51
|
Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123:345-63. [DOI: 10.1016/j.colsurfb.2014.09.029] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 09/14/2014] [Indexed: 12/18/2022]
|
52
|
Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine 2014; 9:4387-98. [PMID: 25258529 PMCID: PMC4172103 DOI: 10.2147/ijn.s49297] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.
Collapse
Affiliation(s)
- Barbara Kneidl
- Department of Internal Medicine III, University Hospital Munich, Germany ; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Michael Peller
- Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital Munich, Germany
| | - Martin Hossann
- Department of Internal Medicine III, University Hospital Munich, Germany
| |
Collapse
|
53
|
Chen KJ, Chaung EY, Wey SP, Lin KJ, Cheng F, Lin CC, Liu HL, Tseng HW, Liu CP, Wei MC, Liu CM, Sung HW. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS NANO 2014; 8:5105-5115. [PMID: 24742221 DOI: 10.1021/nn501162x] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As is widely suspected, lysolipid dissociation from liposomes contributes to the intravenous instability of ThermoDox (lysolipid liposomes), thereby impeding its antitumor efficacy. This work evaluates the feasibility of a thermoresponsive bubble-generating liposomal system without lysolipids for tumor-specific chemotherapy. The key component in this liposomal formulation is its encapsulated ammonium bicarbonate (ABC), which is used to actively load doxorubicin (DOX) into liposomes and trigger a drug release when heated locally. Incubating ABC liposomes with whole blood results in a significantly smaller decrease in the retention of encapsulated DOX than that by lysolipid liposomes, indicating superior plasma stability. Biodistribution analysis results indicate that the ABC formulation circulates longer than its lysolipid counterpart. Following the injection of ABC liposome suspension into mice with tumors heated locally, decomposition of the ABC encapsulated in liposomes facilitates the immediate thermal activation of CO2 bubble generation, subsequently increasing the intratumoral DOX accumulation. Consequently, the antitumor efficacy of the ABC liposomes is superior to that of their lysolipid counterparts. Results of this study demonstrate that this thermoresponsive bubble-generating liposomal system is a highly promising carrier for tumor-specific chemotherapy, especially for local drug delivery mediated at hyperthermic temperatures.
Collapse
Affiliation(s)
- Ko-Jie Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Liu W, Wen S, Shen M, Shi X. Doxorubicin-loaded poly(lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. NEW J CHEM 2014. [DOI: 10.1039/c4nj00672k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poly(lactic-co-glycolic acid) hollow microcapsules loaded with doxorubicin can be assembled with folate-functionalized polyethyleneimine for targeted drug delivery to cancer cells.
Collapse
Affiliation(s)
- Weina Liu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620, People’s Republic of China
| | - Shihui Wen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620, People’s Republic of China
| |
Collapse
|
55
|
Dicheva BM, Koning GA. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin Drug Deliv 2013; 11:83-100. [PMID: 24320104 DOI: 10.1517/17425247.2014.866650] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Currently available chemotherapy is hampered by a lack in tumor specificity and resulting toxicity. Small and long-circulating liposomes can preferentially deliver chemotherapeutic drugs to tumors upon extravasation from tumor vasculature. Although clinically used liposomal formulations demonstrated significant reduction in toxicity, enhancement of therapeutic activity has not fully met expectations. AREAS COVERED Low drug bioavailability from liposomal formulations and limited tumor accumulation remain major challenges to further improve therapeutic activity of liposomal chemotherapy. The aim of this review is to highlight strategies addressing these challenges. A first strategy uses hyperthermia and thermosensitive liposomes to improve tumor accumulation and trigger liposomal drug bioavailability. Image-guidance can aid online monitoring of heat and drug delivery and further personalize the treatment. A second strategy involves tumor-specific targeting to enhance drug delivery specificity and drug internalization. In addition, we review the potential of combinations of the two in one targeted thermosensitive-triggered drug delivery system. EXPERT OPINION Heat-triggered drug delivery using thermosensitive liposomes as well as the use of tumor vasculature or tumor cell-targeted liposomes are both promising strategies to improve liposomal chemotherapy. Preclinical evidence has been encouraging and both strategies are currently undergoing clinical evaluation. A combination of both strategies rendering targeted thermosensitive liposomes (TTSL) may appear as a new and attractive approach promoting tumor drug delivery.
