51
|
Wang R, Liu X, Zhao Y, Qin J, Xu H, Dong L, Gao S, Zhong L. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
52
|
Voltammetric Determination of Isoniazid in the Presence of Acetaminophen Utilizing MoS2-Nanosheet-Modified Screen-Printed Electrode. MICROMACHINES 2022; 13:mi13030369. [PMID: 35334661 PMCID: PMC8955440 DOI: 10.3390/mi13030369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
We used MoS2 nanosheets (MoS2 NSs) for surface modification of screen-printed electrode (MoS2NSs-SPE) aimed at detecting isoniazid (INZ) in the presence of acetaminophen (AC). According to analysis, an impressive catalytic performance was found for INZ and AC electro-oxidation, resulting in an appreciable peak resolution (~320 mV) for both analytes. Chronoamperometry, differential pulse voltammetry (DPV), linear sweep voltammogram (LSV), and cyclic voltammetry (CV) were employed to characterize the electrochemical behaviors of the modified electrode for the INZ detection. Under the optimal circumstances, there was a linear relationship between the peak current of oxidation and the various levels of INZ (0.035–390.0 µM), with a narrow limit of detection (10.0 nM). The applicability of the as-developed sensor was confirmed by determining the INZ and AC in tablets and urine specimens, with acceptable recoveries.
Collapse
|
53
|
A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J Colloid Interface Sci 2022; 616:326-337. [PMID: 35219198 DOI: 10.1016/j.jcis.2022.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Conductive metal-organic frameworks can provide unique porous structures, large pore volumes, many catalytically active sites and high crystallinity, and so are becoming increasingly important and attractive as electrocatalytic materials. The present work synthesized nanorods of the conductive compound Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) with a high degree of crystallinity from HITP ligands and Ni2+ ions. Screen-printed electrodes made with this material were employed to fabricate an enzyme-free sensor for the detection of ascorbic acid (AA). The sensor exhibited good catalytic activity during the electrocatalytic analysis of AA in alkaline media, attributed to the synergistic effect of highly active Ni-N4 catalytic sites in the nanorods, the two-dimensional superimposed honeycomb lattice of the Ni3(HITP)2, and the large specific surface area of this material. The latter property facilitated efficient electron transfer during catalytic oxidation. A portable electrochemical AA detection system was developed using Ni3(HITP)2 as the electrode material together with application-specific integrated circuits and a smartphone application with App. Good sensing performance was obtained, including a wide linear range (2-200 μM) with high sensitivity (0.814 μA μM-1 cm-2), and low detection limit (1 μM). This system can be used to monitor AA levels and trends in sweat to assess vitamin C intake as a part of personal health management.
Collapse
|
54
|
Sattar OIA, Abuseada HH, Emara MS, Rabee M. Green Electrochemical and Chromatographic Quantifications of the Extremolyte Ectoine in Halophilic Bacterial Cultures and Related Pharmaceutical Preparations. J Pharm Biomed Anal 2022; 213:114680. [DOI: 10.1016/j.jpba.2022.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
|
55
|
Moallem QA, Beitollahi H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Innovative Non-Enzymatic Electrochemical Quantification of Cholesterol. SENSORS 2022; 22:s22030828. [PMID: 35161581 PMCID: PMC8839973 DOI: 10.3390/s22030828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
The use of the Liebermann–Burchard reaction in this study has been explored in the development of a simple, reliable, and robust quantitative electrochemical method to assay cholesterol, and hence provide a good alternative to colorimetric methods. The optimization of batch mode operation for electrochemical oxidation of cholesterol in the Liebermann–Burchard reagents included the applied potential and acidic volume. Tested using chronoamperometry, the developed method showed a high sensitivity (14.959 μA mM−1) and low detection limit (19.78 nM) over a 0.025–3 mM concentration range, with remarkable linearity (R2 = 0.999), proving an analytical performance either higher or comparable to most of the cholesterol sensors discussed in literature. The influence of possible interfering bioactive agents, namely, glucose, uric acid, ascorbic acid, KCl and NaCl, has been evaluated with no or negligible effects on the measurement of cholesterol. Our study was directed at finding a new approach to chemical processing arising from the use of external potential as an additional level of control for chemical reactions and the transfer of electrons between surfaces and molecules. Finally, the optimized method was successfully applied for the determination of cholesterol content in real blood samples.
