51
|
Han C, Yang C, Li X, Liu E, Meng X, Liu B. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chem 2022; 368:130859. [PMID: 34425339 DOI: 10.1016/j.foodchem.2021.130859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
DHA loaded nanoliposomes, stabilized by β-sitosterol, were prepared by thin film hydration-sonication method. The characteristics and membranes properties of DHA-NLs with different β-sitosterol content were measured. The samples with the same formulation were used to measure the resistance of environment stress and controlled release & absorption of DHA in vitro and in vivo. The results showed that the maximal encapsulation efficiency of DHA-NLs was (86.95 ± 0.95)%, when the ratio of soybean lecithin to β-sitosterol was 5:1. The particle size of all samples was within 200 nm and relative retention rate was more than 60% after 3 weeks storage. The area under the curve of DHA concentration of DHA-NLs and DHA-emulsion groups was 1.32 and 1.08, respectively. In summary, the nanoliposomes were promising to improve the absorption of DHA in form of ethyl ester.
Collapse
Affiliation(s)
- Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
52
|
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Aqueous Environments: A Review. Foods 2022; 11:317. [PMID: 35159470 PMCID: PMC8834023 DOI: 10.3390/foods11030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
The provitamin A activity of β-carotene is of primary interest to address one of the world's major malnutrition concerns. β carotene is a fat-soluble compound and its bioavailability from natural sources is very poor. Hence, studies have been focused on the development of specific core/shell micro- or nano-structures that encapsulate β-carotene in order to allow its dispersion in liquid systems and improve its bioavailability. One key objective when developing these structures is also to accomplish β-carotene stability. The aim of this review is to collect kinetic data (rate constants, activation energy) on the degradation of encapsulated β-carotene in order to derive knowledge on the possibility for these systems to be scaled-up to the industrial production of functional foods. Results showed that most of the nano- and micro-structures designed for β-carotene encapsulation and dispersion in the water phase provide better protection with respect to a natural matrix, such as carrot juice, increasing the β-carotene half-life from about 30 d to more than 100 d at room temperature. One promising approach to increase β-carotene stability was found to be the use of wall material, surfactants, or co-encapsulated compounds with antioxidant activity. Moreover, a successful approach was the design of structures, where the core is partially or fully solidified; alternatively, either the core or the interface or the outer phase are gelled. The data collected could serve as a basis for the rational design of structures for β-carotene encapsulation, where new ingredients, especially the extraordinary natural array of hydrocolloids, are applied.
Collapse
Affiliation(s)
- Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
53
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
54
|
AMORIM IS, ALMEIDA MCS, CHAVES RPF, CHISTÉ RC. Technological applications and color stability of carotenoids extracted from selected Amazonian fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.01922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
55
|
Srihera N, Li Y, Zhang TT, Wang YM, Yanagita T, Waiprib Y, Xue CH. Preparation and Characterization of Astaxanthin-loaded Liposomes Stabilized by Sea Cucumber Sulfated Sterols Instead of Cholesterol. J Oleo Sci 2022; 71:401-410. [DOI: 10.5650/jos.ess21233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nattha Srihera
- College of Food Science and Engineering, Ocean University of China
| | - Yue Li
- College of Food Science and Engineering, Ocean University of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University
| | - Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University
| | - Chang-Hu Xue
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| |
Collapse
|
56
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
57
|
Sun J, Wei Z, Xue C. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34657544 DOI: 10.1080/10408398.2021.1989661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astaxanthin (AST) is classified as a kind of carotenoid with bright red color, powerful antioxidant activity as well as a range of health benefits. AST-based functional foods present a new thought of healthy diets with both the enhancement of food color and incorporation of nutrients. However, the poor water solubility, easy oxidation, light instability, thermal instability and peculiar smell excessively restrict its application in the food industry. In this review, common bio-based materials for various AST delivery systems suitable for different food products are highlighted. Moreover, characteristics of different delivery systems and current applications in food products are also compared and summarized. This review provides some ideas on the research trends and applications of AST delivery systems in food. The joint use of two or more materials can significantly enhance the stability of delivery systems. All of the encapsulation systems slow down the degradation of AST to a certain extent and can be applied to different food systems. However, studies and applications are still focused on emulsions and microcapsules with unsatisfactory odor masking effects. In the future, diverse AST-loaded delivery systems with high encapsulation efficacy, good stability, odor masking effects and cost-effective preparation technologies will be the major research trends.
