51
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
Zhu K, Liu G, Hu J, Liu S. Near-Infrared Light-Activated Photochemical Internalization of Reduction-Responsive Polyprodrug Vesicles for Synergistic Photodynamic Therapy and Chemotherapy. Biomacromolecules 2017; 18:2571-2582. [DOI: 10.1021/acs.biomac.7b00693] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kangning Zhu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
53
|
Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Sci Rep 2017; 7:6318. [PMID: 28740226 PMCID: PMC5524941 DOI: 10.1038/s41598-017-06690-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
High-throughput drug screening based on a multi-component array can be used to identify a variety of interaction between cells and drugs for suitable purposes. The signaling of immune cells is affected by specific proteins, diverse drug combinations, and certain immunosuppressive drugs. The effect of a drug on an organism is usually complex and involves interactions at multiple levels. Herein, we developed a multilayer fabricating system through the high-throughput assembly of nanofilms with inkjet printing to investigate the effects of immunosuppressive drugs. Immunosuppressive drugs or agents occasionally cause side effects depending on drug combinations or a patient’s condition. By incorporating various drug combinations for understanding interaction between drugs and immune cells, we were able to develop an immunological drug screening kit with immunosuppressive drugs. Moreover, the ability to control the combination of drugs, as well as their potential for high-throughput preparation should be of great benefit to the biomedical and bioanalytical field.
Collapse
|
54
|
Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) for High Performance Gene Transfection. Polymers (Basel) 2017; 9:polym9050161. [PMID: 30970840 PMCID: PMC6432012 DOI: 10.3390/polym9050161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The top-performing linear poly(β-amino ester) (LPAE), poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (C32), has demonstrated gene transfection efficiency comparable to viral-mediated gene delivery. Herein, we report the synthesis of a series of highly branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (HC32) and explore how the branching structure influences the performance of C32 in gene transfection. HC32 were synthesized by an “A2 + B3 + C2” Michal addition strategy. Gaussia luciferase (Gluciferase) and green fluorescent protein (GFP) coding plasmid DNA were used as reporter genes and the gene transfection efficiency was evaluated in human cervical cancer cell line (HeLa) and human recessive dystrophic epidermolysis bullosa keratinocyte (RDEBK) cells. We found that the optimal branching structure led to a much higher gene transfection efficiency in comparison to its linear counterpart and commercial reagents, while preserving high cell viability in both cell types. The branching strategy affected DNA binding, proton buffering capacity and degradation of polymers as well as size, zeta potential, stability, and DNA release rate of polyplexes significantly. Polymer degradation and DNA release rate played pivotal parts in achieving the high gene transfection efficiency of HC32-103 polymers, providing new insights for the development of poly(β-amino ester)s-based gene delivery vectors.
Collapse
|
55
|
Hanay SB, Ritzen B, Brougham D, Dias AA, Heise A. Exploring Tyrosine-Triazolinedione (TAD) Reactions for the Selective Conjugation and Cross-Linking of N
-Carboxyanhydride (NCA) Derived Synthetic Copolypeptides. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/09/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Saltuk B. Hanay
- School of Chemical Sciences; Dublin City University; Glasnevin Dublin 9 Ireland
| | - Bas Ritzen
- DSM Ahead; Urmonderbaan 22 Geleen 6167 RD the Netherlands
| | - Dermot Brougham
- School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| | - Aylvin A. Dias
- DSM Ahead; Urmonderbaan 22 Geleen 6167 RD the Netherlands
| | - Andreas Heise
- Department of Pharmaceutical and Medicinal Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephens Green Dublin 2 Ireland
| |
Collapse
|
56
|
Zhang P, Wagner E. History of Polymeric Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:26. [PMID: 28181193 DOI: 10.1007/s41061-017-0112-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
As an option for genetic disease treatment and an alternative for traditional cancer chemotherapy, gene therapy achieves significant attention. Nucleic acid delivery, however, remains a main challenge in human gene therapy. Polymer-based delivery systems offer a safer and promising route for therapeutic gene delivery. Over the past five decades, various cationic polymers have been optimized for increasingly effective nucleic acid transfer. This resulted in a chemical evolution of cationic polymers from the first-generation polycations towards bioinspired multifunctional sequence-defined polymers and nanocomposites. With the increasing of knowledge in molecular biological processes and rapid progress of macromolecular chemistry, further improvement of polymeric nucleic acid delivery systems will provide effective tool for gene-based therapy in the near future.