Collapse
|
57
|
Montazarolmahdi M, Masrournia M, Nezhadali A. Determination of Salicylic Acid Using a Highly Sensitive and New
Electroanalytical Sensor. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210111095822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A drug sensor (salicylic acid, in this case) was designed and made up of this research. The senor
was made by modification of paste electrode (MPE) with CuO-SWCNTs and 1-hexyl-3-methylimidazolium chloride
(HMICl). The MPE/CuO-SWCNTs/HMICl showed catalytic activity for the oxidation signal of salicylic acid in
phosphate buffer solution.
Methods:
Electrochemical methods were used as a powerful strategy for the determination of salicylic acid in
pharmaceutical samples. Aiming at this goal, carbon paste electrode was amplified with conductive materials and used as
a working electrode.
Results:
The MPE/CuO-SWCNTs/HMICl was used for the determination of salicylic acid in the concentration range of
1.0 nM – 230 µM using differential pulse voltammetric (DPV) method. At pH=7.0, as optimum condition, the MPE/CuOSWCNTs/HMICl displayed a high-quality ability for the determination of salicylic acid in urine, pharmaceutical serum,
and water samples.
Conclusion:
The MPE/CuO-SWCNTs/HMICl was successfully used as a new and high performance working electrode
for the determination of salicylic acid at a nanomolar level and in real samples.
Collapse
|
58
|
Liu G, Yang X, Ye W, Zhu J, Xie K, Fu L. Application of Solid-state Electrochemical Analysis in Ancient Ceramic
Identification and Characterization: A Review. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200806155426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Ceramics can reflect ancient technology and art, therefore, it has a very important position in
archaeology. However, it is far from enough just to study the shape of pottery and porcelain. It is necessary to use advanced
scientific and technological means to conduct a comprehensive analysis of pottery and porcelain, so as to study the
information hidden deep in the remains of ceramic objects.
Methods:
The solid voltammetric method can be used to obtain information about the composition of materials used in
ancient ceramics. This new method can be applied to insoluble solids for example, providing qualitative and quantitative
information and structural information with little soluble solids. The method requires only ng-μg sample.
Results:
In this review, we first describe the development of solid-state voltammetric method and our work in this field.
Then, we describe in detail the application of this method in archaeology, especially in the analysis of ceramics. Finally, we
describe the analytical applications of other electrochemical techniques for ceramics analysis.
Conclusion:
Due to the low demand for samples and the high-cost performance of analytical instruments, this method has
been widely studied in Europe. To sum up, we propose to establish a microsampling method for ancient ceramics. A new
method for the protection of fine ancient ceramics by the suitable carrier and the fixation on the surface of the electrode.
These improvements can enable solid-state electroanalytical chemistry technology to achieve more comprehensive and
accurate quantitative analysis of ancient ceramics particles. We also propose the current challenges and future directions of
solid-state electroanalytical chemistry.
