51
|
Mista CA, Salomoni SE, Graven-Nielsen T. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions. J Electromyogr Kinesiol 2013; 24:37-45. [PMID: 24321699 DOI: 10.1016/j.jelekin.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/12/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
The aim of this study was to quantify the effects of spatial reorganisation of muscle activity on task-related and tangential components of force variability during sustained contractions. Three-dimensional forces were measured from isometric elbow flexion during submaximal contractions (50s, 5-50% of maximal voluntary contraction (MVC)) and total excursion of the centre of pressure was extracted. Spatial electromyographic (EMG) activity was recorded from the biceps brachii muscle. The centroids of the root mean square (RMS) EMG and normalised mutual information (NMI) maps were computed to assess spatial muscle activity and spatial relationship between EMG and task-related force variability, respectively. Result showed that difference between the position of the centroids at the beginning and at the end of the contraction of the RMS EMG and the NMI maps were different in the medial-lateral direction (P<0.05), reflecting that muscle regions modulate their activity without necessarily modulating the contribution to the task-related force variability over time. Moreover, this difference between shifts of the centroids was positively correlated with the total excursion of the centre of pressure at the higher levels of contractions (>30% MVC, R(2)>0.30, P<0.05), suggesting that changes in spatial muscle activity could impact on the modulation of tangential forces. Therefore, within-muscle adaptations do not necessarily increase force variability, and this interaction can be quantified by analysing the RMS EMG and the NMI map centroids.
Collapse
Affiliation(s)
- Christian A Mista
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Sauro E Salomoni
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Thomas Graven-Nielsen
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark.
| |
Collapse
|
52
|
Vieira TMM, Minetto MA, Hodson-Tole EF, Botter A. How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane? Hum Mov Sci 2013; 32:753-67. [PMID: 23992638 PMCID: PMC3791398 DOI: 10.1016/j.humov.2013.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/14/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Abstract
Ankle movements in the frontal plane are less prominent though not less relevant than movements in the plantar or dorsal flexion direction. Walking on uneven terrains and standing on narrow stances are examples of circumstances likely imposing marked demands on the ankle medio-lateral stabilization. Following our previous evidence associating lateral bodily sways in quiet standing to activation of the medial gastrocnemius (MG) muscle, in this study we ask: how large is the MG contribution to ankle torque in the frontal plane? By arranging stimulation electrodes in a selective configuration, current pulses were applied primarily to the MG nerve branch of ten subjects. The contribution of populations of MG motor units of progressively smaller recruitment threshold to ankle torque was evaluated by increasing the stimulation amplitude by fixed amounts. From smallest intensities (12–32 mA) leading to the firstly observable MG twitches in force-plate recordings, current pulses reached intensities (56–90 mA) below which twitches in other muscles could not be observed from the skin. Key results showed a substantial MG torque contribution tending to rotate upward the foot medial aspect (ankle inversion). Nerve stimulation further revealed a linear relationship between the peak torque of ankle plantar flexion and inversion, across participants (Pearson R > .81, p < .01). Specifically, regardless of the current intensity applied, the peak torque of ankle inversion amounted to about 13% of plantar flexion peak torque. Physiologically, these results provide experimental evidence that MG activation may contribute to stabilize the body in the frontal plane, especially under situations of challenged stability.
Collapse
Affiliation(s)
- Taian M M Vieira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Brazil; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Italy.
| | | | | | | |
Collapse
|
53
|
Liu P, Liu L, Martel F, Rancourt D, Clancy EA. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions. J Electromyogr Kinesiol 2013; 23:1020-8. [PMID: 23932797 DOI: 10.1016/j.jelekin.2013.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
Electromyogram (EMG)-torque modeling is of value to many different application areas, including ergonomics, clinical biomechanics and prosthesis control. One important aspect of EMG-torque modeling is the ability to account for the joint angle influence. This manuscript describes an experimental study which relates the biceps/triceps surface EMG of 12 subjects to elbow torque at seven joint angles (spanning 45-135°) during constant-posture, quasi-constant-torque contractions. Advanced EMG amplitude (EMGσ) estimation processors (i.e., whitened, multiple-channel) were investigated and three non-linear EMGσ-torque models were evaluated. When EMG-torque models were formed separately for each of the seven distinct joint angles, a minimum "gold standard" error of 4.23±2.2% MVCF90 resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so (i.e., parameterized the angle dependence), achieved an error of 4.17±1.7% MVCF90. Results demonstrated that advanced EMGσ processors lead to improved joint torque estimation. We also contrasted models that did vs. did not account for antagonist muscle co-contraction. Models that accounted for co-contraction estimated individual flexion muscle torques that were ∼29% higher and individual extension muscle torques that were ∼68% higher.