Collapse
Affiliation(s)
- Peng Zhang
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.,Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80799, Munich, Germany
| |
Collapse
|
57
|
Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Colloids Surf B Biointerfaces 2016; 148:73-84. [DOI: 10.1016/j.colsurfb.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/20/2022]
|
58
|
Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol Res 2016; 114:56-66. [DOI: 10.1016/j.phrs.2016.10.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
|
59
|
Zhou D, Gao Y, Aied A, Cutlar L, Igoucheva O, Newland B, Alexeeve V, Greiser U, Uitto J, Wang W. Highly branched poly(β-amino ester)s for skin gene therapy. J Control Release 2016; 244:336-346. [DOI: 10.1016/j.jconrel.2016.06.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
|
60
|
Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur Polym J 2016; 81:198-215. [PMID: 27524831 PMCID: PMC4973809 DOI: 10.1016/j.eurpolymj.2016.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022]
Abstract
Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.
Collapse
|
61
|
Yu F, Li J, Xie Y, Sleightholm RL, Oupický D. Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. J Control Release 2016; 244:347-356. [PMID: 27473763 DOI: 10.1016/j.jconrel.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Chloroquine (CQ) is a widely used antimalarial drug with emerging potential in anticancer therapies due to its apparent inhibitory effects on CXCR4 chemokine receptor, autophagy, and cholesterol metabolism. This study reports on polymeric CQ (pCQ) as a macromolecular drug with antimetastatic activity. The pCQ polymers were synthesized by copolymerization of methacryloylated hydroxy-CQ (HCQ) and N-(2-hydroxypropyl)methacrylamide (HPMA). The results show that pCQ is significantly more effective in inhibiting cancer cell migration and invasion when compared with the parent HCQ. The proposed mechanism of action at least partially relies on the ability of pCQ to inhibit cell migration mediated by the CXCR4/CXCL12 pathway. The pCQ also demonstrates superior inhibitory activity over HCQ when tested in a mouse model of experimental lung metastasis. Lastly, pCQ shows the ability to efficiently translocate to the cytoplasm while exhibiting lower cytotoxicity than HCQ. Overall, this study supports pCQ as a promising polymeric drug platform suitable for use in combination antimetastatic strategies and potential use in cytoplasmic drug delivery.
Collapse
Affiliation(s)
- Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard L Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
62
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
63
|
Zhou D, Cutlar L, Gao Y, Wang W, O’Keeffe-Ahern J, McMahon S, Duarte B, Larcher F, Rodriguez BJ, Greiser U, Wang W. The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery. SCIENCE ADVANCES 2016; 2:e1600102. [PMID: 27386572 PMCID: PMC4928911 DOI: 10.1126/sciadv.1600102] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/26/2016] [Indexed: 05/13/2023]
Abstract
Nonviral gene therapy holds great promise but has not delivered treatments for clinical application to date. Lack of safe and efficient gene delivery vectors is the major hurdle. Among nonviral gene delivery vectors, poly(β-amino ester)s are one of the most versatile candidates because of their wide monomer availability, high polymer flexibility, and superior gene transfection performance both in vitro and in vivo. However, to date, all research has been focused on vectors with a linear structure. A well-accepted view is that dendritic or branched polymers have greater potential as gene delivery vectors because of their three-dimensional structure and multiple terminal groups. Nevertheless, to date, the synthesis of dendritic or branched polymers has been proven to be a well-known challenge. We report the design and synthesis of highly branched poly(β-amino ester)s (HPAEs) via a one-pot "A2 + B3 + C2"-type Michael addition approach and evaluate their potential as gene delivery vectors. We find that the branched structure can significantly enhance the transfection efficiency of poly(β-amino ester)s: Up to an 8521-fold enhancement in transfection efficiency was observed across 12 cell types ranging from cell lines, primary cells, to stem cells, over their corresponding linear poly(β-amino ester)s (LPAEs) and the commercial transfection reagents polyethyleneimine, SuperFect, and Lipofectamine 2000. Moreover, we further demonstrate that HPAEs can correct genetic defects in vivo using a recessive dystrophic epidermolysis bullosa graft mouse model. Our findings prove that the A2 + B3 + C2 approach is highly generalizable and flexible for the design and synthesis of HPAEs, which cannot be achieved by the conventional polymerization approach; HPAEs are more efficient vectors in gene transfection than the corresponding LPAEs. This provides valuable insight into the development and applications of nonviral gene delivery and demonstrates great prospect for their translation to a clinical environment.