Collapse
Affiliation(s)
- Guangfu Liu
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| | - Xinghua Yang
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| | - Weiting Ye
- College of Materials and Environmental Engineering, Hangzhou Dianzi University,
Hangzhou 310018, P.R. China
| | - Jiangwei Zhu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, (Nanjing Forestry University), Nanjing 210037,China
| | - Kefeng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070,China
| | - Li Fu
- Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Pingdingshan University, Pingdingshan
Henan, 467000 P.R. China
| |
Collapse
|
59
|
Alamry KA, Khan A, Hussein MA, Alfaifi SY. Sensitive electrochemical detection of toxic nitro-phenol in real environmental samples using enzymeless oxidized-carboxymethyl cellulose-sulfate/sulfated polyaniline composite based electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
60
|
Karimi-Maleh H. Meet the Editorial Board Member. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220103190550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Yegya Raman PK, Karaman C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. CHEMOSPHERE 2022; 287:132187. [PMID: 34509007 DOI: 10.1016/j.chemosphere.2021.132187] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, we report a novel enzymatic biosensor based on glutathione peroxidase (GSH-Px), graphene oxide (GO) and nafion for the electrochemical sensing of glutathione (GSH) in body fluids. GSH-Px was immobilized covalently via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto modified glassy carbon electrode (GCE) decorated with GO and nafion and successfully used for sensing of GSH in the presence of H2O2 as catalyst with Michaelis-Menten constant about 0.131 mmol/L. The active surface are of GCE improve from 0.183 cm2 to 0.225 cm2 after modification with GO. The introduced biosensor (GSH-Px/GO/nafion/GCE) was used for monitoring of GSH over the range 0.003-370.0 μM, with a detection limit of 1.5 nM using differential pulse voltammetric (DPV) method. The GSH-Px/GO/nafion/GCE was successfully applied to the determination of GSH in real samples.
Collapse
Affiliation(s)
- Somaye Cheraghi
- Iran National Science Foundation (INSF), Tehran, Iran; Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - H Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Fatmeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey.
| |
Collapse
|
62
|
Zhang X, Huo H, Ma K, Zhao Z. Reduced graphene oxide-supported smart plasmonic AgPtPd porous nanoparticles for high-performance electrochemical detection of 2,4,6-trinitrotoluene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart plasmonic AgPtPd NPs/rGO exhibited a wide linear range for TNT from 0.1 to 8 ppm with a sensing limit of 0.95 ppb. The remarkable features are probably attributed to the integrated advantages of the plasmonic properties and synergistic effect.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongyue Huo
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kongshuo Ma
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Zhenlu Zhao
- School of Material Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| |
Collapse
|
63
|
Ziaie N, Shabani-Nooshabadi M. Introducing of Li 2FeMn 3O 8 /C-C 3N 4 /IL nanocomposite for electrochemical determination of pantoprazole sodium in real samples. CHEMOSPHERE 2022; 287:132311. [PMID: 34560499 DOI: 10.1016/j.chemosphere.2021.132311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
A new electrochemical sensor based on Li2FeMn3O8/C-C3N4 (LFMO/CCN)/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode (CPE) has been constructed to measure pantoprazole sodium (PNZS). The electrochemical impedance spectroscopy (EIS) method was employed to evaluate the electrode charge-transfer resistances. Moreover, the differential pulse voltammetry method was used to detect PNZS in phosphate buffer solution (PBS) at pH 7.0. The detection limit of 80.0 × 10-9 M and 10.9 × 10-7 M was obtained under optimal conditions in the linear concentration range of PNZS 0.09-100 μM and 100-900 μM. Chronoampermetry technique was utilized to determine the diffusion coefficient (D) of PNZS on the modified electrode surface. The CCN/LFMO/IL/CPE was successfully used to determine PNZS in various drug formulations such as tablets and vials. Finally, simultaneous determination of PNZS and acetaminophen was accomplished with no interference based on the proposed sensor.
Collapse
Affiliation(s)
- Neda Ziaie
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. Iran; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R, Iran.
| |
Collapse
|
64
|
Peng X, Xie Y, Du Y, Song Y, Chen S. Simultaneous detection of ascorbic acid, dopamine and uric acid based on vertical N-doped carbon nanosheets/three-dimensional porous carbon. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
65
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
66
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
67
|
Li H, Xie B, Hu C, Liu M, Xiao D. Reduced graphene oxide-supported CuO nanoparticles with synergistically enhanced electrocatalytic activity for nitric oxide sensing. Analyst 2022; 147:5187-5193. [DOI: 10.1039/d2an01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work reports a NO electrochemical sensor based on rGO/CuO composites with excellent electrochemical performance.
