51
|
Castillo-Henríquez L, Vargas-Zúñiga R, Pacheco-Molina J, Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET AND DMPK 2020; 8:325-353. [PMID: 35300196 PMCID: PMC8915594 DOI: 10.5599/admet.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Electrospinning is a novel and sophisticated technique for the production of nanofibers with high surface area, extreme porous structure, small pore size, and surface morphologies that make them suitable for biomedical and bioengineering applications, which can provide solutions to current drug delivery issues of poorly water-soluble drugs. Electrospun nanofibers can be obtained through different methods asides from the conventional one, such as coaxial, multi-jet, side by side, emulsion, and melt electrospinning. In general, the application of an electric potential to a polymer solution causes a charged liquid jet that moves downfield to an oppositely charged collector, where the nanofibers are deposited. Plenty of polymers that differ in their origin, degradation character and water affinity are used during the process. Physicochemical properties of the drug, polymer(s), and solvent systems need to be addressed to guarantee successful manufacturing. Therefore, this review summarizes the recent progress in electrospun nanofibers for their use as a nanotechnological tool for dissolution optimization and drug delivery systems for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
| | - Rolando Vargas-Zúñiga
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jorge Pacheco-Molina
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jose Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000, Heredia, Costa Rica
| |
Collapse
|
52
|
Mašková E, Kubová K, Raimi-Abraham BT, Vllasaliu D, Vohlídalová E, Turánek J, Mašek J. Hypromellose - A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release 2020; 324:695-727. [PMID: 32479845 DOI: 10.1016/j.jconrel.2020.05.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Hydroxypropylmethylcellulose (HPMC), also known as Hypromellose, is a traditional pharmaceutical excipient widely exploited in oral sustained drug release matrix systems. The choice of numerous viscosity grades and molecular weights available from different manufacturers provides a great variability in its physical-chemical properties and is a basis for its broad successful application in pharmaceutical research, development, and manufacturing. The excellent mucoadhesive properties of HPMC predetermine its use in oromucosal delivery systems including mucoadhesive tablets and films. HPMC also possesses desirable properties for formulating amorphous solid dispersions increasing the oral bioavailability of poorly soluble drugs. Printability and electrospinnability of HPMC are promising features for its application in 3D printed drug products and nanofiber-based drug delivery systems. Nanoparticle-based formulations are extensively explored as antigen and protein carriers for the formulation of oral vaccines, and oral delivery of biologicals including insulin, respectively. HPMC, being a traditional pharmaceutical excipient, has an irreplaceable role in the development of new pharmaceutical technologies, and new drug products leading to continuous manufacturing processes, and personalized medicine. This review firstly provides information on the physical-chemical properties of HPMC and a comprehensive overview of its application in traditional oral drug formulations. Secondly, this review focuses on the application of HPMC in modern pharmaceutical technologies including spray drying, hot-melt extrusion, 3D printing, nanoprecipitation and electrospinning leading to the formulation of printlets, nanoparticle-, microparticle-, and nanofiber-based delivery systems for oral and oromucosal application. Hypromellose is an excellent excipient for formulation of classical dosage forms and advanced drug delivery systems. New methods of hypromellose processing include spray draying, hot-melt extrusion, 3D printing, and electrospinning.