Collapse
Affiliation(s)
- Jialin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
58
|
Soleimanifar M, Jafari SM, Assadpour E, Mirarab A. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Casanova F, Pereira CF, Ribeiro AB, Freixo R, Costa E, E. Pintado M, Fernandes JC, Ramos ÓL. Novel Micro- and Nanocellulose-Based Delivery Systems for Liposoluble Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2593. [PMID: 34685034 PMCID: PMC8540299 DOI: 10.3390/nano11102593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications.
Collapse
Affiliation(s)
| | - Carla F. Pereira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| | | | | | | | | | | | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| |
Collapse
|
60
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
Li D, Zhang Q, Huang L, Chen Z, Zou C, Ma Y, Cao MJ, Liu GM, Liu Y, Wang Y. Fabricating hydrophilic particles with oleic acid and bovine serum albumin to improve the dispersibility and bioaccessibility of fucoxanthin in water. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106752] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
62
|
Kuroiwa T, Kawauchi Y, Moriyoshi R, Shino H, Suzuki T, Ichikawa S, Kobayashi I, Uemura K, Kanazawa A. Biocompatible homogeneous particle formation via the self-complexation of chitosan with oleic acid and its application as an encapsulation material for a water-insoluble compound. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Santos PDDF, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. Microencapsulation of carotenoid-rich materials: A review. Food Res Int 2021; 147:110571. [PMID: 34399544 DOI: 10.1016/j.foodres.2021.110571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids are natural pigments that present several bioactive properties, including antioxidant, anticarcinogenic and provitamin A activities. However, these compounds are susceptible to degradation when exposed to a number of conditions (e.g. light, heat, oxygen), leading to loss of benefits and hampering their application in food products. Their hydrophobicity also makes incorporation into water-based foods more difficult. Microencapsulation techniques have been applied for decades to provide stability to carotenoid-rich extracts under typical conditions of processing and storage of foods, besides offering several other advantages to the use and application of these materials. This work reviews the recent advances in the microencapsulation of carotenoid-rich extracts, oils and oleoresins from varying sources, evidencing the technologies applied to encapsulate these materials, the effects of encapsulation on the obtained particles, and the impact of such processes on the bioaccessibility and release profile of carotenoids from microparticles. Moreover, recent applications of carotenoid-rich microparticles in food products are discussed. Most of the applied processes were effective in improving different aspects of the encapsulated materials, especially the stability of carotenoids during storage, resulting in microparticles with promising properties for future applications in food products. However, the lack of information about the effects of microencapsulation on carotenoids during processing of model foods, the sensory acceptance of enriched food products and the bioaccessibility and bioavailability of microencapsulated carotenoids reveals gaps that should be explored in the future.