Collapse
Affiliation(s)
- Bilyana M Dicheva
- Innovative Targeting Group, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Room Ee151b, PO Box 2040, 3000 CA Rotterdam , The Netherlands +31 10 7043963
| | | |
Collapse
|
56
|
May JP, Ernsting MJ, Undzys E, Li SD. Thermosensitive liposomes for the delivery of gemcitabine and oxaliplatin to tumors. Mol Pharm 2013; 10:4499-508. [PMID: 24152292 DOI: 10.1021/mp400321e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of ultrafast temperature sensitive liposome (uTSL) formulations reported in the literature deliver the highly membrane permeable drug, doxorubicin (DOX). Here we report on the study of the uTSL formulation, HaT (Heat activated cytoToxic, composed of the phospholipid DPPC and the surfactant Brij78) loaded with the water-soluble, but poorly membrane permeable anticancer drugs, gemcitabine (GEM) and oxaliplatin (OXA). The HaT formulation displayed ultrafast release of these drugs in response to temperature, whereas attempts with LTSL (Lyso-lipid Temperature Sensitive Liposome, composed of DPPC, MSPC, and DSPE-PEG) were unsuccessful. HaT-GEM and HaT-OXA both released >80% of the encapsulated drug within 2 min at 40-42 °C, with <5% drug leakage at 37 °C after 30 min in serum. The pharmacokinetic profile of both drugs was improved by formulating with HaT relative to the free drug, with clearance reduced by 50-fold for GEM and 3-fold for OXA. HaT-GEM and HaT-OXA both displayed improved drug uptake in the heated tumor relative to the unheated tumor (by 9-fold and 3-fold, respectively). In particular, HaT-GEM showed 25-fold improved delivery to the heated tumor relative to free GEM and significantly enhanced antitumor efficacy with complete tumor regression after a single dose of HaT-GEM. These data suggest that uTSL technology can also be used to deliver nonmembrane permeable drugs via an intravascular ultrafast release mechanism to great effect.
Collapse
Affiliation(s)
- Jonathan P May
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research , 101 College Street, Suite 800, Toronto, Ontario, M5G 0A3, Canada
| | | | | | | |
Collapse
|
57
|
Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv 2013; 32:778-88. [PMID: 24113214 DOI: 10.1016/j.biotechadv.2013.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/04/2023]
Abstract
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.
Collapse
|
58
|
Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 2013; 172:782-94. [PMID: 24075927 DOI: 10.1016/j.jconrel.2013.09.013] [Citation(s) in RCA: 659] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/30/2022]
Abstract
Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
- Mark J Ernsting
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada; Ryerson University, Faculty of Architectural Science and Engineering, Toronto, Ontario M5B 1Z2, Canada
| | | | | | | |
Collapse
|
59
|
Youngren SR, Mulik R, Jun B, Hoffmann PR, Morris KR, Chougule MB. Freeze-dried targeted mannosylated selenium-loaded nanoliposomes: development and evaluation. AAPS PharmSciTech 2013; 14:1012-24. [PMID: 23797303 PMCID: PMC3755142 DOI: 10.1208/s12249-013-9988-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/28/2013] [Indexed: 01/23/2023] Open
Abstract
The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film within a rotatory evaporator. This thin film was hydrated with a sodium selenite (5.8 μM) solution to form multilamellar vesicles and homogenized under high pressure to yield unilamellar nanoliposomes. Se-loaded nanoliposomes were mannosylated by 0.1% w/v mannosamine (Man-Lip-Se) prior to being lyophilized. Mannosamine concentration was optimized with cellular uptake studies in M receptor expressing cells. Non-lyophilized and lyophilized Man-Lip-Se were characterized for size, zeta potential, and entrapment efficiency. The influence of liposomal composition on the characteristics of Man-Lip-Se were evaluated using acidic and basic medium for 24 h. Thermal analysis and powder X-ray diffraction were used to determine the interaction of components within the Man-Lip-Se. The size, zeta potential and entrapment efficiency of the optimum Man-Lip-Se were observed to be 158 ± 28.9 nm, 33.21 ± 0.89 mV, and 77.27 ± 2.34%, respectively. An in vitro Se release of 70-75% up to 24 h in PBS pH 6.8 and <8% Se release in acidic media (0.1 N HCl) in 1 h was observed. The Man-Lip-Se were found to withstand gastric-like environments and showed sustained release. Stable freeze-dried Man-Lip-Se were successfully formulated with a size of <200 nm, ≈ 75% entrapment, and achieved controlled release of Se with stability under acidic media, which may be of importance in the targeted delivery of Se to the immune system.