Collapse
Affiliation(s)
- Pu Liu
- Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | | | |
Collapse
|
54
|
Redundancy or heterogeneity in the electric activity of the biceps brachii muscle? Added value of PCA-processed multi-channel EMG muscle activation estimates in a parallel-fibered muscle. J Electromyogr Kinesiol 2013; 23:892-8. [DOI: 10.1016/j.jelekin.2013.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 11/20/2022] Open
|
55
|
Botter A, Vieira TMM, Loram ID, Merletti R, Hodson-Tole EF. A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles. J Appl Physiol (1985) 2013; 115:1203-14. [PMID: 23908313 PMCID: PMC3798813 DOI: 10.1152/japplphysiol.00090.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Application of two-dimensional surface electrode arrays can provide a means of mapping motor unit action potentials on the skin surface above a muscle. The resulting muscle tissue displacement can be quantified, in a single plane, using ultrasound (US) imaging. Currently, however, it is not possible to simultaneously map spatio-temporal propagation of activation and resulting tissue strain. In this paper, we developed and tested a material that will enable concurrent measurement of two-dimensional surface electromyograms (EMGs) with US images. Specific protocols were designed to test the compatibility of this new electrode material, both with EMG recording and with US analysis. Key results indicate that, for this new electrode material, 1) the electrode-skin impedance is similar to that of arrays of electrodes reported in literature; 2) the reflection of US at the electrode-skin interface is negligible; 3) the likelihood of observing missing contacts, short-circuits, and artifacts in EMGs is not affected by the US probe; 4) movement of tissues sampled by US can be tracked accurately. We, therefore, conclude this approach will facilitate multimodal imaging of muscle to provide new spatio-temporal information regarding electromechanical function of muscle. This is relevant to basic physiology-biomechanics of active and passive force transmission through and between muscles, of motor unit spatio-temporal activity patterns, of their variation with architecture and task-related function, and of their adaptation with aging, training-exercise-disuse, neurological disease, and injury.
Collapse
Affiliation(s)
- A Botter
- Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy
| | | | | | | | | |
Collapse
|
56
|
Gallina A, Ritzel CH, Merletti R, Vieira TMM. Do surface electromyograms provide physiological estimates of conduction velocity from the medial gastrocnemius muscle? J Electromyogr Kinesiol 2012; 23:319-25. [PMID: 23265664 DOI: 10.1016/j.jelekin.2012.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 11/18/2022] Open
Abstract
Muscle fiber conduction velocity (CV) is commonly estimated from surface electromyograms (EMGs) collected with electrodes parallel to muscle fibers. If electrodes and muscle fibers are not located in parallel planes, CV estimates are biased towards values far over the physiological range. In virtue of their pinnate architecture, the fibers of muscles such as the gastrocnemius are hardly aligned in planes parallel to surface electrodes. Therefore, in this study we investigate whether physiological CV estimates can be obtained from the gastrocnemius muscle. Specifically, with a large grid of 16×8 electrodes we map CV estimates over the whole gastrocnemius muscle while eleven subjects exerted isometric plantar flexions at three different force levels. CV was estimated for couples of single differential EMGs and estimate locations (i.e., channels) were classified as physiological and non-physiological, depending on whether CV estimates were within the physiological range (3-6ms(-1)) or not. Physiological CV values could be estimated from a markedly small muscle region for eight participants; channels providing physiological CV estimates corresponded to about 5% of the total number of channels. As expected, physiological and non-physiological channels were clustered in distinct regions. CV estimates within the physiological range were obtained for the most distal gastrocnemius portion (ANOVA, P<0.001), where occurrences of propagating potentials were often verified through visual analysis. For the first time, this study shows that CV might be reliably assessed from surface EMGs collected from the most distal gastrocnemius region.
Collapse
Affiliation(s)
- Alessio Gallina
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Italy
| | | | | | | |
Collapse
|
57
|
Rojas-Martínez M, Mañanas MA, Alonso JF. High-density surface EMG maps from upper-arm and forearm muscles. J Neuroeng Rehabil 2012; 9:85. [PMID: 23216679 PMCID: PMC3575258 DOI: 10.1186/1743-0003-9-85] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 11/29/2012] [Indexed: 11/25/2022] Open
Abstract
Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG), these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze differences due to type of task and effort level. Results Significant differences were observed between EMG signal power obtained from single bipolar configuration and HD-EMG and better results regarding the identification of tasks and effort levels were obtained with the latter. Additionally, average maps for a population of 12 subjects were obtained and differences in the co-activation pattern of muscles were found not only from variables related to the intensity of the maps but also to their spatial distribution. Conclusions Intensity and spatial distribution of HD-EMG maps could be useful in applications where the identification of movement intention and its strength is needed, for example in robotic-aided therapies or for devices like powered- prostheses or orthoses. Finally, additional data transformations or other features are necessary in order to improve the performance of tasks identification.