Collapse
Affiliation(s)
- Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Kateřina Kubová
- Faculty of Pharmacy, Masaryk University, Brno 625 00, Czech Republic
| | - Bahijja T Raimi-Abraham
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
53
|
Swelling of mucoadhesive electrospun chitosan/polyethylene oxide nanofibers facilitates adhesion to the sublingual mucosa. Carbohydr Polym 2020; 242:116428. [PMID: 32564847 DOI: 10.1016/j.carbpol.2020.116428] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Mucoadhesive chitosan-based electrospun nanofibers are promising candidates for overcoming challenges associated with sublingual drug delivery, yet studies focusing on evaluating the mucoadhesive properties of nanofibers for sublingual administration are limited. The aim was to elucidate the mucoadhesive properties of chitosan/polyethylene oxide (PEO) nanofibers focusing on how the degree of deacetylation (DDA, 53-96 %) of chitosan influenced their morphological and mucoadhesive properties. The mechanism of mucoadhesion was explained by the intermolecular interactions of chitosan with mucin from bovine submaxillary glands using quartz-crystal microbalance with dissipation monitoring and by adhesion of the nanofibers to ex vivo porcine sublingual mucosa. An increase in chitosan DDA improved the morphological stability of the nanofibers in water, but did not contribute to altered mucoadhesive properties. This study demonstrates excellent mucoadhesive properties of chitosan/PEO nanofibers and shows that the strong mucoadhesiveness of the nanofibers is attributed to their swelling ability.
Collapse
|
54
|
Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110756. [PMID: 32279775 DOI: 10.1016/j.msec.2020.110756] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/04/2019] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Transmucosal surfaces bypass many limitations associated with conventional drug delivery (oral and parenteral routes), such as poor absorption rate, enzymatic activity, acidic environment and first-pass metabolism occurring inside the liver. However, these surfaces have several disadvantages such as poor retention time, narrow absorption window and continuous washout of the drug by the surrounding fluids. Electrospun nanofibers with their unique surface properties and encapsulation efficiency may act as novel drug carriers to overcome the challenges associated with conventional drug delivery routes, so as to achieve desired therapeutic responses. This review article provides detailed information regarding the challenges faced in the mucosal delivery of drugs, and the use of nanofiber systems as an alternative to deliver drugs to the systemic circulation, as well as local drug administration. The physiological and anatomical features of different types of mucosal surfaces and current challenges are systematically discussed. We also address future considerations in the area of transmucosal delivery of some important drugs.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
55
|
Hua S. Advances in Nanoparticulate Drug Delivery Approaches for Sublingual and Buccal Administration. Front Pharmacol 2019; 10:1328. [PMID: 31827435 PMCID: PMC6848967 DOI: 10.3389/fphar.2019.01328] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023] Open
Abstract
The sublingual and buccal routes of administration have significant advantages for both local and systemic drug delivery. They have shown to be an effective alternative to the traditional oral route, especially when fast onset of action is required. Drugs can be rapidly and directly absorbed into the systemic circulation via venous drainage to the superior vena cava. Therefore, they are useful for drugs that undergo high hepatic clearance or degradation in the gastrointestinal tract, and for patients that have swallowing difficulties. Drugs administered via the sublingual and buccal routes are traditionally formulated as solid dosage forms (e.g., tablets, wafers, films, and patches), liquid dosage forms (e.g., sprays and drops), and semi-solid dosage forms (e.g., gels). Conventional dosage forms are commonly affected by physiological factors, which can reduce the contact of the formulation with the mucosa and lead to unpredictable drug absorption. There have been a number of advances in formulation development to improve the retention and absorption of drugs in the buccal and sublingual regions. This review will focus on the physiological aspects that influence buccal and sublingual drug delivery and the advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. The clinical development pipeline with formulations approved and in clinical trials will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
56
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
57
|
Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur J Pharm Biopharm 2019; 144:180-192. [PMID: 31550525 DOI: 10.1016/j.ejpb.2019.09.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022]
Abstract
Oromucosal delivery of active pharmaceutical ingredients provides an attractive alternative route of administration, due to avoidance of the first pass effect and improved patient compliance. In the current work, fused deposition modelling (FDM) 3D printing was investigated as an additive manufacturing approach for poly(vinyl alcohol)-based mucoadhesive films, enabling unidirectional drug release. For this purpose, chitosan was incorporated as a permeation and mucoadhesion enhancer whereas ethylcellulose and commercial wafer sheets were evaluated as backing layers. The formulated films were initially assessed for structural integrity and dose uniformity. Solid-state characterization of the films, including thermal methods (DSC, TGA), diffraction (XRPD) and Raman spectroscopy, was implemented to characterize the physicochemical properties of the produced polymeric filaments and buccal films. The mechanical properties of the products were investigated by instrumented indentation and tensile tests. Evaluation of buccal films was assessed in vitro, to study the effect of backing-layer type on hydration capacity of the films, diffusion of the drug throughout the restricting layer and release profiles in simulated saliva. The ex vivo performance of the manufactured products, associated with the presence of chitosan, was investigated by textural analysis for mucoadhesion properties, whereas permeation studies and histological studies were performed across porcine buccal epithelium. The results demonstrated that FDM printing is a timesaving and versatile approach in the context of manufacturing multi-layered mucoadhesive buccal films, providing unidirectional release properties.