Collapse
Affiliation(s)
- Hongmei Li
- College of Chemical, Sichuan University, Chengdu 610064, China
| | - Bo Xie
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Chunqiong Hu
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Mengyao Liu
- College of Chemical, Sichuan University, Chengdu 610064, China
| | - Dan Xiao
- College of Chemical, Sichuan University, Chengdu 610064, China
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
68
|
Hadi Z, Ghanbari K. A novel electrochemical sensor for determination of uric acid in the presence of ascorbic acid and dopamine based on a carbon paste electrode modified with an electrochemically reduced para-nitrobenzoic acid/graphene oxide nanocomposite. NEW J CHEM 2022. [DOI: 10.1039/d2nj01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a highly sensitive electrochemical sensor based on a carbon paste electrode was modified by an electrochemically reduced para-nitrobenzoic acid/graphene oxide nanocomposite to measure uric acid.
Collapse
Affiliation(s)
- Z. Hadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Kh. Ghanbari
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
69
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
70
|
Mohammad Beigia S, Mesgari F, Hossein M, Dastan D, Xu G. Electrochemiluminescence Sensors based on Lanthanide Nanomaterials as
Modifiers. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200816123009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The rapid and increasing use of the nanomaterials in the development of
electrochemiluminescence (ECL) sensors is a significant area of study for its massive potential in the
practical application of nanosensor fabrication. Recently, nanomaterials (NMs) have been widely applied
in vast majority of ECL studies to remarkably amplify signals owing to their excellent conductivity,
large surface area and sometimes catalytic activity. Lanthanides, as f-block-based elements,
possess remarkable chemical and physical properties. This review covers the use of lanthanide NMs,
focusing on their use in ECL for signal amplification in sensing applications.
<p>
Methods: We present the recent advances in ECL nanomaterials including lanthanides NMs with a
particular emphasis on Ce, Sm, Eu and Yb. We introduce their properties along with applications in
different ECL sensors. A major focus is placed upon numerous research strategies for addressing the
signal amplification with lanthanide NMs in ECL.
<p>
Results: Lanthanide NMs as the amplification element can provide an ideal ECL platform for enhancing
the signal of a sensor due to their chemical and physical properties. Function of lanthanide
NMs on signal amplification remarkably depend on their large surface area to load sufficient signal
molecules, high conductivity to promote electron-transfer reaction.
<p>
Conclusion: ECL as a powerful analytical technique has been widely used in various aspects. As the
development of the nanotechnology and nanoscience, lanthanide nanomaterials have shown the remarkable
advantages in analytical applications due to their significant physical and chemical properties.
We predict that in the future, the demand for ECL sensors will be high due to their potential in a
diverse range of applications. Also, we expect the research in nanomaterial-based sensors will still
continue intensively and eventually become effectively routine analysis tools that could meet various
challenges.
Collapse
Affiliation(s)
- Sepideh Mohammad Beigia
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Fazeleh Mesgari
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Morteza Hossein
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran,Iran
| | - Davoud Dastan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia-30332,United States
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022,China
| |
Collapse
|
71
|
Baghbaderani SS, Mokarian P, Moazzam P. A Review on Electrochemical Sensing of Cancer Biomarkers Based on
Nanomaterial - Modified Systems. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200917161657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnosis of cancer in the early stages can help treat efficiently and reduce cancerrelated
death. Cancer biomarkers can respond to the presence of cancer in body fluids before the
appearance of any other symptoms of cancer. The integration of nanomaterials into biosensors as
electrochemical platforms offer rapid, sensitive detection for cancer biomarkers. The use of surface-
modified electrodes by carbon nanomaterials and metal nanoparticles enhances the performance
of electrochemical analysis in biosensing systems through the increase of bioreceptors loading
capacity on the surface. In this review, novel approaches based on nanomaterial-modified systems
in the point of care diagnostics are highlighted.
