51
|
Zhou Y, Han X, Jing X, Chen Y. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28795530 DOI: 10.1002/adhm.201700646] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/24/2017] [Indexed: 12/20/2022]
Abstract
Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ultrasound the Third People's Hospital of Chengdu City the Affiliated Hospital of Southwest Jiaotong University Chengdu 600031 P. R. China
| | - Xiaoxia Han
- Institute of Ultrasound Imaging and Department of Ultrasound Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound Hainan General Hospital Haikou 570311 P. R. China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
52
|
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem Rev 2017. [PMID: 28640612 DOI: 10.1021/acs.chemrev.6b00799] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) and Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 31116, Korea
| | - Gang Bao
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
53
|
Yulug B, Hanoglu L, Kilic E. The neuroprotective effect of focused ultrasound: New perspectives on an old tool. Brain Res Bull 2017; 131:199-206. [PMID: 28458041 DOI: 10.1016/j.brainresbull.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Transcranial focused ultrasound (tFUS) is a novel technique that can noninvasively modulate the cortical function. Moreover, there are rapidly replicating evidence suggesting the role of tFUS for targeted neuroprotective drug delivery by increasing the permeability of the central nervous system barrier that results with increased neuroprotective activity. In contrast to the indirect neuroprotective effect, there is rare evidence suggesting the direct parenchymal neuroprotective effect of transcranial focused ultrasound (tFUS). In the light of these findings, we aimed to review the direct and indirect neuroprotective effect of FUS in various animal models of Stroke, Parkinson's Disease, Alzheimer's Disease and Major Depressive Disorder. METHODS A literary search was conducted, utilizing search terms "animal", "focused ultrasound", "neuroprotection", "Alzheimer's Disease", "Parkinson's Disease ", "Stroke", "Neurodegenerative disease" and "Major Depressive Disorder". Items were excluded if they failed to: (1) include patients, (2) editorials, and letters. RESULTS This mini-review article presents an up-to-date review of the neuroprotective effects of tFUS in animal studies and suggests the dual neurotherapeutic role of tFUS in various neurodegenerative diseases. CONCLUSION Future well-conducted human studies are emergently needed to assess the neuroprotective effects of FUS.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey.
| | - Lutfu Hanoglu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| |
Collapse
|
54
|
Brain-Targeted Polymers for Gene Delivery in the Treatment of Brain Diseases. Top Curr Chem (Cham) 2017; 375:48. [PMID: 28397188 DOI: 10.1007/s41061-017-0138-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Gene therapies have become a promising strategy for treating neurological disorders, such as brain cancer and neurodegenerative diseases, with the help of molecular biology interpreting the underlying pathological mechanisms. Successful cellular manipulation against these diseases requires efficient delivery of nucleic acids into brain and further into specific neurons or cancer cells. Compared with viral vectors, non-viral polymeric carriers provide a safer and more flexible way of gene delivery, although suffering from significantly lower transfection efficiency. Researchers have been devoted to solving this defect, which is attributed to the multiple barriers existing for gene therapeutics in vivo, such as systemic degradation, blood-brain barrier, and endosome trapping. This review will be mainly focused on systemically administrated brain-targeted polymers developed so far, including PEI, dendrimers, and synthetic polymers with various functions. We will discuss in detail how they are designed to overcome these barriers and how they efficiently deliver therapeutic nucleic acids into targeted cells.
Collapse
|
55
|
Fishman PS, Frenkel V. Focused Ultrasound: An Emerging Therapeutic Modality for Neurologic Disease. Neurotherapeutics 2017; 14:393-404. [PMID: 28244011 PMCID: PMC5398988 DOI: 10.1007/s13311-017-0515-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Therapeutic ultrasound is only beginning to be applied to neurologic conditions, but the potential of this modality for a wide spectrum of brain applications is high. Engineering advances now allow sound waves to be targeted through the skull to a brain region selected with real time magnetic resonance imaging and thermography, using a commercial array of focused emitters. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull. This has led to the recent Food and Drug Administration approval of focused ultrasound (FUS) thalamotomy for unilateral treatment of essential tremor. Clinical studies of stereotactic FUS for aspects of Parkinson's disease, chronic pain, and refractory psychiatric indications are underway, with promising results. Moderate-intensity FUS has the potential to safely open the blood-brain barrier for localized delivery of therapeutics, while low levels of sonic energy can be used as a form of neuromodulation.
Collapse
Affiliation(s)
- Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Victor Frenkel
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
56
|
Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604105. [PMID: 27991697 DOI: 10.1002/adma.201604105] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Diagnostic Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
57
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|
58
|
Rip J. Liposome technologies and drug delivery to the CNS. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:53-58. [PMID: 27986225 DOI: 10.1016/j.ddtec.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
Brain and nervous system disorders represent a large unmet medical need. Central nervous system drug development is hampered by the restricted transport of drugs across the blood-brain barrier. Different strategies to deliver drugs to the brain have been developed. We discuss the current status of development of liposomal drug delivery to the brain. There is a growing interest in targeted delivery of liposomes to the brain and much progress has been made towards successful development of novel treatments for patients with devastating brain diseases.