Collapse
Affiliation(s)
- Monica Rojas-Martínez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | | | | |
Collapse
|
58
|
Gallina A, Merletti R, Gazzoni M. Uneven spatial distribution of surface EMG: what does it mean? Eur J Appl Physiol 2012; 113:887-94. [PMID: 23001682 DOI: 10.1007/s00421-012-2498-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022]
Abstract
The aim of this work is to show how changes in surface electromyographic activity (sEMG) during a repetitive, non-constant force contraction can be detected and interpreted on the basis of the amplitude distribution provided by high-density sEMG techniques. Twelve healthy male subjects performed isometric shoulder elevations, repeating five times a force ramp profile up to 25 % of the maximal voluntary contraction (MVC). A 64-electrode matrix was used to detect sEMG from the trapezius muscle. The sEMG amplitude distribution was obtained for the force levels in the range 5-25 % MVC with steps of 5 % MVC. The effect of force level, subject, electrode position and ramp repetition on the sEMG amplitude distribution was tested. The sEMG amplitude was significantly smaller in the columns of the electrode grid over the tendons (repeated measures ANOVA, p < 0.01). The barycentre of the distribution of sEMG amplitude was subject-specific (Kruskal-Wallis test, p < 0.01), and shifted caudally with the increase of force levels and cranially with the repetition of the motor task (both p < 0.01, repeated measures ANOVA). The results are discussed in terms of motor unit recruitment in different muscle sub-portions. It is concluded that the sEMG amplitude distribution obtained by multichannel techniques provides useful information in the study of muscle activity, and that changes in the spatial distribution of the recruited motor units during a force varying isometric contraction might partially explain the variability observed in the activation pattern of the upper trapezius muscle.
Collapse
Affiliation(s)
- Alessio Gallina
- Laboratory for Engineering of the Neuromuscular System, LISiN, Politecnico di Torino, Torino, Italy.
| | | | | |
Collapse
|
59
|
Hodson-Tole EF, Loram ID, Vieira TMM. Myoelectric activity along human gastrocnemius medialis: different spatial distributions of postural and electrically elicited surface potentials. J Electromyogr Kinesiol 2012; 23:43-50. [PMID: 22967836 PMCID: PMC3566583 DOI: 10.1016/j.jelekin.2012.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/03/2022] Open
Abstract
It has recently been shown that motor units in human medial gastrocnemius (MG), activated during standing, occupy relatively small territories along the muscle's longitudinal axis. Such organisation provides potential for different motor tasks to produce differing regional patterns of activity. Here, we investigate whether postural control and nerve electrical stimulation produce equal longitudinal activation patterns in MG. Myoelectric activity, at different proximal-distal locations of MG, was recorded using a linear electrode array. To ensure differences in signal amplitude between channels did not result from local, morphological factors two experimental protocols were completed: (i) quiet standing; (ii) electrical stimulation of the tibial nerve. Averaged, rectified values (ARVs) were calculated for each channel in each condition. The distribution of signals along electrode channels was described using linear regression and differences between protocols at each channel determined as the ratio between mean ARV from standing: stimulation protocols. Ratio values changed systematically across electrode channels in seven (of eight) participants, with larger values in distal channels. The distribution of ARV along MG therefore differed between experimental conditions. Compared to fibres of units activated during MG nerve stimulation, units activated during standing may have a tendency to be more highly represented in the distal muscle portion.
Collapse
Affiliation(s)
- Emma F Hodson-Tole
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| | | | | |
Collapse
|
60
|
Nugent MM, Stapley PJ, Milner TE. Independent activation in adjacent lumbar extensor muscle compartments. J Electromyogr Kinesiol 2012; 22:531-9. [PMID: 22554499 DOI: 10.1016/j.jelekin.2012.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022] Open
|
61
|
Salomoni SE, Graven-Nielsen T. Muscle fatigue increases the amplitude of fluctuations of tangential forces during isometric contractions. Hum Mov Sci 2012; 31:758-71. [DOI: 10.1016/j.humov.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/05/2011] [Accepted: 08/21/2011] [Indexed: 11/26/2022]
|
62
|
Identification of isometric contractions based on High Density EMG maps. J Electromyogr Kinesiol 2012; 23:33-42. [PMID: 22819519 DOI: 10.1016/j.jelekin.2012.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022] Open
Abstract
Identification of motion intention and muscle activation strategy is necessary to control human-machine interfaces like prostheses or orthoses, as well as other rehabilitation devices, games and computer-based training programs. Pattern recognition from sEMG signals has been extensively investigated in the last decades, however, most of the studies did not take into account different strengths and EMG distributions associated to the intended task. The identification of such quantities could be beneficial for the training of the subject or the control of assistive devices. Recent studies have shown the need to improve pattern-recognition classification by reducing sensitivity to changes in the exerted strength, muscle-electrode shifts and bad contacts. Surface High Density EMG (HD-EMG) obtained from 2-dimensional arrays can provide much more information than electrode pairs for inferring not only motion intention but also the strategy adopted to distribute the load between muscles as well as changes in the spatial distribution of motor unit action potentials within a single muscle because of it. The objectives of this study were: (a) the automatic identification of four isometric motor tasks associated with the degrees of freedom of the forearm: flexion-extension and supination-pronation and (b) the differentiation among levels of voluntary contraction at low-medium efforts. For this purpose, monopolar HD-EMG maps were obtained from five muscles of the upper-limb in healthy subjects. An original classifier is proposed, based on: (1) Two steps linear discriminant analysis of the EMG information for each type of contraction, and (2) features extracted from HD-EMG maps and related to its intensity and distribution in the 2D space. The classifier was trained and tested with different effort levels. Spatial distribution-based features by themselves are not sufficient to classify the type of task or the effort level with an acceptable accuracy; however, when calculated with the "isolated masses" method proposed in this study and combined with intensity-base features, the performance of the classifier is improved. The classifier is capable of identifying the tasks even at 10% of Maximum Voluntary Contraction, in the range of effort level developed by patients with neuromuscular disorders, showing that intention end effort of motion can be estimated from HD-EMG maps and applied in rehabilitation.