Collapse
Affiliation(s)
- Dezhong Zhou
- School of Materials and Engineering, Tianjin University, Tianjin 300072, China
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Lara Cutlar
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Wei Wang
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Jonathan O’Keeffe-Ahern
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Sean McMahon
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Blanca Duarte
- Cutaneous Diseases Modelling Unit, Division of Biomedicine, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
| | - Fernando Larcher
- Cutaneous Diseases Modelling Unit, Division of Biomedicine, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
| | - Brian J. Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Udo Greiser
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Wenxin Wang
- School of Materials and Engineering, Tianjin University, Tianjin 300072, China
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
- Corresponding author.
| |
Collapse
|
64
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
65
|
Borase T, Fox EK, Haddassi FE, Cryan SA, Brougham DF, Heise A. Glyco-copolypeptide grafted magnetic nanoparticles: the interplay between particle dispersion and RNA loading. Polym Chem 2016. [DOI: 10.1039/c6py00250a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine-glyco-copolypeptide grafted superparamagnetic iron oxide nanoparticles were prepared through N-carboxyanhydride (NCA) copolymerization. Statistical and block copolymer arrangements were obtained while keeping the overal composition constant.
Collapse
Affiliation(s)
- T. Borase
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| | - E. K. Fox
- National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Fadwa El Haddassi
- National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - S.-A. Cryan
- School of Pharmacy
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Tissue Engineering Research Group
| | - D. F. Brougham
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - A. Heise
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
- Department of Pharmaceutical and Medicinal Chemistry
| |
Collapse
|
66
|
Cherif MS, Mbanefo EC, Shuaibu MN, Kodama Y, Avenido EF, Campos-Alberto E, Mizukami S, Camara F, Helegbe GK, Kikuchi M, Yanagi T, Sasaki H, Huy NT, Karbwang J, Hirayama K. Human-applicable dendrigraft poly-l-lysine-based nanoparticle-coated Plasmodium yoelii-transamidase DNA vaccine is immunogenic and protective as the polyethylenimine-based formulation. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515614011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective was to assess the immunoequivalence and protective efficacy of the novel, relatively safe dendrigraft poly-l-lysine-based nanoparticle formulation in comparison to the non-degradable polyethylenimine-based system. Groups of 6-week-old female C57BL/6 mice were immunized three times biweekly. Each mouse received 100 µg of the Plasmodium yoelii GPI8p-transamidase PyTAM formulated with nanoball that consisted of PyTAM/PEI/γ-PGA or PyTAM/DGL/γ-PGA and their respective nanoparticle-coated blank vector controls. Two weeks after the last immunization, the humoral responses and cellular immune response were assessed. The survival and parasitemia were evaluated in each group challenged intraperitoneally with 106 of a lethal strain of P. yoelii 17XL-parasitized red blood cells. Mice immunized with PyTAM/PEI/γ-PGA or PyTAM/DGL/γ-PGA showed similar survival rates, humoral responses and T helper 1 pro-inflammatory cellular immune responses in vivo and ex vivo. In particular, the PyTAM/DGL/γ-PGA formulation showed a significant increase in conventional dendritic cells in the spleen, which were consistently associated with high interleukin-12 production, the driver of the T helper 1 response. We show that the substitution of non-degradable polyethylenimine with the biodegradable dendrigraft poly-l-lysine in the nanoparticle formulation is immunoequivalent and elicits protective immunity against the lethal strain of P. yoelii. Therefore, this new gene-delivery vehicle with a good safety profile presents an exciting prospect for application in vaccination strategies.