Collapse
Affiliation(s)
- Jaap Rip
- Eyesiu Medicines BV, J.H. Oortweg 19, 2333CH Leiden, The Netherlands
| |
Collapse
|
59
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
60
|
Long L, Cai X, Guo R, Wang P, Wu L, Yin T, Liao S, Lu Z. Treatment of Parkinson's disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem Biophys Res Commun 2016; 482:75-80. [PMID: 27810365 DOI: 10.1016/j.bbrc.2016.10.141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/29/2016] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a very common neurological disorder. However, effective therapy is lacking. Although the blood-brain-barrier (BBB) protects the brain, it prevents the delivery of about 90% of drugs and nucleotides into the brain, thereby hindering the development of gene therapy for PD. Magnetic resonance imaging (MRI)-guided focused ultrasound delivery of microbubbles enhances the delivery of gene therapy vectors across the BBB and improves transfection efficiency. In the present study, we delivered nuclear factor E2-related factor 2 (Nrf2, NFE2L2) contained in nanomicrobubbles into the substantia nigra of PD rats by MRI-guided focused ultrasound, and we examined the effect of Nrf2 over-expression in this animal model of PD. The rat model of PD was established by injecting 6-OHDA in the right substantia nigra stereotactically. Plasmids (pDC315 or pDC315/Nrf2) were loaded onto nanomicrobubbles, and then injected through the tail vein with the assistance of MRI-guided focused ultrasound. MRI-guided focused ultrasound delivery of nanomicrobubbles increased gene transfection efficiency. Furthermore, Nrf2 gene transfection reduced reactive oxygen species levels, thereby protecting neurons in the target region.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Cai
- Department of Neurology, Sixth Affiliated Hospital, Sun Yat-Sen University (Guangdong Gastrointestinal and Anal Hospital), Guangzhou, China
| | - Ruomi Guo
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Department of Ultrasonics, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Wu
- Department of Ultrasonics, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tinghui Yin
- Department of Ultrasonics, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyuan Liao
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
61
|
Focused ultrasound enhanced molecular imaging and gene therapy for multifusion reporter gene in glioma-bearing rat model. Oncotarget 2016; 6:36260-8. [PMID: 26429860 PMCID: PMC4742175 DOI: 10.18632/oncotarget.5389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
The ability to monitor the responses of and inhibit the growth of brain tumors during gene therapy has been severely limited due to the blood-brain barrier (BBB). A previous study has demonstrated the feasibility of noninvasive in vivo imaging with 123I-2′-fluoro-2′-deoxy-5-iodo-1-β-D-arabinofuranosyluracil (123I-FIAU) for monitoring herpes simplex virus type 1 thymidine kinase (HSV1-tk) cancer gene expression in an experimental animal model. Here, we tested the enhancement of SPECT with 123I-FIAU and ganciclovir (GCV) treatment in brain tumors after BBB disruption induced by focused ultrasound (FUS) in the presence of microbubbles. We established an orthotopic F98 glioma-bearing rat model with trifusion reporter genes. The results of this study showed that the rat model of HSV1-tk-expressing glioma cells could be successfully detected by SPECT imaging after FUS-induced BBB disruption on day 10 after implantation. Compared to the control group, animals receiving the GCV with or without sonication exhibited a significant antitumor activity (P < 0.05) of glioma cells on day 16 after implantation. Moreover, combining sonication with GCV significantly inhibited tumor growth compared with GCV alone. This study demonstrated that FUS may be used to deliver a wide variety of theranostic agents to the brain for molecular imaging and gene therapy in brain diseases.
Collapse
|
62
|
Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging. Sci Rep 2016; 6:33264. [PMID: 27630037 PMCID: PMC5024096 DOI: 10.1038/srep33264] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.
Collapse
|
63
|
Lin CY, Hsieh HY, Chen CM, Wu SR, Tsai CH, Huang CY, Hua MY, Wei KC, Yeh CK, Liu HL. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model. J Control Release 2016; 235:72-81. [DOI: 10.1016/j.jconrel.2016.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 02/01/2023]
|
64
|
Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, Chang SD, Tillement O. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro Oncol 2016; 18:1601-1609. [PMID: 27407134 DOI: 10.1093/neuonc/now137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
Drug delivery in the CNS is limited by endothelial tight junctions forming the impermeable blood-brain barrier. The development of new treatment paradigms has previously been hampered by the restrictiveness of the blood-brain barrier to systemically administered therapeutics. With recent advances in stereotactic localization and noninvasive imaging, we have honed the ability to modulate, ablate, and rewire millimetric brain structures to precisely permeate the impregnable barrier. The wide range of focused radiations offers endless possibilities to disrupt endothelial permeability with different patterns and intensity following 3-dimensional coordinates offering a new world of possibilities to access the CNS, as well as to target therapies. We propose a review of the current state of knowledge in targeted drug delivery using noninvasive image-guided approaches. To this end, we focus on strategies currently used in clinics or in clinical trials such as targeted radiotherapy and magnetic resonance guided focused ultrasound, but also on more experimental approaches such as magnetically heated nanoparticles, electric fields, and lasers, techniques which demonstrated remarkable results both in vitro and in vivo. We envision that biodistribution and efficacy of systemically administered drugs will be enhanced with further developments of these promising strategies. Besides therapeutic applications, stereotactic platforms can be highly valuable in clinical applications for interventional strategies that can improve the targetability and efficacy of drugs and macromolecules. It is our hope that by showcasing and reviewing the current state of this field, we can lay the groundwork to guide future research in this realm.