Collapse
Affiliation(s)
- Susanne R. Youngren
- />Department of Pharmaceutical Science, College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720 USA
| | - Rohit Mulik
- />Department of Pharmaceutical Science, College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720 USA
| | - Byoung Jun
- />Department of Pharmaceutical Science, College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720 USA
| | - Peter R. Hoffmann
- />Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i, 651 Ilalo St, Honolulu, Hawaii USA
| | - Kenneth R. Morris
- />Department of Pharmaceutical Science, College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720 USA
| | - Mahavir B. Chougule
- />Department of Pharmaceutical Science, College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720 USA
| |
Collapse
|
60
|
Kheirolomoom A, Lai CY, Tam SM, Mahakian LM, Ingham ES, Watson KD, Ferrara KW. Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J Control Release 2013; 172:266-273. [PMID: 23994755 DOI: 10.1016/j.jconrel.2013.08.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 01/13/2023]
Abstract
The development of treatment protocols that result in a complete response to chemotherapy has been hampered by free drug toxicity and the low bioavailability of nano-formulated drugs. Here, we explore the application of temperature-sensitive liposomes that have been formulated to enhance stability in circulation. We formed a pH-sensitive complex between doxorubicin (Dox) and copper (CuDox) in the core of lysolipid-containing temperature-sensitive liposomes (LTSLs). The complex remains associated at neutral pH but dissociates to free Dox in lower pH environments. The resulting CuDox-LTSLs were injected intravenously into a syngeneic murine breast cancer model (6 mg Dox/kg body weight) and intravascular release of the drug was triggered by ultrasound. The entire tumor was insonified for 5 min prior to drug administration and 20 min post drug injection. A single-dose administration of CuDox-LTSLs combined with insonation suppressed tumor growth. Moreover, after twice per week treatment over a period of 28 days, a complete response was achieved in which the NDL tumor cells and the tumor interstitium could no longer be detected. All mice treated with ultrasound combined with CuDox-LTSLs survived, and tumor was undetectable 8 months post treatment. Iron and copper-laden macrophages were observed at early time points following treatment with this temperature sensitive formulation. Systemic toxicity indicators, such as cardiac hypertrophy, leukopenia, and weight and hair loss were not detected with CuDox-LTSLs after the 28-day therapy.