Collapse
Affiliation(s)
- Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Faculty of Medicine, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea
| | - Evaristus Chibunna Mbanefo
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University, Nagasaki, Japan
| | - Eleonor Fundan Avenido
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Facely Camara
- Faculty of Medicine, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea
| | - Gideon Kofi Helegbe
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tetsuo Yanagi
- National Bio-Resource Project (NBRP), Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
67
|
Tao Y, Chen X, Jia F, Wang S, Xiao C, Cui F, Li Y, Bian Z, Chen X, Wang X. New chemosynthetic route to linear ε-poly-lysine. Chem Sci 2015; 6:6385-6391. [PMID: 30090258 PMCID: PMC6054053 DOI: 10.1039/c5sc02479j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 12/22/2022] Open
Abstract
ε-Poly-lysine (ε-PL) is an uncommon cationic, naturally-occurring homopolymer produced by the fermentation process. Due to its significant antimicrobial activity and nontoxicity to humans, ε-PL is now industrially produced as an additive, e.g. for food and cosmetics. However, the biosynthetic route can only make polymers with a molecular weight of about 3 kDa. Here, we report a new chemical strategy based on ring-opening polymerization (ROP) to obtain ε-PL from lysine. The 2,5-dimethylpyrrole protected α-amino-ε-caprolactam monomer was prepared through cyclization of lysine followed by protection. ROP of this monomer, followed by the removal of the protecting group, 2,5-dimethylpyrrole, ultimately yielded ε-PL with varying molecular weights. The structure of this chemosynthetic ε-PL has been fully characterized by 1H NMR, 13C NMR, and MALDI-TOF MS analyses. This chemosynthetic ε-PL exhibited a similar pKa value and low cytotoxicity as the biosynthetic analogue. Using this new chemical strategy involving ROP without the need for phosgene may enable a more cost effective production of ε-PL on a larger-scale, facilitating the design of more advanced biomaterials.
Collapse
Affiliation(s)
- Youhua Tao
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Xiaoyu Chen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Fan Jia
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Fengchao Cui
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Yunqi Li
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Zheng Bian
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5625 , 130022 , People's Republic of China . ; ; http://www.youhuatao.weebly.com/
| |
Collapse
|
68
|
Ceschan NE, Bucalá V, Ramírez-Rigo MV. Polymeric microparticles containing indomethacin for inhalatory administration. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Bishop CJ, Kozielski KL, Green JJ. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J Control Release 2015; 219:488-499. [PMID: 26433125 DOI: 10.1016/j.jconrel.2015.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022]
Abstract
Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.
Collapse
Affiliation(s)
- Corey J Bishop
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
70
|
Byrne M, Murphy R, Kapetanakis A, Ramsey J, Cryan SA, Heise A. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics. Macromol Rapid Commun 2015; 36:1862-1876. [DOI: 10.1002/marc.201500300] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/17/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mark Byrne
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Robert Murphy
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Antonios Kapetanakis
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Joanne Ramsey
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| | - Sally-Ann Cryan
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Tissue Engineering Research Group; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| | - Andreas Heise
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| |
Collapse
|
71
|
Peng Q, Zhu J, Yu Y, Hoffman L, Yang X. Hyperbranched lysine−arginine copolymer for gene delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1163-77. [DOI: 10.1080/09205063.2015.1080482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Yan Y, Xue L, Miller JB, Zhou K, Kos P, Elkassih S, Liu L, Nagai A, Xiong H, Siegwart DJ. One-pot Synthesis of Functional Poly(amino ester sulfide)s and Utility in Delivering pDNA and siRNA. POLYMER 2015; 72:271-280. [PMID: 26726270 PMCID: PMC4695292 DOI: 10.1016/j.polymer.2015.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of efficacious carriers is an important long-standing challenge in gene therapy. In the past few decades, tremendous progress has been made toward non-viral vectors for gene delivery including cationic lipids and polymers. However, there continues to be a need for clinically translatable polymer-based delivery carriers because they offer tunable degradation profiles and functional groups, diverse structures/morphologies, and scalability in preparation. Herein, we developed a library of 144 degradable polymers with varying amine and hydrophobic content via a facile method that involves thiobutyrolactone aminolysis and consequent thiol-(meth)acrylate or acrylamide addition in one-pot. The polymer platform was evaluated for pDNA and siRNA delivery to HeLa cells in vitro. Hydrophobically modified 5S, 2E1, 6CY1, 5CY2, and 2M1 grafted HEMATL polymers are capable of delivering pDNA depending on the chemical composition and the size of the polyplexes. Hydrophobically modified 5S and 2B grafted HEMATL and 5S grafted ATL polymers exhibit capability for siRNA delivery that approaches the efficacy of commercially available transfection reagents. Due to tunable functionality and scalable preparation, this synthetic approach may have broad applicability in the design of delivery materials for gene therapy.