Collapse
|
58
|
Wei L, Wu S, Shi W, Aldrich AL, Kielian T, Carlson MA, Sun R, Qin X, Duan B. Large-Scale and Rapid Preparation of Nanofibrous Meshes and Their Application for Drug-Loaded Multilayer Mucoadhesive Patch Fabrication for Mouth Ulcer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28740-28751. [PMID: 31334627 PMCID: PMC7082812 DOI: 10.1021/acsami.9b10379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrospinning provides a simple and convenient method to fabricate nanofibrous meshes. However, the nanofiber productivity is often limited to the laboratory scale, which cannot satisfy the requirements of practical application. In this study, we developed a novel needleless electrospinning spinneret based on a double-ring slit to fabricate drug-loaded nanofibrous meshes. In contrast to the conventional single-needle electrospinning spinneret, our needless spinneret can significantly improve nanofiber productivity due to the simultaneous formation of multiple jets during electrospinning. Curcumin-loaded poly(l-lactic acid) (PLLA) nanofiber meshes with various concentrations and on the large scale were manufactured by employing our developed needleless spinneret-based electrospinning device. We systematically investigated the drug release behaviors, antioxidant properties, anti-inflammatory attributes, and cytotoxicity of the curcumin-loaded PLLA nanofibrous meshes. Furthermore, a bilayer nanofibrous composite mesh was successfully generated by electrospinning curcumin-loaded PLLA solution and diclofenac sodium loaded poly(ethylene oxide) solution in a predetermined time sequence, which revealed potent antibacterial properties. Subsequently, novel mucoadhesive patches were assembled by combining the bilayer composite nanofibrous meshes with (hydroxypropyl)methyl cellulose based mucoadhesive film. The multilayered mucoadhesive patch has excellent adhesion properties on the porcine buccal mucosa. Overall, our double-ring slit spinneret can provide a novel method to rapidly produce large-scale drug-loaded nanofibrous meshes to fabricate mucoadhesive patches. The multiple-layered mucoadhesive patches enable the incorporation of multiple drugs with different targets of action, such as analgesic, anti-inflammatory, and antimicrobial compounds, for mouth ulcer or other oral disease treatments.
Collapse
Affiliation(s)
- Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amy L. Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68516, USA
| |
Collapse
|
59
|
Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Cornejo-Bravo JM. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters' roles. Int J Nanomedicine 2019; 14:5271-5285. [PMID: 31409989 PMCID: PMC6643962 DOI: 10.2147/ijn.s193328] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Electrospun nanofibers have been widely studied for many medical applications. They can be designed with specific features, including mucoadhesive properties. This review summarizes the polymeric scaffolds obtained by the electrospinning process that has been applied for drug release in different mucosal sites such as oral, ocular, gastroenteric, vaginal, and nasal. We analyzed the electrospinning parameters that have to be optimized to create reproducible and efficient mucoadhesive nanofibers, among them are: electrical field, polymer concentration, viscosity, flow rate, needle-collector distance, solution conductivity, solvent, environmental parameters, and electrospinning setup. We also revised the mucoadhesive theories as well as the mucoadhesive properties of the polymers used. This review shows that the most studied mucosal site is the oral cavity, because it is accessible and easy to evaluate, while the rest are uncomfortable for the patient and difficult to assess in vivo. We found problems that need to be solved for mucoadhesive electrospun nanofibers, such as improving adhesion strength and mucosal permanence time, and the design of unidirectional release, multilayer systems for the treatment of several pathologies, to ensure the drug concentration in the tissue or target organ.