Collapse
Affiliation(s)
- Azadeh Kheirolomoom
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Chun-Yen Lai
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Sarah M Tam
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Lisa M Mahakian
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Elizabeth S Ingham
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Katherine D Watson
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Katherine W Ferrara
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
61
|
Cakic M, Mitic Z, Nikolic G, Savic I, Savic IM. Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 2013; 8:1253-63. [PMID: 23919882 DOI: 10.1517/17460441.2013.825245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Copper is an essential element in the human organism. Furthermore, copper deficiency is rare; however, the hematologic manifestations associated with copper deficiency, such as anemia, leukopenia, neutropenia, myeloneuropathy and osteoporosis, are well known. AREAS COVERED The authors present an overview of the various commercially available drugs used in the treatment of copper deficiency. Furthermore, the authors offer a description of copper complexes, as potential pharmaceutically active compounds, that can be used in the design of new formulations with therapeutic potential. EXPERT OPINION Progress in the synthesis of new metallo-organic complexes (such as the copper-pullulan complex) and the chelated form of copper have provided new avenues for drug design that combat copper deficiency. The copper-pullulan complex, as an active compound, has been designed in its solid dosage form, and its optimization in the treatment of copper deficiency has been furthered through advancements in experimental design methodology. The authors believe that the numerous ongoing studies, evaluating the synthesis of these complexes, should produce new additions to the copper deficiency therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Milorad Cakic
- University of Nis, Faculty of Technology, Department of Pharmaceutics , Bulevar oslobodjenja 124, 16000 Leskovac , Serbia +381 16 242859 ; +381 16 242859 ;
| | | | | | | | | |
Collapse
|
62
|
Oude Blenke E, Mastrobattista E, Schiffelers RM. Strategies for triggered drug release from tumor targeted liposomes. Expert Opin Drug Deliv 2013; 10:1399-410. [DOI: 10.1517/17425247.2013.805742] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
63
|
Chen KJ, Liang HF, Chen HL, Wang Y, Cheng PY, Liu HL, Xia Y, Sung HW. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS NANO 2013; 7:438-446. [PMID: 23240550 DOI: 10.1021/nn304474j] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The therapeutic effectiveness of chemotherapy is optimal only when tumor cells are subjected to a maximum drug exposure. To increase the intratumoral drug concentration and thus the efficacy of chemotherapy, a thermoresponsive bubble-generating liposomal system is proposed for triggering localized extracellular drug delivery. The key component of this liposomal formulation is the encapsulated ammonium bicarbonate (ABC), which is used to create the transmembrane gradient needed for a highly efficient encapsulation of doxorubicin (DOX). At an elevated temperature (42 °C), decomposition of ABC generates CO(2) bubbles, creating permeable defects in the lipid bilayer that rapidly release DOX and instantly increase the drug concentration locally. Because the generated CO(2) bubbles are hyperechogenic, they also enhance ultrasound imaging. Consequently, this new liposomal system encapsulated with ABC may also provide an ability to monitor a temperature-controlled drug delivery process.
Collapse
Affiliation(s)
- Ko-Jie Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
INTRODUCTION Specific delivery of a drug to a target site is a major goal of drug delivery research. Using temperature-sensitive liposomes (TSLs) is one way to achieve this; the liposome acts as a protective carrier, allowing increased drug to flow through the bloodstream by minimizing clearance and non-specific uptake. On reaching microvessels within a heated tumor, the drug is released and quickly penetrates. A major advance in the field is ThermoDox® (Celsion), demonstrating significant improvements to the drug release rates and drug uptake in heated tumors (∼ 41°C). Most recently, magnetic resonance-guided focused ultrasound (MRgFUS) has been combined with TSL drug delivery to provide localized chemotherapy with simultaneous quantification of drug release within the tumor. AREAS COVERED In this article the field of hyperthermia-induced drug delivery is discussed, with an emphasis on the development of TSLs and their combination with hyperthermia (both mild and ablative) in cancer therapy. State-of-the-art image-guided heating technologies used with this combination strategy will also be presented, with examples of real-time monitoring of drug delivery and prediction of efficacy. EXPERT OPINION The specific delivery of drugs by combining hyperthermia with TSLs is showing great promise in the clinic and its potential will be even greater as the use of image-guided focused ultrasound becomes more widespread - a technique capable of penetrating deep within the body to heat a specific area with improved control. In conjunction with this, it is anticipated that multifunctional TSLs will be a major topic of study in this field.
Collapse
Affiliation(s)
- Jonathan P May
- Ontario Institute for Cancer Research, Drug Delivery and Formulation Group, Medicinal Chemistry Platform, Toronto, ON, M5G 0A3, Canada
| | | |
Collapse
|