Collapse
Affiliation(s)
- Yunfeng Yan
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Lian Xue
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Jason B. Miller
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Kejin Zhou
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Petra Kos
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Sussana Elkassih
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Li Liu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Atsushi Nagai
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Hu Xiong
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Daniel J. Siegwart
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| |
Collapse
|
73
|
Hall A, Wu LP, Parhamifar L, Moghimi SM. Differential Modulation of Cellular Bioenergetics by Poly(l-lysine)s of Different Molecular Weights. Biomacromolecules 2015; 16:2119-26. [DOI: 10.1021/acs.biomac.5b00533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arnaldur Hall
- Nanomedicine
Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology,
Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Lin-Ping Wu
- Nanomedicine
Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology,
Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Ladan Parhamifar
- Nanomedicine
Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology,
Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Seyed Moein Moghimi
- Nanomedicine
Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology,
Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
- NanoScience
Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
74
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
75
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
76
|
Yu H, Tang Z, Zhang D, Song W, Duan T, Gu J, Chen X. Poly(ornithine-co-arginine-co-glycine-co-aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor-Penetrating Agent. Macromol Biosci 2015; 15:829-38. [PMID: 25740002 DOI: 10.1002/mabi.201500040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 01/09/2023]
Abstract
A novel random copolypeptide of ornithine, arginine, glycine, and aspartic acid [Poly(ornithine-co-arginine-co-glycine-co-aspartic acid), Poly(O,R,G,D)] has been prepared through ring-opening polymerization of N-δ-carbobenzoxy-l-ornithine N-carboxyanhydride [Orn(Cbz)-NCA)], l-glycine N-carboxyanhydride (Gly-NCA) and β-benzyl l-aspartate N-carboxyanhydride [Asp(Bn)-NCA], following by subsequent deprotection and guanidization. The structure of Poly(O,R,G,D) was confirmed by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). Low cytotoxicity of Poly(O,R,G,D) was confirmed from MTT assay. The Poly(O,R,G,D) contain some internal sequences of RXXR (X = O, R, G, or D) that could be proteolytically cleaved to expose the cryptic CendR element and bind to Neuropilin-1. This would lead to vascular and tissue permeabilization. Therefore trypsin-cleaved Poly(O,R,G,D) increase the vascular leakage of Evans blue from dermal microvessels at the injection site in vivo skin permeability assay. The intratumoral injection of the Poly(O,R,G,D) significantly enhanced the concentration of cisplatin-loaded nanoparticles in MCF-7 solid tumors. These results show that Poly(O,R,G,D) could increase the vascular leakage and tissue penetration of nanoparticles in a solid tumor and can be used as a potential polymeric tumor-penetrating agent.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Taicheng Duan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jingkai Gu
- Clinical Pharmacology Center, Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Dongminzhu Street, Changchun, 130061, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
77
|
He D, Wagner E. Defined Polymeric Materials for Gene Delivery. Macromol Biosci 2015; 15:600-12. [DOI: 10.1002/mabi.201400524] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Dongsheng He
- Pharmaceutical Biotechnology; Center for System-based Drug Research and Center for NanoScience (CeNS); Ludwig-Maximilians-University; 81377 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology; Center for System-based Drug Research and Center for NanoScience (CeNS); Ludwig-Maximilians-University; 81377 Munich Germany
| |
Collapse
|
78
|
Rinkenauer AC, Schubert S, Traeger A, Schubert US. The influence of polymer architecture on in vitro pDNA transfection. J Mater Chem B 2015; 3:7477-7493. [DOI: 10.1039/c5tb00782h] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the field of polymer-based gene delivery, the tuning potential of polymers by using different architectures like graft- and star-shaped polymers as well as self-assembled block copolymers is immense. In the last years numerous new polymer designs showed enhanced transfections properties in combination with a good biocompatibility.