Collapse
|
63
|
Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural activation pattern in human rectus femoris muscle. J Electromyogr Kinesiol 2012; 22:251-8. [DOI: 10.1016/j.jelekin.2011.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022] Open
|
64
|
Miyamoto N, Wakahara T, Kawakami Y. Task-dependent inhomogeneous muscle activities within the bi-articular human rectus femoris muscle. PLoS One 2012; 7:e34269. [PMID: 22479583 PMCID: PMC3313973 DOI: 10.1371/journal.pone.0034269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022] Open
Abstract
The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion.
Collapse
Affiliation(s)
- Naokazu Miyamoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | | | |
Collapse
|
65
|
Sousa ASP, Santos R, Oliveira FPM, Carvalho P, Tavares JMRS. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support. Proc Inst Mech Eng H 2012; 226:397-405. [DOI: 10.1177/0954411912439671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force of one limb affects the muscle activity required by the medial gastrocnemius of the contralateral limb during step-to-step transition. Thirty-five subjects were monitored as to the medial gastrocnemius electromyographic activity of one limb and the ground reaction force of the contralateral limb during double support. After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the medial gastrocnemius electromyographic activity of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of ground reaction force of the non-dominant leg (r = 0.797, p < 0.0001; r = –0.807, p < 0.0001). A weak and moderate correlation was observed between the medial gastrocnemius electromyographic activity of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r = 0.442, p = 0.018; r = –0.684 p < 0.0001). The results obtained suggest that during double support, ground reaction force is associated with the electromyographic activity of the contralateral medial gastrocnemius and that there is an increased dependence between the ground reaction force of the non-dominant leg and the electromyographic activity of the dominant medial gastrocnemius.
Collapse
Affiliation(s)
- Andreia SP Sousa
- Área Científica de Fisioterapia, Centro de Estudos de Movimento e Actividade Humana, Escola Superior de Tecnologia da Saúde do Porto, Instituto de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Rubim Santos
- Departamento de Física, Centro de Estudos de Movimento e Actividade Humana, Escola Superior de Tecnologia da Saúde do Porto, Portugal
| | - Francisco PM Oliveira
- Instituto de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Paulo Carvalho
- Departamento de Fisioterapia, Centro de Estudos de Movimento e Actividade Humana, Escola Superior de Tecnologia da Saúde do Porto, Portugal
| | - João Manuel RS Tavares
- Instituto de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal
| |
Collapse
|
66
|
Salomoni SE, Graven-Nielsen T. Experimental muscle pain increases normalized variability of multidirectional forces during isometric contractions. Eur J Appl Physiol 2012; 112:3607-17. [PMID: 22331280 DOI: 10.1007/s00421-012-2343-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
67
|
Wickham JB, Brown JMM. The function of neuromuscular compartments in human shoulder muscles. J Neurophysiol 2012; 107:336-45. [DOI: 10.1152/jn.00049.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to use a surface electromyographic (sEMG) technique with a ballistic isotonic shoulder joint adduction movement to determine the function of the neuromuscular compartments (NMCs) within the pectoralis major, deltoid, and latissimus dorsi muscles. Sixteen male subjects (mean age 22 yr) with no known history of shoulder pathologies volunteered to participate. Timing and intensity of muscle contraction, recorded with 15 pairs of bipolar sEMG electrodes, were compared during performance of 40° coronal-plane ballistic [movement time (MT) < 400 ms] shoulder joint adduction movements. The results suggested that heterogeneous sEMG was present across the breadth of all three muscles, indicating the presence of individual NMCs with significant ( P < 0.05) differences observed within the three muscles in NMC onset, duration, timing of peak NMC intensity, or relative intensity of NMC activation. For example, within the deltoid NMC activation was closely related to moment arm (MA) length with the NMC, with the largest antagonist MA deltoid NMC3 having a late period of activation [antagonist (Ant)] to slow glenohumeral joint (GHJ) rotation and maintain its final joint position [with agonist 2 burst (Ag2)]. The most obvious triphasic EMG patterns (e.g., Ag1-Ant-Ag2) were observed between the first NMCs activated in the two agonist muscles and the last NMC activated in the antagonist deltoid muscle. In conclusion, our findings suggest the presence of in-parallel NMCs within the superficial muscles of the GHJ and show that biomechanical parameters, such as the MA at end-point movement position, influence the function of each NMC and its contribution to alternating patterns of agonist and antagonist muscle activity typical of ballistic movement.