Collapse
Affiliation(s)
- Sorour Salehi Baghbaderani
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441,Iran
| | - Parastou Mokarian
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14676-86831,Iran
| | - Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052,Australia
| |
Collapse
|
72
|
Milad Tabatabaeinejad S, Amiri O, Ghanbari M, Salavati-Niasari M. Dy2Cu2O5 nanostructures: Sonochemical fabrication, characterization, and investigation of photocatalytic ability for elimination of organic contaminants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids. Catalysts 2021. [DOI: 10.3390/catal11111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The frequent occurrence of furazolidone (FZD) in environmental fluids reveals the ongoing increase in use and raises concerns about the need of monitoring it. To investigate the electrochemical behavior of FZD, a novel sensor of manganese molybdenum oxide (MMO) micro rods adorned three-dimensional porous carbon (PC) electrocatalyst was constructed. The crystalline structure and surface morphology of the MMO/PC composite was characterized by XRD, Raman, FESEM, and HR-TEM. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric(i-t) methods were used to assess the electrocatalytic activity of modified electrodes. In the presence of FZD, the as-fabricated MMO/PC modified glassy carbon electrode (GCE) performed better at lower potentials with a greater peak current than other modified GCE. These results emanate from the synergistic effect of the MMO/PC suspension on the GCE. The electrochemical behavior of the amperometric(i-t) technique was used to determine FZD. Amperometric(i-t) detection yielded linear dynamic ranges of 150 nM to 41.05 µM and 41.05 to 471.05 µM with detection limits of 30 nM. The MMO/PC hybrid sensor was also effectively used to detect FZD in environmental fluids, yielding ultra-trace level detection.
Collapse
|
74
|
Yola ML, Atar N. Carbohydrate antigen 19-9 electrochemical immunosensor based on 1D-MoS2 nanorods/LiNb3O8 and polyoxometalate-incorporated gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
75
|
Shahsavari M, Tajik S, Sheikhshoaie I, Garkani Nejad F, Beitollahi H. Synthesis of Fe3O4@copper(II) imidazolate nanoparticles: Catalytic activity of modified graphite screen printed electrode for the determination of levodopa in presence of melatonin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
77
|
Tarahomi S, Rounaghi GH, Daneshvar L, Eftekhari M. A Carbon Ionic Liquid Paste Sensor Modified with Lanthanum Nanorods /MWCNTs/Nafion Hybrid Composite for Carbamazepine Screening in Biological and Pharmaceutical Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Somayeh Tarahomi
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | | | - Leili Daneshvar
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Eftekhari
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
78
|
Patil VB, Sawkar RR, Ilager D, Shetti NP, Tuwar SM, Aminabhavi TM. Glucose‐based carbon electrode for trace‐level detection of acetaminophen. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Rakesh R. Sawkar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Davalasab Ilager
- Center for Electrochemical Science and Materials, Department of Chemistry K.L.E. Institute of Technology Hubballi Karnataka India
| | - Nagaraj P. Shetti
- School of Advanced Sciences KLE Technological University Vidyanagar Hubballi Karnataka 580031 India
| | - Suresh M. Tuwar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | | |
Collapse
|
79
|
Savary A, Yari A. Determination of the herbicide paraquat using the new
Ag‐GO
/
CuO
/
GCE
‐modified glassy carbon electrode by differential pulse voltammetry. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Abdollah Yari
- Department of Chemistry Lorestan University Khorramabad Iran
| |
Collapse
|
80
|
Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous Di-hydroxybenzene isomers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
Koshki MS, Baghayeri M, Fayazi M. Application of sepiolite/FeS2 nanocomposite for highly selective detection of mercury(II) based on stripping voltammetric analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01097-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Ji Y, Zou X, Wang W, Wang T, Zhang S, Gong Z. Co-Doped S, N-Carbon dots and its fluorescent film sensors for rapid detection of Cr (VI) and Ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106284] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
83
|
Naik EI, Naik HB, Sarvajith M, Pradeepa E. Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
84
|
Baghayeri M, Nabavi S, Hasheminejad E, Ebrahimi V. Introducing an Electrochemical Sensor Based on Two Layers of Ag Nanoparticles Decorated Graphene for Rapid Determination of Methadone in Human Blood Serum. Top Catal 2021. [DOI: 10.1007/s11244-021-01483-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
85
|