Collapse
Affiliation(s)
- Priscila Dayane de Freitas Santos
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Fernanda Thaís Vieira Rubio
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
64
|
Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106663] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Tahir A, Shabir Ahmad R, Imran M, Ahmad MH, Kamran Khan M, Muhammad N, Nisa MU, Tahir Nadeem M, Yasmin A, Tahir HS, Zulifqar A, Javed M. Recent approaches for utilization of food components as nano-encapsulation: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Niaz Muhammad
- National Agriculture Education College, Kabul, Afghanistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Adeela Yasmin
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hafiza Saima Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Aliza Zulifqar
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Miral Javed
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
66
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
67
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
68
|
Zhang L, Yu D, Regenstein JM, Xia W, Dong J. A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
69
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
70
|
Elkholy NS, Shafaa MW, Mohammed HS. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166150. [PMID: 33892079 DOI: 10.1016/j.bbadis.2021.166150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022]
Abstract
The present study investigated the efficacy of cationic liposome-encapsulated carotenoids (lutein or beta-carotene) as a treatment in an animal model of fibromyalgia (FM). Preparation and characterization of the nano-sized cationic liposomal carotenoids have been carried out. FM has been induced in the experimental animals via successive subcutaneous reserpine injection (1 mg/kg). Animals were divided into four groups; control, reserpinized (Res), reserpinized and cationic liposomal lutein-treated (Res + CL-Lut), and reserpinized and liposomal beta-carotene-treated (Res + CL-Bc). Levels of norepinephrine (NE), dopamine (DA), and serotonin (5-HT), and oxidative stress markers (MDA, H2O2, NO, and GSH) were determined in the brain's cortical tissue of the different groups of animals. Furthermore, the spectral analysis of the electrocorticogram (ECoG) was carried out. Animal behavior was tested for different animal groups. Results showed a significant reduction in monoamines, an elevation of oxidative stress markers, a shift in the ECoG frequency band power, and a change in pain threshold of the reserpinized animals. A return to a non-significant difference from the control values of all the measured parameters has been obtained after two weeks of cationic liposomal carotenoid preparations treatment. The present findings shed more light on the validity of the reserpine model of FM and provide evidence for the antidepressant, antioxidant, and anti-nociceptive potential of the cationic liposomal carotenoids. The present results proofed that the natural product preparations on a nano-sized scale could be a good alternative to the pharmacological interventions for FM treatment.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
71
|
John‐Herpin A, Kavungal D, von Mücke L, Altug H. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006054. [PMID: 33615570 PMCID: PMC11469153 DOI: 10.1002/adma.202006054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Insights into the fascinating molecular world of biological processes are crucial for understanding diseases, developing diagnostics, and effective therapeutics. These processes are complex as they involve interactions between four major classes of biomolecules, i.e., proteins, nucleic acids, carbohydrates, and lipids, which makes it important to be able to discriminate between all these different biomolecular species. In this work, a deep learning-augmented, chemically-specific nanoplasmonic technique that enables such a feat in a label-free manner to not disrupt native processes is presented. The method uses a highly sensitive multiresonant plasmonic metasurface in a microfluidic device, which enhances infrared absorption across a broadband mid-IR spectrum and in water, despite its strongly overlapping absorption bands. The real-time format of the optofluidic method enables the collection of a vast amount of spectrotemporal data, which allows the construction of a deep neural network to discriminate accurately between all major classes of biomolecules. The capabilities of the new method are demonstrated by monitoring of a multistep bioassay containing sucrose- and nucleotides-loaded liposomes interacting with a small, lipid membrane-perforating peptide. It is envisioned that the presented technology will impact the fields of biology, bioanalytics, and pharmacology from fundamental research and disease diagnostics to drug development.
Collapse
Affiliation(s)
- Aurelian John‐Herpin
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Deepthy Kavungal
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Lea von Mücke
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Hatice Altug
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
72
|
|
73
|
Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021; 26:1547. [PMID: 33799855 PMCID: PMC7999092 DOI: 10.3390/molecules26061547] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The design of functional foods has grown recently as an answer to rising consumers' concerns and demands for natural, nutritional and healthy food products. Nanoencapsulation is a technique based on enclosing a bioactive compound (BAC) in liquid, solid or gaseous states within a matrix or inert material for preserving the coated substance (food or flavor molecules/ingredients). Nanoencapsulation can improve stability of BACs, improving the regulation of their release at physiologically active sites. Regarding materials for food and nutraceutical applications, the most used are carbohydrate-, protein- or lipid-based alternatives such as chitosan, peptide-chitosan and β-lactoglobulin nanoparticles (NPs) or emulsion biopolymer complexes. On the other hand, the main BACs used in foods for health promoting, including antioxidants, antimicrobials, vitamins, probiotics and prebiotics and others (minerals, enzymes and flavoring compounds). Nanotechnology can also play notable role in the development of programmable food, an original futuristic concept promising the consumers to obtain high quality food of desired nutritive and sensory characteristics.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Vigo, Ourense, Spain
| |
Collapse
|
74
|
Maurya VK, Shakya A, Aggarwal M, Gothandam KM, Bohn T, Pareek S. Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants (Basel) 2021; 10:426. [PMID: 33802152 PMCID: PMC8001630 DOI: 10.3390/antiox10030426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | - Amita Shakya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| | - Manjeet Aggarwal
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| |
Collapse
|
75
|
A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
76
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
77
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
78
|
Supercritical CO 2 Extraction and Microencapsulation of Lycopene-Enriched Oleoresins from Tomato Peels: Evidence on Antiproliferative and Cytocompatibility Activities. Antioxidants (Basel) 2021; 10:antiox10020222. [PMID: 33540878 PMCID: PMC7913214 DOI: 10.3390/antiox10020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Tomato peels are used as a valuable material to extract lycopene-rich oleoresins by supercritical CO2 extraction. The extraction involves continuous circling of CO2 to the extractor after removing the solute in the separators, S40 and S45, where the solvent power of the CO2 is reduced by reducing pressure down to 20 MPa in S40 and 5 MPa in S45, respectively, leading to two extracts. Lycopene is found to be the major compound, representing 93% and 76% of the total carotenoids in S40 and S45 extracts, respectively. The two extracts are microencapsulated in whey protein concentrate and acacia gum by complex coacervation and freeze-drying, leading to corresponding P40 and P45 powders, with antioxidant activity of 8.57 ± 0.74 and 9.37 ± 0.48 mMol TEAC/g DW in P40 and P45, respectively. Different structural and morphological patterns are observed, with finer microparticles of 1–2 µm in P45. Both powders show dose and time-dependent antiproliferative activity. The half-maximal inhibitory concentration values are 100 µg/mL for P40 and 750 µg/mL for P45 sample, indicating a higher antiproliferative effect of P40 over P45 in HT-29 cell culture. The powders have an extended range of cytocompatibility, up to 1000 µg/mL, in L929 normal cells, stimulating the cell growth. Lycopene retention is tested, and values of 48% and 29% in P40 and P45 are found after 21 days at 25 °C, with the degradation rate in P45 significantly higher, due to the higher content of the surface lycopene, which favored its degradation.
Collapse
|
79
|
Gardouh AR, Ewedah TM, Abd-Allah FI, Ghorab MM, Omran MM, El-Sawy HS. Enhanced efficacy, cellular uptake, and antiangiogenic activity of the optimized imatinib mesylate-loaded proniosomal-derived nanovesicles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
80
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
81
|
Koklesova L, Liskova A, Samec M, Zhai K, Abotaleb M, Ashrafizadeh M, Brockmueller A, Shakibaei M, Biringer K, Bugos O, Najafi M, Golubnitschaja O, Büsselberg D, Kubatka P. Carotenoids in Cancer Metastasis-Status Quo and Outlook. Biomolecules 2020; 10:E1653. [PMID: 33321708 PMCID: PMC7763577 DOI: 10.3390/biom10121653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis represents a major obstacle in cancer treatment and the leading cause of cancer-related deaths. Therefore, the identification of compounds targeting the multi-step and complex process of metastasis could improve outcomes in the management of cancer patients. Carotenoids are naturally occurring pigments with a plethora of biological activities. Carotenoids exert a potent anti-cancer capacity in various cancer models in vitro and in vivo, mediated by the modulation of signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of the epithelial-mesenchymal transition and regulatory molecules, such as matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), urokinase plasminogen activator (uPA) and its receptor (uPAR), hypoxia-inducible factor-1α (HIF-1α), and others. Moreover, carotenoids modulate the expression of genes associated with cancer progression and inflammatory processes as key mediators of the complex process involved in metastasis. Nevertheless, due to the predominantly preclinical nature of the known anti-tumor effects of carotenoids, and unclear results from certain carotenoids in specific cancer types and/or specific parts of the population, a precise analysis of the anti-cancer effects of carotenoids is essential. The identification of carotenoids as effective compounds targeting the complex process of cancer progression could improve the outcomes of advanced cancer patients.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran;
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar; (K.Z.); (M.A.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
82
|
Exploring the effects of carrier oil type on in vitro bioavailability of β-carotene: A cell culture study of carotenoid-enriched nanoemulsions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
83
|
