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010; 49:450-75. [PMID: 20643161 DOI: 10.1016/j.plipres.2010.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Although matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS)--often but not exclusively coupled with a time-of-flight (TOF) mass analyzer--is primarily established in the protein field, there is increasing evidence that MALDI MS is also very useful in lipid research: MALDI MS is fast, sensitive, tolerates sample impurities to a relatively high extent and provides very simple mass spectra without major fragmentation of the analyte. Additionally, MALDI MS devices originally purchased for "proteomics" can be used also for lipids without the need of major system alterations. After a short introduction into the method and the related ion-forming process, the MALDI mass spectrometric characteristics of the individual lipid (ranging from completely apolar hydrocarbons to complex glycolipids with the focus on glycerophospholipids) classes will be discussed and the progress achieved in the last years emphasized. Special attention will be paid to quantitative aspects of MALDI MS because this is normally considered to be the "weak" point of the method, particularly if complex lipid mixtures are to be analyzed. Although the detailed role of the matrix is not yet completely clear, it will be also explicitly shown that the careful choice of the matrix is crucial in order to be able to detect all compounds of interest. Two rather recent developments will be highlighted: "Imaging" MS is nowadays widely established and significant interest is paid in this context to the analysis of lipids because lipids ionize particularly well and are, thus, more sensitively detectable in tissue slices than other biomolecules such as proteins. It will also be shown that MALDI MS can be very easily combined with thin-layer chromatography (TLC) allowing the spatially-resolved screening of the entire TLC plate and the detection of lipids with a higher sensitivity than common staining protocols.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Medical Department, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, Germany
| | | | | |
Collapse
|
97
|
Liou YB, Sheu MT, Liu DZ, Lin SY, Ho HO. Quantitation of ceramides in nude mouse skin by normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 2010; 401:107-13. [DOI: 10.1016/j.ab.2010.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
98
|
Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 2010; 51:2001-11. [PMID: 20228220 DOI: 10.1194/jlr.d005322] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve not only as structural components of membranes but also as signaling molecules. To understand the differential role of sphingolipids in a regulatory network, it is important to use specific and quantitative methods. We developed a novel LC-MS/MS method for the rapid, simultaneous quantification of sphingolipid metabolites, including sphingosine, sphinganine, phyto-sphingosine, di- and trimethyl-sphingosine, sphingosylphosphorylcholine, hexosylceramide, lactosylceramide, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Appropriate internal standards (ISs) were added prior to lipid extraction. In contrast to most published methods based on reversed phase chromatography, we used hydrophilic interaction liquid chromatography and achieved good peak shapes, a short analysis time of 4.5 min, and, most importantly, coelution of analytes and their respective ISs. To avoid an overestimation of species concentrations, peak areas were corrected regarding isotopic overlap where necessary. Quantification was achieved by standard addition of naturally occurring sphingolipid species to the sample matrix. The method showed excellent precision, accuracy, detection limits, and robustness. As an example, sphingolipid species were quantified in fibroblasts treated with myriocin or sphingosine-kinase inhibitor. In summary, this method represents a valuable tool to evaluate the role of sphingolipids in the regulation of cell functions.
Collapse
Affiliation(s)
- Max Scherer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
99
|
Sandra K, Pereira ADS, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 2010; 1217:4087-99. [PMID: 20307888 DOI: 10.1016/j.chroma.2010.02.039] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/08/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200bar to extend the peak capacity or increase productivity is discussed.
Collapse
Affiliation(s)
- Koen Sandra
- Metablys, Kennedypark 26, 8500 Kortrijk, Belgium.
| | | | | | | | | |
Collapse
|
100
|
Oresic M. Systems biology strategy to study lipotoxicity and the metabolic syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:235-9. [PMID: 19944187 DOI: 10.1016/j.bbalip.2009.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 02/08/2023]
Abstract
Systems biology views and studies the biological systems in the context of complex interactions between their building blocks and processes. Given its multi-level complexity, metabolic syndrome (MetS) makes a strong case for adopting the systems biology approach. Despite many MetS traits being highly heritable, it is becoming evident that the genetic contribution to these traits is mediated via gene-gene and gene-environment interactions across several spatial and temporal scales, and that some of these traits such as lipotoxicity may even be a product of long-term dynamic changes of the underlying genetic and molecular networks. This presents several conceptual as well as methodological challenges and may demand a paradigm shift in how we study the undeniably strong genetic component of complex diseases such as MetS. The argument is made here that for adopting systems biology approaches to MetS an integrative framework is needed which glues the biological processes of MetS with specific physiological mechanisms and principles and that lipotoxicity is one such framework. The metabolic phenotypes, molecular and genetic networks can be modeled within the context of such integrative framework and the underlying physiology.
Collapse
Affiliation(s)
- Matej Oresic
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, Espoo, FIN-02044 VTT, Finland.
| |
Collapse
|