Fabrication of Nanostructure Electrochemical Sensor Based on the Carbon Paste Electrode (CPE) Modified With Ionic Liquid and Fe3O4/ZIF-67 for Electrocatalytic Sulfamethoxazole Detection. Top Catal 2021. [DOI: 10.1007/s11244-021-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
86
|
Lu XY, Zhang SF, Kong FY, Wang ZX, Li HY, Fang HL, Wang W. Facile synthesis of TiO2-ZnO-rGO nanocomposites for highly sensitive simultaneous determination of hydroquinone and catechol. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Quan DP, Thao BTP, Trang NV, Huy NL, Dung NQ, Ahmed MU, Lam TD. The role of copper nanoparticles decorating polydopamine/graphene film as catalyst in the enhancement of uric acid sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
An electrochemical strategy for toxic ractopamine sensing in pork samples; twofold amplified nano-based structure analytical tool. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00982-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
89
|
Li Y, Liu J, Chen X, Yuan X, Li N, He W, Feng Y. Tailoring spatial structure of electroactive biofilm for enhanced activity and direct electron transfer on iron phthalocyanine modified anode in microbial fuel cells. Biosens Bioelectron 2021; 191:113410. [PMID: 34144473 DOI: 10.1016/j.bios.2021.113410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/30/2023]
Abstract
Electroactive biofilm (EAB) has been considered as the core determining electricity generation in microbial fuel cells (MFCs), and its spatial structure regulation for enhanced activity and selectivity is of great concern. In this study, iron phthalocyanine (FePc) was introduced into a carbon cloth (CC) electrode, aiming at improving the affinity between the anode and outer membrane c-type cytochromes (OM c-Cyts) and achieving a highly active EAB. The FePc modified CC anode (FePc-CC) effectively improved the viability of EAB and enriched the Geobacter species up to 44.83% (FePc-CC) from 6.97% (CC). The FePc-CC anode achieved a much higher power density of 2419 mW m-2 than the CC (560 mW m-2) and a remarkable higher biomass loading of 2477.2 ± 84.5 μg cm-2 than the CC (749.3 ± 31.3 μg cm-2). As the charge transfer resistance was decreased by 58.6 times from 395.2 Ω (CC) to 6.74 Ω (FePc-CC), the interfacial reaction rate was accelerated and the direct electron transfer via OM c-Cyts was promoted. This work provides an effective method to improve the EAB activity by regulating its spatial structure, and opens the door toward the development of highly active EAB using metal phthalocyanines in MFCs.
Collapse
Affiliation(s)
- Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaole Yuan
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
90
|
Application of deep eutectic solvent and SWCNT-ZrO2 nanocomposite as conductive mediators for the fabrication of simple and rapid electrochemical sensor for determination of trace anti-migration drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
91
|
|
92
|
Guan H, Peng B, Gong D, Han B, Zhang N. Electrochemical Enhanced Detection of Uric Acid Based on Peroxidase‐like Activity of Fe
3
O
4
@Au. ELECTROANAL 2021. [DOI: 10.1002/elan.202100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huanan Guan
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Bo Peng
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Dezhuang Gong
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Bolin Han
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Na Zhang
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| |
Collapse
|
93
|
Karaman C, Karaman O, Atar N, Yola ML. Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd 0.5Zn 0.5S/d-Ti 3C 2T x MXene composite for heart-type fatty acid-binding protein detection. Mikrochim Acta 2021; 188:182. [PMID: 33959811 DOI: 10.1007/s00604-021-04838-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is a significant health problem owing to its high mortality rate. Heart-type fatty acid-binding protein (h-FABP) is an important biomarker in the diagnosis of AMI. In this work, an electrochemical h-FABP immunosensor was developed based on Cd0.5Zn0.5S/d-Ti3C2Tx MXene (MXene: Transition metal carbide or nitride) composite as signal amplificator and core-shell high-crystalline graphitic carbon nitride@carbon dots (hc-g-C3N4@CDs) as electrochemical sensor platform. Firstly, a facile calcination technique was applied to the preparation of hc-g-C3N4@CDs and immobilization of primary antibody was performed on hc-g-C3N4@CDs surface. Then, the conjugation of the second antibody to Cd0.5Zn0.5S/d-Ti3C2Tx MXene was carried out by strong π-π and electrostatic interactions. The prepared electrochemical h-FABP immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, Fourier-transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The prepared electrochemical h-FABP immunosensor indicated a good sensitivity with detection limit (LOD) of 3.30 fg mL-1 in the potential range +0.1 to +0.5 V. Lastly, low-cost, satisfactory stable, and environmentally friendly immunosensor was presented for the diagnosis of acute myocardial infarction.