Collapse
Affiliation(s)
- Alexandra C. Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Pharmacy
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
79
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
80
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
81
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
82
|
Wang F, Wang Y, Wang H, Shao N, Chen Y, Cheng Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014; 35:9187-98. [DOI: 10.1016/j.biomaterials.2014.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/19/2014] [Indexed: 01/09/2023]
|
83
|
Zhang QF, Yu QY, Geng Y, Zhang J, Wu WX, Wang G, Gu Z, Yu XQ. Ring-opening polymerization for hyperbranched polycationic gene delivery vectors with excellent serum tolerance. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15733-15742. [PMID: 25177769 DOI: 10.1021/am5046185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In order to improve the transfection efficiency (TE) and biocompatibility, we synthesized a series of hyperbranched cationic polymers by ring-opening polymerization between diepoxide and several polyamines. These materials can condense plasmid DNA efficiently into nanoparticles that have much lower cytotoxicity than those derived from bPEI. In vitro transfection experiments showed that polymers prepared from branched or cyclic polyamine (P1 and P5) exhibited TE several times higher than 25KDa bPEI. More significantly, serum seemed to have no negative effect on P1-P5 mediated transfection. On the contrary, the TE of P1 improved, even when the serum concentration reached 70%. Several assays demonstrated the excellent serum tolerance of such polycationic vectors: bovine serum albumin (BSA) adsorption assay revealed considerably lower protein adsorption of P1-P5 than PEI; P1 showed better DNA protection ability from degradation by DNase I than PEI; flow cytometry results suggested that any concentration of serum may not decrease the cellular uptake of P1/DNA polyplex; and confocal laser scanning microscopy also found that serum has little effect on the transfection. By using specific cellular uptake inhibitors, we found that the polyplexes enter the cells mainly via caveolae and microtubule-mediated pathways. We believe that this ring-opening polymerization may be an effective synthetic approach toward gene delivery materials with high biological activity.
Collapse
Affiliation(s)
- Qin-Fang Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Gillard M, Jia Z, Hou JJC, Song M, Gray PP, Munro TP, Monteiro MJ. Intracellular Trafficking Pathways for Nuclear Delivery of Plasmid DNA Complexed with Highly Efficient Endosome Escape Polymers. Biomacromolecules 2014; 15:3569-76. [DOI: 10.1021/bm5008376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marianne Gillard
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Zhongfan Jia
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jeff Jia Cheng Hou
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Michael Song
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter P. Gray
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Trent P. Munro
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Michael J. Monteiro
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
85
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Jin X, Leclercq L, Sisavath N, Cottet H. Investigating the Influence of Phosphate Ions on Poly(l-lysine) Conformations by Taylor Dispersion Analysis. Macromolecules 2014. [DOI: 10.1021/ma501058v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyun Jin
- Institut des Biomolécules
Max Mousseron, IBMM, UMR 5247 CNRS-Université de Montpellier
1, Université de Montpellier 2, Place Eugène Bataillon, CC
1706, 34095 Montpellier
Cedex 5, France
| | - Laurent Leclercq
- Institut des Biomolécules
Max Mousseron, IBMM, UMR 5247 CNRS-Université de Montpellier
1, Université de Montpellier 2, Place Eugène Bataillon, CC
1706, 34095 Montpellier
Cedex 5, France
| | - Nicolas Sisavath
- Institut des Biomolécules
Max Mousseron, IBMM, UMR 5247 CNRS-Université de Montpellier