Qiu S, Wang X, Liu X, Wang X, Amuti A, Zan M, Guo D, Wang Z. Tracking in vitro digestion and in vivo metabolism of water-in-oil-in-water microemulsion as a delivery carrier for α-linolenic acid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
84
|
Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct 2020; 11:9338-9358. [PMID: 33151231 DOI: 10.1039/d0fo02176h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in marine brown algae. The potential therapeutic effects of fucoxanthin on tumor intervention have been well documented, which have aroused great interests in utilizing fucoxanthin in functional foods and nutraceuticals. However, the utilization of fucoxanthin as a nutraceutical in food and nutrient supplements is currently limited due to its low water solubility, poor stability, and limited bioaccessibility. Nano/micro-encapsulation is a technology that can overcome these challenges. A systematic review on the recent progresses in nano/micro-delivery systems to encapsulate fucoxanthin in foods or nutraceuticals is warranted. This article starts with a brief introduction of fucoxanthin and the challenges of oral delivery of fucoxanthin. Nano/micro-encapsulation technology is then covered, including materials and strategies for constructing the delivery system. Finally, future prospective has been discussed on properly designed oral delivery systems of fucoxanthin for managing cancer. Natural edible materials such as whey protein, casein, zein, gelatin, and starch have been successfully utilized to fabricate lipid-based, gel-based, or emulsion-based delivery systems, molecular nanocomplexes, and biopolymer nanoparticles with the aid of advanced processing techniques, such as freeze-drying, high pressure homogenization, sonication, anti-solvent precipitation, coacervation, ion crosslinking, ionic gelation, emulsification, and enzymatic conjugation. These formulated nano/micro-capsules have proven to be effective in stabilizing and enhancing the bioaccessibility of fucoxanthin. This review will inspire a surge of multidisciplinary research in a broader community of foods and motivate material scientists and researchers to focus on nano/micro-encapsulated fucoxanthin in order to facilitate the commercialization of orally-deliverable tumor intervention products.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | | | | | | | | |
Collapse
|
85
|
Huguet-Casquero A, Gainza E, Pedraz JL. Towards Green Nanoscience: From extraction to nanoformulation. Biotechnol Adv 2020; 46:107657. [PMID: 33181241 DOI: 10.1016/j.biotechadv.2020.107657] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology has revolutionized many biotechnological sectors, from bioengineering to medicine, passing through food and cosmetic fields. However, their clinic and industrial application has been into the spotlight due to their safety risk and related side effects. As a result, Green Nanoscience/Nanotechnology emerged as a strategy to prevent any associated nanotoxicity, via implementation of sustainable processes across the whole lifecycle of nanoformulation. Notwithstanding its success across inorganic nanoparticles, the green concept for organic nanoparticle elaboration is still at its infancy. This, coupled with the organic nanoparticles being the most commonly used in biomedicine, highlights the need to implement specific green principles for their elaboration. In this review, we will discuss the possible green routes for the proper design of organic nanoparticles under the umbrella of Green Nanoscience: from the extraction of nanomaterials and active compounds to their final nanoformulation.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Eusebio Gainza
- Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
86
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
87
|
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
89
|
Mohammadian E, Alizadeh‐Sani M, Jafari SM. Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr Rev Food Sci Food Saf 2020; 19:2885-2931. [DOI: 10.1111/1541-4337.12635] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Esmaeil Mohammadian
- Department of Medicinal Chemistry, School of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mahmood Alizadeh‐Sani
- Department of Food Safety and Hygiene, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
90
|
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr Rev Food Sci Food Saf 2020; 19:3266-3322. [DOI: 10.1111/1541-4337.12653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
91
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
92
|
Li S, Mu B, Wang X, Kang Y, Wang A. Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4649. [PMID: 33080985 PMCID: PMC7603274 DOI: 10.3390/ma13204649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Eco-friendly betanin/clay minerals hybrid materials with good stability were synthesized by combining with adsorption, grinding, and heating treatment using natural betanin extracted from beetroot and natural 2:1 type palygorskite or 1:1 type halloysite. After incorporation of clay minerals, the thermal stability and solvent resistance of natural betanin were obviously enhanced. Due to the difference in the structure of palygorskite and halloysite, betanin was mainly adsorbed on the outer surface of palygorskite or halloysite through hydrogen-bond interaction, but also part of them also entered into the lumen of Hal via electrostatic interaction. Compared with palygorskite, hybrid materials prepared with halloysite exhibited the better color performance, heating stability and solvent resistance due to the high loading content of betanin and shielding effect of lumen of halloysite.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (S.L.); (X.W.); (Y.K.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (S.L.); (X.W.); (Y.K.)
- Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| | - Xiaowen Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (S.L.); (X.W.); (Y.K.)
- Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (S.L.); (X.W.); (Y.K.)
- Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (S.L.); (X.W.); (Y.K.)
- Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| |
Collapse
|
93
|
A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules 2020; 25:molecules25184067. [PMID: 32899907 PMCID: PMC7570536 DOI: 10.3390/molecules25184067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
As it exhibits no provitamin A activity, the dietary intake of zeaxanthin is not considered essential. However, its contribution to ocular health has long been acknowledged. Numerous publications emphasize the importance of zeaxanthin alongside lutein in ocular diseases such as cataracts and age-related macular degeneration which constitute an important health concern, especially among the elderly. Considering that the average dietary ratio of lutein to zeaxanthin favors the first, more bioaccessible food sources of zeaxanthin that can hinder the development and progression of the above-mentioned disorders are of great interest. In this paper, a brief overview of the more recent state of knowledge as regards dietary sources together with their respective zeaxanthin bioaccessibility assessed through a standardized in vitro digestion method was provided.
Collapse
|
94
|
Jalali-Jivan M, Garavand F, Jafari SM. Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds. Adv Colloid Interface Sci 2020; 283:102227. [PMID: 32781299 DOI: 10.1016/j.cis.2020.102227] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Bioactive components possess various functionalities and are most interested for different food, nutraceutical and pharmaceutical formulations. The current review will discuss the preparation methods and fabrication techniques to design microemulsions (MEs) for the solubilization, separation, encapsulation and purification of various agro-food bioactive compounds. ME systems have shown suitable potential in enhancing oil recovery, protein extraction, and isolation of bioactive compounds. Moreover, the capability of ME based systems as drug and nutraceutical delivery cargos, and synthesis of various organic and inorganic nanoparticles, especially using biopolymers, will be investigated. ME liquid membranes are also developed as nano-extractor/nano-reactor vehicles, capable of simultaneous extraction, encapsulation or even synthesis of hydrophilic and lipophilic bioactive compounds for food, nutraceutical and drug applications.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Food Colloids and Rheology Lab, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
95
|
Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf B Biointerfaces 2020; 193:111057. [DOI: 10.1016/j.colsurfb.2020.111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 04/12/2020] [Indexed: 01/14/2023]
|
96
|
Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Compr Rev Food Sci Food Saf 2020; 19:2862-2884. [PMID: 33337033 DOI: 10.1111/1541-4337.12623] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Oral bioavailability is the key to the bioefficiency of food bioactive ingredients; it evaluates the relationship between foods and their health benefits. The analysis of the main factors limiting the oral bioavailability (bioaccessibility, absorption, and transformation) has led to the proposal of classification systems for pharmaceuticals and nutraceuticals (Biopharmaceuticals Classification System and Nutraceutical Bioavailability Classification Scheme). Based on the relevant studies published in the last decade, this review presents the essential aspects regarding the factors limiting the oral bioavailability of the biocomponents and different in vitro methods used to investigate the mechanisms involved in the digestion, absorption, and metabolism of biocomponents, particularly encapsulated bioactive compounds. Oral bioavailability investigated by in vitro studies provides the food and drug manufacturers with information to formulate delivery systems more efficiently and to determine the dosage of biocomponents for increase the health benefits and avoid or reduce the risk of toxicity.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
97
|
A. Chaves M, Franckin V, Sinigaglia‐Coimbra R, Pinho SC. Nanoliposomes coencapsulating curcumin and vitamin D
3
produced by hydration of proliposomes: Effects of the phospholipid composition in the physicochemical characteristics of vesicles and after incorporation in yoghurts. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matheus A. Chaves