Collapse
Affiliation(s)
- Geoff Appelboom
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Alexandre Detappe
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Melissa LoPresti
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Sijumon Kunjachan
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Stefan Mitrasinovic
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Serge Goldman
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Steve D Chang
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Olivier Tillement
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| |
Collapse
|
65
|
Fan CH, Ting CY, Lin CY, Chan HL, Chang YC, Chen YY, Liu HL, Yeh CK. Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease. Sci Rep 2016; 6:19579. [PMID: 26786201 PMCID: PMC4726227 DOI: 10.1038/srep19579] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/16/2015] [Indexed: 01/30/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) supports the growth and survival of dopaminergic neurons. CNS gene delivery currently relies on invasive intracerebral injection to transit the blood-brain barrier. Non-viral gene delivery via systematic transvascular route is an attractive alternative because it is non-invasive, but a high-yield and targeted gene-expressed method is still lacking. In this study, we propose a novel non-viral gene delivery approach to achieve targeted gene transfection. Cationic microbubbles as gene carriers were developed to allow the stable formation of a bubble-GDNF gene complex, and transcranial focused ultrasound (FUS) exposure concurrently interacting with the bubble-gene complex allowed transient gene permeation and induced local GDNF expression. We demonstrate that the focused ultrasound-triggered GDNFp-loaded cationic microbubbles platform can achieve non-viral targeted gene delivery via a noninvasive administration route, outperform intracerebral injection in terms of targeted GDNF delivery of high-titer GDNF genes, and has a neuroprotection effect in Parkinson’s disease (PD) animal models to successfully block PD syndrome progression and to restore behavioral function. This study explores the potential of using FUS and bubble-gene complexes to achieve noninvasive and targeted gene delivery for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Chien-Yu Ting
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 33302 Taiwan
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, 11221 Taiwan
| | - Hao-Li Liu
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 33302 Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, 33302 Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
66
|
Mead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release 2015; 223:109-117. [PMID: 26732553 DOI: 10.1016/j.jconrel.2015.12.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022]
Abstract
Gene therapy holds promise for the treatment of many pathologies of the central nervous system (CNS), including brain tumors and neurodegenerative diseases. However, the delivery of systemically administered gene carriers to the CNS is hindered by both the blood-brain barrier (BBB) and the nanoporous and electrostatically charged brain extracelluar matrix (ECM), which acts as a steric and adhesive barrier. We have previously shown that these physiological barriers may be overcome by, respectively, opening the BBB with MR image-guided focused ultrasound (FUS) and microbubbles and using highly compact "brain penetrating" nanoparticles (BPN) coated with a dense polyethylene glycol corona that prevents adhesion to ECM components. Here, we tested whether this combined approach could be utilized to deliver systemically administered DNA-bearing BPN (DNA-BPN) across the BBB and mediate localized, robust, and sustained transgene expression in the rat brain. Systemically administered DNA-BPN delivered through the BBB with FUS led to dose-dependent transgene expression only in the FUS-treated region that was evident as early as 24h post administration and lasted for at least 28days. In the FUS-treated region ~42% of all cells, including neurons and astrocytes, were transfected, while less than 6% were transfected in the contralateral non-FUS treated hemisphere. Importantly, this was achieved without any sign of toxicity or astrocyte activation. We conclude that the image-guided delivery of DNA-BPN with FUS and microbubbles constitutes a safe and non-invasive strategy for targeted gene therapy to the brain.
Collapse
Affiliation(s)
- Brian P Mead
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Panagiotis Mastorakos
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alexander L Klibanov
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, University of Virginia, Charlottesville, VA 22908, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Richard J Price
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
67
|
Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics 2015; 7:275-93. [PMID: 26404357 PMCID: PMC4588200 DOI: 10.3390/pharmaceutics7030275] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/09/2022] Open
Abstract
Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer’s disease is presented.
Collapse
|
68
|
Park K. Opening the blood-brain barrier by focused ultrasound. J Control Release 2015; 212:113. [DOI: 10.1016/j.jconrel.2015.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|