1, Université de Montpellier 2, Place Eugène Bataillon, CC
1706, 34095 Montpellier
Cedex 5, France
| | - Hervé Cottet
- Institut des Biomolécules
Max Mousseron, IBMM, UMR 5247 CNRS-Université de Montpellier
1, Université de Montpellier 2, Place Eugène Bataillon, CC
1706, 34095 Montpellier
Cedex 5, France
| |
Collapse
|
87
|
Xu T, Liu W, Wang S, Shao Z. Elucidating the role of free polycationic chains in polycation gene carriers by free chains of polyethylenimine or N,N,N-trimethyl chitosan plus a certain polyplex. Int J Nanomedicine 2014; 9:3231-45. [PMID: 25061299 PMCID: PMC4086671 DOI: 10.2147/ijn.s64308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycations as gene carriers have attracted considerable attention over the past decade. Generally, polyplexes between polycations and deoxyribonucleic acid (DNA) are formed at low N/P ratios (the ratios of the numbers of nitrogen atoms in a polycation to the numbers of phosphorus atoms in DNA), but high transfection efficiency can only be obtained at much higher N/P ratios. Thus, many polycationic chains are still free in solution. In this study, we investigated the detailed functions of free polyethylenimine chains (PEI-F) and free N,N,N-trimethyl chitosan chains (TMC-F) using the same polyplex, ie, TMC polyplex (TMC-P), which has high stability in Dulbecco’s Modified Eagle’s Medium (DMEM). Meanwhile, PEI polyplex (PEI-P)/PEI-F was also evaluated rather than PEI-P/TMC-F because the stability of PEI-P is low in DMEM and, in the latter case, the TMC-F may replace the bound PEI chain in PEI-P to form TMC-P. The transfection results show that both TMC-F and PEI-F can significantly increase the transfection efficiency of TMC-P; however, PEI-F can upregulate the gene expression of TMC-P more efficiently than TMC-F. Further investigations on the endocytosis and intracellular trafficking show that PEI-P/PEI-F, TMC-P/PEI-F, and TMC-P/TMC-F exhibit similar cellular uptake efficiency. However, by shutting down the clathrin-mediated endocytosis or vacuolar proton pump, the transfection efficiency decreases in the order of PEI-P/PEI-F > TMC-P/PEI-F > TMC-P/TMC-F. These findings indicate that PEI-F and TMC-F may promote the transfection efficiency of the polyplex by affecting its cellular uptake pathway and intracellular trafficking.
Collapse
Affiliation(s)
- Tao Xu
- State Key Laboratory of Molecular Engineering of Polymer, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Wei Liu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Suhang Wang
- State Key Laboratory of Molecular Engineering of Polymer, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymer, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
88
|
Sisavath N, Le Saux T, Leclercq L, Cottet H. Effect of dendrimer generation on the interactions between human serum albumin and dendrigraft polylysines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4450-4457. [PMID: 24708346 DOI: 10.1021/la5002144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work aims at studying the interaction between human serum albumin and different generations of dendrigraft poly-L-lysine (DGL) in physiological conditions. The binding constants and stoichiometry of the interaction were successfully determined using frontal analysis continuous capillary electrophoresis. The effect of generation on the interaction was evaluated for the five first generations of DGL. An increase of the binding constant accompanied with a decrease of the HSA:DGL (1:n) stoichiometry and a decrease of the cooperativity with dendrimer generation was observed. These findings were in good agreement with the increase of ligand (DGL) size, the increase of electrostatic ligand-ligand repulsion, and the localization of two negatively charged interaction sites on the HSA. The effect of the ligand topology (linear vs dendrigraft) on the HSA interaction revealed that linear poly(L-lysine) leads to much lower stoichiometry compared to DGL of similar molar mass due to much higher flexibility and contour length.