- Department of Food Engineering Laboratory of Encapsulation and Functional Foods (LEnAlis) School of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte 225 Pirassununga SP 13635‐000 Brazil
| | - Vinicius Franckin
- Department of Food Engineering Laboratory of Encapsulation and Functional Foods (LEnAlis) School of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte 225 Pirassununga SP 13635‐000 Brazil
| | - Rita Sinigaglia‐Coimbra
- Electron Microscopy Center Federal University of São Paulo Rua Botucatu 862 São Paulo SP 04023‐062 Brazil
| | - Samantha C. Pinho
- Department of Food Engineering Laboratory of Encapsulation and Functional Foods (LEnAlis) School of Animal Science and Food Engineering University of São Paulo Av. Duque de Caxias Norte 225 Pirassununga SP 13635‐000 Brazil
| |
Collapse
|
98
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|
99
|
Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar Drugs 2020; 18:md18080406. [PMID: 32752203 PMCID: PMC7459837 DOI: 10.3390/md18080406] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a carotenoid produced by different organisms and microorganisms such as microalgae, bacteria, yeasts, protists, and plants, and it is also accumulated in aquatic animals such as fish and crustaceans. Astaxanthin and astaxanthin-containing lipid extracts obtained from these sources present an intense red color and a remarkable antioxidant activity, providing great potential to be employed as food ingredients with both technological and bioactive functions. However, their use is hindered by: their instability in the presence of high temperatures, acidic pH, oxygen or light; their low water solubility, bioaccessibility and bioavailability; their intense odor/flavor. The present paper reviews recent advances in the micro/nanoencapsulation of astaxanthin and astaxanthin-containing lipid extracts, developed to improve their stability, bioactivity and technological functionality for use as food ingredients. The use of diverse micro/nanoencapsulation techniques using wall materials of a different nature to improve water solubility and dispersibility in foods, masking undesirable odor and flavor, is firstly discussed, followed by a discussion of the importance of the encapsulation to retard astaxanthin release, protecting it from degradation in the gastrointestinal tract. The nanoencapsulation of astaxanthin to improve its bioaccessibility, bioavailability and bioactivity is further reviewed. Finally, the main limitations and future trends on the topic are discussed.
Collapse
|
100
|
Dima C, Assadpour E, Dima S, Jafari SM. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit Rev Food Sci Nutr 2020; 61:3031-3065. [PMID: 32691612 DOI: 10.1080/10408398.2020.1792409] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanofoods is a current concept that is based on the application of nanotechnologies in the preparation of safe foods, with superior nutritional and sensory characteristics, and capable of providing multiple health benefits. In line with the principles of this concept, food scientists have focused on developing new types of nano biosystems that can contribute to increasing the bioavailability of bioactive compounds used in food fortification. Numerous research teams have investigated the main factors limiting oral bioavailability including: bioaccessibility, absorption and transformation of bioactive compounds and bioactive-loaded nanocarriers. The physicochemical processes involved in the factors limiting oral bioavailability have been extensively studied, such asthe release, solubility and interaction of bioactive compounds and nanocarriers during food digestion, transport mechanisms of bioactive compounds and nanoparticles through intestinal epithelial cells as well as the chemical and biochemical transformations in phase I and phase II reactions. In this comprehensive review, the physicochemical processes involved in the bioaccessibility/bioavailability of different encapsulated bioactive compounds, that play an important role in human health, will be explained including polyphenols, phytosterols, carotenoids, vitamins and minerals. In particular, the mechanisms involved in the cellular uptake of bioactive-loaded nanocarriers including transcellular transport (diffusion, endocytosis, pinocytosis, transcytosis, phagocytosis), paracellular transport (through the "tight junctions" between epithelial cells), and the active transport of bioactive compounds under the action of membrane transporters are highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|