Collapse
Affiliation(s)
- Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, Turkey
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Imaging Techniques, Akdeniz University, Antalya, Turkey
| | - Necip Atar
- Faculty of Engineering, Department of Chemical Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
94
|
Kalhor S, Zarei M, Sepehrmansourie H, Zolfigol MA, Shi H, Wang J, Arjomandi J, Hasani M, Schirhagl R. Novel uric acid-based nano organocatalyst with phosphorous acid tags: Application for synthesis of new biologically-interest pyridines with indole moieties via a cooperative vinylogous anomeric based oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
95
|
Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
96
|
Baghayeri M, Amiri A, Karimabadi F, Di Masi S, Maleki B, Adibian F, Pourali AR, Malitesta C. Magnetic MWCNTs-dendrimer: A potential modifier for electrochemical evaluation of As (III) ions in real water samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115059] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Ramírez C, Belmonte M, Miranzo P, Osendi MI. Applications of Ceramic/Graphene Composites and Hybrids. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2071. [PMID: 33924114 PMCID: PMC8074343 DOI: 10.3390/ma14082071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
Research activity on ceramic/graphene composites and hybrids has increased dramatically in the last decade. In this review, we provide an overview of recent contributions involving ceramics, graphene, and graphene-related materials (GRM, i.e., graphene oxide, reduced graphene oxide, and graphene nanoplatelets) with a primary focus on applications. We have adopted a broad scope of the term ceramics, therefore including some applications of GRM with certain metal oxides and cement-based matrices in the review. Applications of ceramic/graphene hybrids and composites cover many different areas, in particular, energy production and storage (batteries, supercapacitors, solar and fuel cells), energy harvesting, sensors and biosensors, electromagnetic interference shielding, biomaterials, thermal management (heat dissipation and heat conduction functions), engineering components, catalysts, etc. A section on ceramic/GRM composites processed by additive manufacturing methods is included due to their industrial potential and waste reduction capability. All these applications of ceramic/graphene composites and hybrids are listed and mentioned in the present review, ending with the authors' outlook of those that seem most promising, based on the research efforts carried out in this field.
Collapse
Affiliation(s)
- Cristina Ramírez
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| | | | | | - Maria Isabel Osendi
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| |
Collapse
|
98
|
Mahdavi B, Paydarfard S, Rezaei‐Seresht E, Baghayeri M, Nodehi M. Green synthesis of NiONPs using
Trigonella subenervis
extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behnam Mahdavi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Sogand Paydarfard
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Esmail Rezaei‐Seresht
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| |
Collapse
|
99
|
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Asrami PN, Al-Othman A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021; 184:113252. [PMID: 33895688 DOI: 10.1016/j.bios.2021.113252] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Shilpi Agarwal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vinod K Gupta
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775 Arica, Chile
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal.
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | | | | | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| |
Collapse
|
100
|
A simple, fast, and cost-effective analytical method for monitoring active quinones in a H2O2 production process. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|