Collapse
Affiliation(s)
- J. B. Wickham
- School of Biomedical Sciences, Charles Sturt University, Orange; and
| | - J. M. M. Brown
- School of Biomedical Science, University of Queensland, St. Lucia, Australia
| |
Collapse
|
68
|
Darby J, Hodson-Tole EF, Costen N, Loram ID. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement. J Appl Physiol (1985) 2011; 112:313-27. [PMID: 22033532 PMCID: PMC3349610 DOI: 10.1152/japplphysiol.00701.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses.
Collapse
Affiliation(s)
- John Darby
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, UK
| | | | | | | |
Collapse
|
69
|
Rantalainen T, Kłodowski A, Piitulainen H. Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction. J Electromyogr Kinesiol 2011; 22:80-7. [PMID: 22019132 DOI: 10.1016/j.jelekin.2011.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/30/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3)years; height 179 (±6)cm; body mass 73 (±6)kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5 columns×13 rows. Force-EMG relationships were determined from individual channels and as the global mean value. The relationship was deemed inconsistent if EMG value did not increase in successive force levels. Root mean squared errors were calculated for 3rd order polynomial fits. All subjects had at least one (4-52) inconsistent channel. Two subjects had inconsistent relationship calculated from the global mean. The mean root mean squared error calculated using leave one out method for the fits of the individual channels (0.33±0.17) was higher (P<0.001) than the error for the global mean fit (0.16±0.08). It seems that the disruption of the physiological signal caused by the innervation zone affects the consistency of the force-EMG relationship on single bipolar channel level. Multichannel EMG recordings used for predicting force overcame this disruption.
Collapse
Affiliation(s)
- Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.
| | | | | |
Collapse
|
70
|
Clancy EA, Liu L, Liu P, Moyer DVZ. Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models. IEEE Trans Biomed Eng 2011; 59:205-12. [PMID: 21968709 DOI: 10.1109/tbme.2011.2170423] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
Collapse
Affiliation(s)
- Edward A Clancy
- Department of Electrical and Computer Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA.
| | | | | | | |
Collapse
|
71
|
Are the myoelectric manifestations of fatigue distributed regionally in the human medial gastrocnemius muscle? J Electromyogr Kinesiol 2011; 21:929-38. [PMID: 21911301 DOI: 10.1016/j.jelekin.2011.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 11/21/2022] Open
Abstract
Myoelectric fatigue typically manifests as variations in the amplitude and spectrum of surface electromyograms (EMGs). Interestingly, these variations seem to be represented locally in different muscles. In this study, we ask whether such a regional distribution of myoelectric fatigue extends to the medial gastrocnemius (MG) muscle. If the MG muscle is activated locally during fatiguing contractions, or if the most fatigable MG fibers are located at distinct muscle regions, then, the myoelectric manifestations of MG fatigue are expected to appear locally in a grid of surface electrodes. With a matrix of surface electrodes (7×15 single-differential EMGs) we show that myoelectric fatigue, indeed, manifests regionally in the MG muscle of 12 subjects, who exerted intermittent, fatiguing plantar flections at 50% of their maximal effort. Contrary to the root mean square amplitude, the median frequency of surface EMGs varied consistently across subjects throughout the plantar flections (P=0.002). On average, changes in EMG spectrum were represented at 78-93 (interquartile interval) out of the 105 channels in the matrix, though with different degrees across channels. For all participants, about 29% of the channels detected significantly greater reductions in median frequency when compared to all channels in the matrix (P<0.003). Strikingly, these channels were not sparsely distributed; they rather occupied localized skin regions across subjects. Physiologically, our results suggest that, during sub-maximal fatiguing tasks, myoelectric manifestations of MG fatigue are represented in spatially localized muscle regions. Technically, the possibility of studying myoelectric fatigue in the MG muscle appears to depend on the electrode location.