Collapse
Affiliation(s)
- Nicolas Sisavath
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université de Montpellier 1-Université de Montpellier 2 , place Eugène Bataillon CC 1706, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
89
|
Almo SC, Love JD. Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 2014; 26:39-43. [PMID: 24721463 DOI: 10.1016/j.sbi.2014.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 11/18/2022]
Abstract
Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells.
Collapse
Affiliation(s)
- Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
90
|
Hauptmann N, Pion M, Wehner R, Muñoz-Fernández MÁ, Schmitz M, Voit B, Appelhans D. Potential of Ni(II)-NTA-Modified Poly(ethylene imine) Glycopolymers as Carrier System for Future Dendritic Cell-Based Immunotherapy. Biomacromolecules 2014; 15:957-67. [DOI: 10.1021/bm401845b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N. Hauptmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - M. Pion
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - R. Wehner
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - M.-Á. Muñoz-Fernández
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - M. Schmitz
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - B. Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - D. Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
91
|
Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv 2014; 32:818-30. [PMID: 24389086 DOI: 10.1016/j.biotechadv.2013.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.
Collapse
Affiliation(s)
- Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Center for Bionanoengineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
92
|
Gillard M, Jia Z, Gray PP, Munro TP, Monteiro MJ. Timed-release polymers as novel transfection reagents. Polym Chem 2014. [DOI: 10.1039/c4py00176a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Timed-release polymer with 95% gene expression, which was greater than a commercial transfection reagent.
Collapse
Affiliation(s)
- Marianne Gillard
- The University of Queensland
- Australian Institute for Bioengineering and Nanotechnology
- Brisbane, Australia
| | - Zhongfan Jia
- The University of Queensland
- Australian Institute for Bioengineering and Nanotechnology
- Brisbane, Australia
| | - Peter P. Gray
- The University of Queensland
- Australian Institute for Bioengineering and Nanotechnology
- Brisbane, Australia
| | - Trent P. Munro
- The University of Queensland
- Australian Institute for Bioengineering and Nanotechnology
- Brisbane, Australia
| | - Michael J. Monteiro
- The University of Queensland
- Australian Institute for Bioengineering and Nanotechnology
- Brisbane, Australia
| |
Collapse
|
93
|
Lei Q, Sun YX, Chen S, Qin SY, Jia HZ, Zhuo RX, Zhang XZ. Fabrication of novel reduction-sensitive gene vectors based on three-armed peptides. Macromol Biosci 2013; 14:546-56. [PMID: 24327554 DOI: 10.1002/mabi.201300422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Indexed: 12/25/2022]
Abstract
To address the inherent barriers of gene transfection, two reduction-sensitive branched polypeptides (RBPs) are synthesized and explored as novel non-viral gene vectors. The introduced disulfide linkages in RBPs facilitate glutathione-triggered intracellular gene release and reduce polymer degradation-induced cytotoxicity. Furthermore, the highly branched architecture concurrently realizes multivalency for strong DNA binding and elicits conformational flexibility for tight DNA compacting, which are beneficial for cellular entry. To increase the endosomal escape of plasmid DNA, pH-sensitive histidyl residues are incorporated into RBPs to improve buffer capacity in an acidic environment. In vitro study demonstrates that RBPs can efficiently mediate the DNA transfection and avoid apparent cytotoxicity in HeLa and COS7. The present gene delivery system offers a simple and flexible approach to fabricate microenvironment-specific branched gene vectors for gene therapy.
Collapse
Affiliation(s)
- Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
94
|
Kwok A, Eggimann GA, Reymond JL, Darbre T, Hollfelder F. Peptide dendrimer/lipid hybrid systems are efficient DNA transfection reagents: structure--activity relationships highlight the role of charge distribution across dendrimer generations. ACS NANO 2013; 7:4668-4682. [PMID: 23682947 PMCID: PMC3715887 DOI: 10.1021/nn400343z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure-activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6-10-fold over commercial reagents under their respective optimal conditions. Emerging structure-activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity.
Collapse
Affiliation(s)
- Albert Kwok
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Gabriela A. Eggimann
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|