Collapse
Affiliation(s)
- Graciela Lizeth Pérez-González
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México.,Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, Baja California 22390, México
| | - Luis Jesús Villarreal-Gómez
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México.,Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, Baja California 22390, México
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Erick José Torres-Martínez
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México.,Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, Baja California 22390, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, Baja California 22390, México
| |
Collapse
|
60
|
Hou C, Yi B, Jiang J, Chang YF, Yao X. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomater Sci 2019; 7:822-835. [PMID: 30540292 DOI: 10.1039/c8bm01197d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this review, we summarize the recent design strategies (2015-present) of nanomaterial-based vaccine delivery systems via multiple routes to induce robust protective immunity. The selected topics are focused on the novel design strategies of nanomaterial carriers for vaccine delivery. Inspired by recent advances, we also briefly introduce the emerging administration routes that may give rise to synergistic immune effects with advanced delivery systems. Ultimately, we present the existing challenges and survey the prospective development of various nanoparticle vaccine delivery systems.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | | | | | | | | |
Collapse
|
61
|
Chen J, Duan H, Pan H, Yang X, Pan W. Two types of core/shell fibers based on carboxymethyl chitosan and Sodium carboxymethyl cellulose with self-assembled liposome for buccal delivery of carvedilol across TR146 cell culture and porcine buccal mucosa. Int J Biol Macromol 2019; 128:700-709. [DOI: 10.1016/j.ijbiomac.2019.01.143] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
|
62
|
Montero P, Mosquera M, Marín-Peñalver D, Alemán A, Martínez-Álvarez Ó, Gómez-Guillén MC. Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
64
|
Pinheiro A, Silva AM, Teixeira JH, Gonçalves RM, Almeida MI, Barbosa MA, Santos SG. Extracellular vesicles: intelligent delivery strategies for therapeutic applications. J Control Release 2018; 289:56-69. [PMID: 30261205 DOI: 10.1016/j.jconrel.2018.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EV), in particular exosomes, have been the object of intense research, due to their potential to mediate intercellular communication, modulating the phenotype of target cells. The natural properties and functions of EV are being exploited as biomarkers for disease diagnosis and prognosis, and as nano-bio-carriers for the development of new therapeutic strategies. EV have been particularly examined in the field of cancer, but are also increasingly investigated in other areas, like immune-related diseases and regenerative medicine. In this review, the therapeutic use of EV as drug delivery systems is described, balancing the advantages and drawbacks of different routes for their in vivo administration. Systemic and local delivery of EV are discussed, tackling the persisting difficulties in the assessment of their pharmacokinetics, pharmacodynamics and biodistribution in vivo. Finally, we discuss the future perspectives for incorporating EV into delivery systems and their use for an improved and controlled release of EV in vivo.