Collapse
|
72
|
Pereira GR, de Oliveira LF, Nadal J. Isometric fatigue patterns in time and time-frequency domains of triceps surae muscle in different knee positions. J Electromyogr Kinesiol 2011; 21:572-8. [PMID: 21565529 DOI: 10.1016/j.jelekin.2011.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022] Open
Abstract
The occurrence of fatigue in triceps surae (TS) muscles during sustained plantar flexion contraction is investigated by means of the RMS electromyogram (EMG) and the instantaneous median frequency (IMF) of the short time Fourier transform (STFT). Six male subjects realized a 40% maximal plantar flexion isometric voluntary contraction until fatigue in two knee positions. Electrodes were positioned on gastrocnemius medialis, gastrocnemius lateralis and soleus muscles. The torque (TO) and EMG signals were synchronized. The RMS and the median of the IMF values were obtained, respectively, for each 250 ms and 1s windows of signal. Each signal was segmented into 10 epochs, from which the mean values of IMF, RMS and TO were obtained and submitted to linear regressions to determine parameter trends. Friedman test with the Dunn's post hoc were used to test for differences among muscles activation for each knee position and among slopes of regression curves, as well as to observe changes in TS RMS values over time. The results indicate different activation strategies with the knee extended (KE) in contrast to knee flexed (KF). With the KE, the gastrocnemii showed typical fatigue behavior with significant (p<0.05) IMF reductions and RMS increases over time, while soleus showed concomitant RMS and IMF increases (p<0.05) suggesting an increased soleus contribution to the torque production. With KF, the gastrocnemii were under activated, increasing the role of soleus. Thus, time-frequency analysis represented an important tool for TS muscular fatigue evaluation, allowing differentiates the role of soleus muscle.
Collapse
Affiliation(s)
- Glauber Ribeiro Pereira
- Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, P.O. Box 68510, 21941-972 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
73
|
Mesin L, Merletti R, Vieira TMM. Insights gained into the interpretation of surface electromyograms from the gastrocnemius muscles: A simulation study. J Biomech 2011; 44:1096-103. [PMID: 21334627 DOI: 10.1016/j.jbiomech.2011.01.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 01/29/2023]
Abstract
Interpretation of surface electromyograms (EMG) is usually based on the assumption that the surface representation of action potentials does not change during their propagation. This assumption does not hold for muscles whose fibers are oblique to the skin. Consequently, the interpretation of surface EMGs recorded from pinnate muscles unlikely prompts from current knowledge. Here we present a complete analytical model that supports the interpretation of experimental EMGs detected from muscles with oblique architecture. EMGs were recorded from the medial gastrocnemius muscle during voluntary and electrically elicited contractions. Preliminary indications obtained from simulated and experimental signals concern the spatial localization of surface potentials and the myoelectric fatigue. Specifically, the spatial distribution of surface EMGs was localized about the fibers superficial extremity. Strikingly, this localization increased with the pinnation angle, both for the simulated EMGs and the recorded M-waves. Moreover, the average rectified value (ARV) and the mean frequency (MNF) of interference EMGs increased and decreased with simulated fatigue, respectively. The degree of variation in ARV and MNF did not depend on the pinnation angle simulated. Similar variations were observed for the experimental EMGs, although being less evident for a higher fiber inclination. These results are discussed on a physiological context, highlighting the relevance of the model proposed here for the interpretation of gastrocnemius EMGs and for conceiving future experiments on muscles with pinnate geometry.
Collapse
Affiliation(s)
- Luca Mesin
- Department of Electronics, Politecnico di Torino, Torino, Italy
| | | | | |
Collapse
|
74
|
Yang DD, Hou WS, Wu XY, Zheng XL, Zheng J, Jiang YT. Changes in spatial distribution of flexor digitorum superficialis muscle activity is correlated to finger's action. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:4108-4111. [PMID: 22255243 DOI: 10.1109/iembs.2011.6091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multitendoned extrinsic muscles of the human hand can be divided into several neuromuscular compartments (NMCs), each of which contributes to the ability of human finger to produce independent finger movements or force. The aim of this study was to investigate the changes in the spatial activation of flexor digitorum superficialis (FDS) during the fingertip force production with non-invasive multichannel surface electromyography (sEMG) technique. 7 healthy Subjects were instructed to match the target force level for 5s using individual index finger (I), individual middle finger (M) and the combination of the index and middle finger (IM) respectively. Simultaneously, a 2 × 6 electrode array was employed to record multichannel sEMG from FDS as finger force was produced. The entropy and center of gravity of the sEMG root mean square (RMS) map were computed to assess the spatial inhomogeneity in muscle activation and the change in spatial distribution of EMG amplitude related to the force generation of specific task finger. The results showed that the area and intensity of high amplitude region increased with force production, and the entropy increased with force level under the same task finger. The findings indicate that the change of spatial distribution of multitendoned extrinsic hand muscle activation is correlated to specific biomechanical functions.
Collapse
Affiliation(s)
- D D Yang
- Bioengineering Department, University of Chongqing, Chongqing, Chongqing 400030, China.
| | | | | | | | | | | |
Collapse
|
75
|
Cronin NJ, Peltonen J, Sinkjaer T, Avela J. Neural compensation within the human triceps surae during prolonged walking. J Neurophysiol 2010; 105:548-53. [PMID: 21160002 DOI: 10.1152/jn.00967.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During human walking, muscle activation strategies are approximately constant across consecutive steps over a short time, but it is unknown whether they are maintained over a longer duration. Prolonged walking may increase tendinous tissue (TT) compliance, which can influence neural activation, but the neural responses of individual muscles have not been investigated. This study investigated the hypothesis that muscle activity is up- or down-regulated in individual triceps surae muscles during prolonged walking. Thirteen healthy subjects walked on a treadmill for 60 min at 4.5 km/h, while triceps surae muscle activity, maximal muscle compound action potentials, and kinematics were recorded every 5 min, and fascicle lengths were estimated at the beginning and end of the protocol using ultrasound. After 1 h of walking, soleus activity increased by 9.3 ± 0.2% (P < 0.05) and medial gastrocnemius activity decreased by 9.3 ± 0.3% (P < 0.01). Gastrocnemius fascicle length at ground contact shortened by 4.45 ± 0.99% (P < 0.001), whereas soleus fascicle length was unchanged (P = 0.988). Throughout the stance phase, medial gastrocnemius fascicle lengthening decreased by 44 ± 13% (P < 0.001), whereas soleus fascicle lengthening amplitude was unchanged (P = 0.650). The data suggest that a compensatory neural strategy exists between triceps surae muscles and that changes in muscle activation are generally mirrored by changes in muscle fascicle length. These findings also support the notion of muscle-specific changes in TT compliance after prolonged walking and highlight the ability of the CNS to maintain relatively constant movement patterns in spite of neuromechanical changes in individual muscles.
Collapse
Affiliation(s)
- Neil J Cronin
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | |
Collapse
|
76
|
Vieira TMM, Loram ID, Muceli S, Merletti R, Farina D. Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised? J Physiol 2010; 589:431-43. [PMID: 21115645 DOI: 10.1113/jphysiol.2010.201806] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In cat medial gastrocnemius (MG), fibres supplied by individual motoneurones (muscle units) distribute extensively along the muscle longitudinal axis. In the human MG, the size of motor unit territory is unknown. It is uncertain if the absolute size of muscle unit territory or the size relative to the whole muscle is most comparable with the cat. By comparing intramuscular and surface electromyograms we tested whether muscle units extend narrowly or widely along the human MG muscle. Due to the pennation of the MG, if individual motoneurones supply fibres scattered along the muscle, then action potentials of single motor units are expected to appear sparsely on the surface of the skin. In nine healthy subjects, pairs of wire electrodes were inserted in three locations along the MG muscle (MG60%, MG75% and MG90%). A longitudinal array of 16 surface electrodes was positioned alongside the intramuscular electrodes. While subjects stood quietly, 55 motor units were identified, of which, significantly more units were detected in the most distal sites. The surface action potentials had maximum amplitude at 4.40 ±1.67 (mean±S.D.), 8.02±2.16 and 11.63±2.09 cm (P <0.001) from the most proximal surface electrode, for motor units in the MG60%, MG75% and MG90% locations, respectively. Single motor unit potentials were recorded by five consecutive surface electrodes, at most, indicating that muscle units extend shortly along the MG longitudinal axis. It is concluded that relative to the whole muscle, and compared with the cat, muscle units in human MG are localised. The localisation of muscle units might have implications for the regional control of muscle activity.
Collapse
Affiliation(s)
- Taian M M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
77
|
Vieira TMM, Merletti R, Mesin L. Automatic segmentation of surface EMG images: Improving the estimation of neuromuscular activity. J Biomech 2010; 43:2149-58. [PMID: 20444452 DOI: 10.1016/j.jbiomech.2010.03.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/22/2010] [Accepted: 03/29/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Taian M M Vieira
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, Torino, Italy.
| | | | | |
Collapse
|
78
|
Vieira TMM, Windhorst U, Merletti R. Is the stabilization of quiet upright stance in humans driven by synchronized modulations of the activity of medial and lateral gastrocnemius muscles? J Appl Physiol (1985) 2010; 108:85-97. [DOI: 10.1152/japplphysiol.00070.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A matrix of 120 electromyogram (EMG) electrodes (8 rows and 15 columns) was used to investigate individual activation patterns of the medial (MG) and lateral gastrocnemius (LG) muscles during forward sways of the body in human quiet stance. This matrix was positioned on the right calf of eight subjects after identification of the MG and LG contours with ultrasound scanning. Gray-scale images were generated with the maxima and minima of the cross-correlation function between the envelope of each EMG signal and the body center of pressure (CoP) for individual forward sways. These images were automatically segmented to reduce the data set into representative and local values of EMG-CoP cross-correlation for each muscle. On average, modulations in EMG amplitude preceded the onset of forward sways with a variable timing, with both gastrocnemius muscles being similarly and synchronously modulated in 193 out of 236 sways. Variations in the timing of activation between muscles were less frequent, although consistent across subjects and significantly correlated with changes in the direction and velocity of body sways. Interestingly, the time shift between EMG and CoP traces sometimes varied consistently along different channels of the same column of electrodes, either in proximal-to-distal or distal-to-proximal direction. The variable EMG-CoP cross-correlation delay was not congruent with the delay expected for the propagation of surface potentials along muscle fibers. Comparison of surface EMGs with intramuscular EMGs recorded from six subjects demonstrated that surface potentials provide high spatial selectivity, thus supporting the notion of selective activation of motor units during quiet standing. Hence, the stabilization of the quiet standing posture likely relies on flexible rather than stereotyped mechanisms of control.