Collapse
Affiliation(s)
- Alice Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Andreia M Silva
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José H Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria I Almeida
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
65
|
Bashyal S, Seo JE, Keum T, Noh G, Choi YW, Lee S. Facilitated permeation of insulin across TR146 cells by cholic acid derivatives-modified elastic bilosomes. Int J Nanomedicine 2018; 13:5173-5186. [PMID: 30233179 PMCID: PMC6135218 DOI: 10.2147/ijn.s168310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Buccal delivery of insulin is still a challenging issue for the researchers due to the presence of permeability barrier (buccal mucosa) in the buccal cavity. The main objective of this study was to investigate the safety, effectiveness, and potential of various liposomes containing different bile salts to improve the permeation of insulin across in vitro TR146 buccal cell layers. METHODS Elastic bilosomes containing soy lecithin and bile salt edge activators (sodium cholate [SC], sodium taurocholate [STC], sodium glycocholate [SGC], sodium deoxyglycocholate [SDGC], or sodium deoxytaurocholate [SDTC]) were fabricated by thin-film hydration method. The prepared liposomes were characterized, and in vitro permeation studies were performed. The fluorescein isothiocyanate-insulin-loaded elastic bilosomes were used to evaluate the quantitative and qualitative cellular uptake studies. RESULTS The prepared elastic bilosomes had a particle size and an entrapment efficiency of ~140-150 nm and 66%-78%, respectively. SDGC-lipo (SDGC-incorporated liposome) was observed to be the most superior with an enhancement ratio (ER) of 5.24 (P<0.001). The SC-incorporated liposome (SC-lipo) and SDTC-incorporated liposome (SDTC-lipo) also led to a significant enhancement with ERs of 3.20 and 3.10 (P<0.05), respectively, compared with insulin solution. These results were further supported by quantitative and qualitative cellular uptake studies performed employing fluorescence-activated cell sorting analysis and confocal microscopy, respectively. The relative median fluorescence intensity values of elastic bilosomes were counted in the order of SDGC-lipo > SC-lipo > SDTC-lipo > SGC-incorporated liposome > STC-incorporated liposome, and similarity in the permeability profile of the employed elastic bilosomes was noted. CONCLUSION This study presents the employment of various derivatives of cholic acid-loaded elastic bilosomes as a promising strategy to enhance the permeation of insulin through buccal route.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea,
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea,
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea,
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea,
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea,
| |
Collapse
|
66
|
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
- Chemical Faculty; Gdansk University of Technology; Gdańsk Poland
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| | - Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
| | | | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| |
Collapse
|
67
|
Chen J, Pan H, Yang Y, Xiong S, Duan H, Yang X, Pan W. Self-assembled liposome from multi-layered fibrous mucoadhesive membrane for buccal delivery of drugs having high first-pass metabolism. Int J Pharm 2018; 547:303-314. [DOI: 10.1016/j.ijpharm.2018.05.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
|
68
|
Bartheldyová E, Effenberg R, Mašek J, Procházka L, Knötigová PT, Kulich P, Hubatka F, Velínská K, Zelníčková J, Zouharová D, Fojtíková M, Hrebík D, Plevka P, Mikulík R, Miller AD, Macaulay S, Zyka D, Drož L, Raška M, Ledvina M, Turánek J. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem 2018; 29:2343-2356. [PMID: 29898364 DOI: 10.1021/acs.bioconjchem.8b00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Lubomír Procházka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavlína Turánek Knötigová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Jaroslava Zelníčková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Darina Zouharová
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology CEITEC, Structural Virology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center of St. Anne's University Hospital Brno , 656 91 Brno , Czech Republic
| | - Andrew D Miller
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| | - Stuart Macaulay
- Malvern Instruments , Great Malvern WR14 1XZ , United Kingdom
| | - Daniel Zyka
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Ladislav Drož
- APIGENEX s.r.o. , Poděbradská 173/5 , Prague 9 , 190 00 , Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic.,Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry , Palacky University Olomouc , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds , University of Chemistry and Technology , Technická 5 , 166 28 Prague 6, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy , Veterinary Research Institute, v.v.i. , Hudcova 70 , 621 00 Brno , Czech Republic
| |
Collapse
|
69
|
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101:112-123. [PMID: 29329977 DOI: 10.1016/j.peptides.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed.