Collapse
Affiliation(s)
- Taian M. M. Vieira
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, Torino, Italy
- Biomechanics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Uwe Windhorst
- Consultant to Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, Torino, Italy
| | - Roberto Merletti
- Laboratory for Engineering of the Neuromuscular System, Politecnico di Torino, Torino, Italy
| |
Collapse
|
79
|
Jones-Lush LM, Judkins TN, Wittenberg GF. Arm movement maps evoked by cortical magnetic stimulation in a robotic environment. Neuroscience 2009; 165:774-81. [PMID: 19895875 DOI: 10.1016/j.neuroscience.2009.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/25/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
Abstract
Many neurological diseases result in a severe inability to reach for which there is no proven therapy. Promising new interventions to address reaching rehabilitation using robotic training devices are currently under investigation in clinical trials but the neural mechanisms that underlie these interventions are not understood. Transcranial magnetic stimulation (TMS) may be used to probe such mechanisms quickly and non-invasively, by mapping muscle and movement representations in the primary motor cortex (M1). Here we investigate movement maps in healthy young subjects at rest using TMS in the robotic environment, with the goal of determining the range of TMS accessible movements, as a starting point for the study of cortical plasticity in combination with robotic therapy. We systematically stimulated the left motor cortex of 14 normal volunteers while the right hand and forearm rested in the cradle of a two degree-of-freedom planar rehabilitation robot (IMT). Maps were created by applying 10 stimuli at each of nine locations (3x3 cm(2) grid) centered on the M1 movement hotspot for each subject, defined as the stimulation location that elicited robot cradle movements of the greatest distance. TMS-evoked movement kinematics were measured by the robotic encoders and ranged in magnitude from 0 to 3 cm. Movement maps varied by subject and by location within a subject. However, movements were very consistent within a single stimulation location for a given subject. Movement vectors remained relatively constant (limited to <90 degrees section of the planar field) within some subjects across the entire map, while others covered a wider range of directions. This may be due to individual differences in cortical physiology or anatomy, resulting in a practical limit to the areas that are TMS-accessible. This study provides a baseline inventory of possible TMS-evoked arm movements in the robotic reaching trainer, and thus may provide a real-time, non-invasive platform for neurophysiology based evaluation and therapy in motor rehabilitation settings.
Collapse
Affiliation(s)
- L M Jones-Lush
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
80
|
Staudenmann D, Roeleveld K, Stegeman DF, van Dieën JH. Methodological aspects of SEMG recordings for force estimation--a tutorial and review. J Electromyogr Kinesiol 2009; 20:375-87. [PMID: 19758823 DOI: 10.1016/j.jelekin.2009.08.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022] Open
Abstract
Insight into the magnitude of muscle forces is important in biomechanics research, for example because muscle forces are the main determinants of joint loading. Unfortunately muscle forces cannot be calculated directly and can only be measured using invasive procedures. Therefore, estimates of muscle force based on surface EMG measurements are frequently used. This review discusses the problems associated with surface EMG in muscle force estimation and the solutions that novel methodological developments provide to this problem. First, some basic aspects of muscle activity and EMG are reviewed and related to EMG amplitude estimation. The main methodological issues in EMG amplitude estimation are precision and representativeness. Lack of precision arises directly from the stochastic nature of the EMG signal as the summation of a series of randomly occurring polyphasic motor unit potentials and the resulting random constructive and destructive (phase cancellation) superimpositions. Representativeness is an issue due the structural and functional heterogeneity of muscles. Novel methods, i.e. multi-channel monopolar EMG and high-pass filtering or whitening of conventional bipolar EMG allow substantially less variable estimates of the EMG amplitude and yield better estimates of muscle force by (1) reducing effects of phase cancellation, and (2) adequate representation of the heterogeneous activity of motor units within a muscle. With such methods, highly accurate predictions of force, even of the minute force fluctuations that occur during an isometric and isotonic contraction have been achieved. For dynamic contractions, EMG-based force estimates are confounded by the effects of muscle length and contraction velocity on force producing capacity. These contractions require EMG amplitude estimates to be combined with modeling of muscle contraction dynamics to achieve valid force predictions.
Collapse
Affiliation(s)
- Didier Staudenmann
- Department of Integrative Physiology, Neurophysiology of Movement Laboratory, University of Colorado, Boulder, CO, USA
| | | | | | | |
Collapse
|