Collapse
Affiliation(s)
- Patrícia Batista
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Pedro M Castro
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Manuela Pintado
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
| |
Collapse
|
70
|
Dolci LS, Liguori A, Panzavolta S, Miserocchi A, Passerini N, Gherardi M, Colombo V, Bigi A, Albertini B. Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids Surf B Biointerfaces 2018; 163:73-82. [DOI: 10.1016/j.colsurfb.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023]
|
71
|
Nazari K, Kontogiannidou E, Haj Ahmad R, Andreadis D, Rasekh M, Bouropoulos N, van Der Merwe SM, Chang MW, Fatouros DG, Ahmad Z. Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Taipaleenmäki EM, Mouritzen SA, Schattling PS, Zhang Y, Städler B. Mucopenetrating micelles with a PEG corona. NANOSCALE 2017; 9:18438-18448. [PMID: 29159350 DOI: 10.1039/c7nr06821b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crossing the intestinal mucus layer is a long-standing challenge for orally delivered nanoparticles carrying therapeutic cargo. We report the assembly of mucopenetrating cargo-loaded micelles using block copolymers consisting of either linear poly(ethylene glycol) (PEG) or bottle-brush poly(oligo(ethylene glycol)methacrylate) (PEGb) as the hydrophilic block and poly(caprolactone) (PCL) or poly(cholesteryl methacrylate) (PCMA) as the hydrophobic extension. The micelles were shown to preserve their stability and retain ∼50% of their cargo in simulated gastric fluid. The ability of micelles to diffuse through reconstituted porcine mucus was assessed in a microfluidic set-up. Finally, the delivery of Nile Red as a hydrophobic model cargo across a mucus layer produced by epithelial cells was demonstrated. These engineered mucopenetrating micelles have potential to be developed into efficient absorption enhancers, contributing a nanotechnology solution to oral drug delivery.
Collapse
Affiliation(s)
- Essi M Taipaleenmäki
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
73
|
Wang L, Zhou Y, Wu M, Wu M, Li X, Gong X, Chang J, Zhang X. Functional nanocarrier for drug and gene delivery via local administration in mucosal tissues. Nanomedicine (Lond) 2017; 13:69-88. [PMID: 29173025 DOI: 10.2217/nnm-2017-0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local administration has many advantages for treating diseases. However, the surface mucus layer becomes a major obstacle that easily traps and fast removes local administrated drugs and genes in mucosal tissues. Fortunately, the rapidly developing nanocarriers with special physical and chemical properties may help to refine the treatment of mucosal tissues via delivering drugs and genes to the target tissue, and prolong the drug action time. Therefore, this review focuses on the strategies to apply different nanocarriers for drug-delivery in mucosal tissues, including mucoadhesive and mucus-penetrating types. Delivering drugs and genes to anatomical sites with high mucus turnover becomes more feasible and effective, and maintains sufficient local drug concentration to improve treatment efficacy.
Collapse
Affiliation(s)
- Lingwei Wang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Yurui Zhou
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Minghao Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
74
|
Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264:247-275. [DOI: 10.1016/j.jconrel.2017.09.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
|
75
|
Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 2017; 36:22-28. [PMID: 28800417 DOI: 10.1016/j.coph.2017.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
Buccal delivery of macromolecules (biologics) sets a great challenge for researchers. Although several niche small molecule products have been approved as simple sprays, tablets and oral films, it is not simply a case of adapting existing technologies to biologics. Buccal delivery of insulin has reached clinical trials with two approaches: oromucosal sprays of the peptide with permeation enhancers, and embedded gold nanoparticles in a dissolvable film. However, neither of these approaches have led to FDA approvals likely due to poor efficacy, submaximal peptide loading in the dosage form, and to wide intra-subject variability in pharmacokinetics and pharmacodynamics. It is likely however that printed film designs with lower molecular weight stable biotech payloads including lipophilic glucagon-like 1 (GLP-1) agonists and macrocycles with long half-lives will generate greater efficacy than was achieved to date for insulin.
Collapse
Affiliation(s)
- Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
76
|
Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromol Biosci 2017; 17. [PMID: 28675773 DOI: 10.1002/mabi.201700060] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/07/2017] [Indexed: 12/20/2022]
Abstract
Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed.
Collapse
Affiliation(s)
- Philipp Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
77
|
Drug delivery techniques for buccal route: formulation strategies and recent advances in dosage form design. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0281-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|