51
|
Konno H, Tsukada A. Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Zhang Q, Liu H, Liu F, Ju X, Dinis F, Yu E, Yu Z. Source Identification and Superposition Effect of Heavy Metals (HMs) in Agricultural Soils at a High Geological Background Area of Karst: A Case Study in a Typical Watershed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11374. [PMID: 36141642 PMCID: PMC9517075 DOI: 10.3390/ijerph191811374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Exogenous sources and the superposition effect of HMs in agricultural soils made the idenfication of sources complicated in a karst area. Here, a typical watershed, a research unit of the karst area, was chosen as the study area. The smaller-scale study of watersheds allowed us to obtain more precise results and to guide local pollution control. In this study, sources of HMs in agricultural soil were traced by a CMB model. Superposition effects were studied by spatial analysis of HMs and enrichment factor (EF) and chemical fraction analysis. The average concentrations of Cd, Pb, Cr, Cu, Ni and Zn in surface soils were 8.71, 333, 154, 51.7, 61.5 and 676 mg∙kg-1, respectively, which exceeded their corresponding background values. The main sources of Cd, Pb and Zn in agricultural soil were rock weathering, atmospheric deposition and livestock manure, and their contributions were 47.7%, 31.0% and 21.2% for Cd; 7.63%, 78.7% and 13.4% for Pb; and 17.0%, 52.3% and 28.1% for Zn. Cr mainly derived from atmospheric deposition (73.8%) and rock weathering (20.0%). Cu and Ni mainly came from livestock manure (81.3%) and weathering (87.5%), respectively, whereas contributions of pesticides and fertilizers were relatively limited (no more than 1.04%). Cd, Pb, Zn and Cu were easily enriched in surface soils near the surrounding pollution sources, whereas Cr and Ni were easily enriched in the high-terrain area, where there was less of an impact of anthropogenic activities. The superposition of exogenous sources caused accumulation of Cd, Pb and Zn in topsoil, contaminated the subsoil through leaching and improved bioavailability of Cd and Pb, causing high ecological risk for agricultural production. Therefore, Cd and Pb should be paid more attention in future pollution control.
Collapse
Affiliation(s)
- Qiuye Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hongyan Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Fang Liu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xianhang Ju
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Faustino Dinis
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Enjiang Yu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhi Yu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Research and Design Institute of Environmental Science of Guizhou Province, Guiyang 550081, China
| |
Collapse
|
53
|
Pan Y, Fu Y, Liu S, Ma T, Tao X, Ma Y, Fan S, Dang Z, Lu G. Spatial and temporal variations of metal fractions in paddy soil flooding with acid mine drainage. ENVIRONMENTAL RESEARCH 2022; 212:113241. [PMID: 35390301 DOI: 10.1016/j.envres.2022.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Environmental release of acid mine drainage (AMD) poses a potential threat to the environment and human health due to its high content of heavy metals. The impact of AMD flooding on unpolluted soil leads to serious pollution over time via a complex process, related to the geochemical behavior of toxic metals that so far has only been partially investigated. Here, a soil column study was conducted to investigate the migration of Cu and Cd fractions in unpolluted paddy soil following treatment with AMD collected from the Dabaoshan Mining area. Tessier's sequential extraction was performed to fractionate the metals at various depths over time. After 160 days of experimental flooding, the soil pH stabilized at 2.52 at a column depth of 5 cm. The fractions of Cu and Cd that were highly mobile increased significantly during AMD flooding. For Cd, the latter already occurred on day 67. At a depth of 20 cm, the total content of Cu maximally increased from initially 26.89 mg kg-1 to 696.96 mg kg-1 on day 160, while the content of Cd maximally increased from 0.22 mg kg-1 to 391.30 mg kg-1 on day 67. Reduced partition index analysis conformed that the mobility of both Cu and Cd significantly increased in contaminated soil during continuous AMD flooding. Scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) identified a changed distribution of the elements in the soil, with Fe appearing to have aggregated. The correlation analysis between Cu and Cd in pore water and in different fractions in the soil's solid phase identified a dynamic distribution of these metals in certain geochemical components during their migration. The results of this study contribute to a scientific foundation to describe the geochemical behavior of heavy metals in soil subject to AMD flooding.
Collapse
Affiliation(s)
- Yan Pan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuanqi Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Tengfei Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Sheng Fan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
54
|
de Almeida Ribeiro Carvalho M, Botero WG, de Oliveira LC. Natural and anthropogenic sources of potentially toxic elements to aquatic environment: a systematic literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51318-51338. [PMID: 35614360 DOI: 10.1007/s11356-022-20980-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Potentially toxic elements (PTEs) constitute a class of metals, semimetals, and non-metals that are of concern due to their persistence, toxicity, bioaccumulation, and biomagnification in high concentrations, posing risks to the ecosystem and to human health. A systematic literature review (SLR) was used in this study to identify natural and anthropogenic sources of PTEs for the aquatic environment. The databases consulted were ScienceDirect, Scopus, and Web of Science, in the period 2000-2020, using specific terms and filters. After analyzing the titles, abstracts, and full texts, 79 articles were selected for the SLR, in which 15 sources and 16 PTEs were identified. The main anthropogenic sources identified were mining, agriculture, industries, and domestic effluents, and the main natural sources identified were weathering of rocks and geogenic origin. Some places where environmental remediation studies can be carried out were highlighted such as Guangdong province, in China, presenting values of Cd, Cr, and Cu exceeding the national legislation from drinking water and soil quality, and Ardabil Province, in Iran, presenting values of As, Cr, Cu, Ni, Zn, and Pb exceeding the standard for freshwater sediments of USEPA, among others places. With the results exposed in this work, the government and the competent bodies of each locality will be able to develop strategies and public policies aimed at the main sources and places of contamination, in order to prevent and remedy the pollution of aquatic environments by potentially toxic elements.
Collapse
Affiliation(s)
- Mayara de Almeida Ribeiro Carvalho
- Graduate Program in Planning and Use of Renewable Resources and Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos, Campus Sorocaba, São Paulo, 18052-780, Brazil
| | - Wander Gustavo Botero
- Graduate Program in Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil
| | - Luciana Camargo de Oliveira
- Graduate Program in Planning and Use of Renewable Resources and Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos, Campus Sorocaba, São Paulo, 18052-780, Brazil.
| |
Collapse
|
55
|
Xu D, Shen Z, Dou C, Dou Z, Li Y, Gao Y, Sun Q. Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Sci Rep 2022; 12:9211. [PMID: 35654920 PMCID: PMC9163331 DOI: 10.1038/s41598-022-13140-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Mining activities have increased the accumulation of heavy metals in farmland soil and in food crops. To identify the key soil properties influencing heavy metal bioavailability and accumulation in food crops, 81 crop samples and 81 corresponding agricultural soil samples were collected from rape, wheat, and paddy fields. Heavy metal (copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), iron (Fe), and manganese (Mn)) concentrations in soils and rape, wheat, rice grains were determined using inductively coupled plasma atomic emission spectroscopy, and soil physicochemical properties (pH, organic matter, total nitrogen, total phosphorus, available phosphorus, and available potassium (AK)) were analyzed. Soil extractable metals were extracted using various single extractants (DTPA, EDTA, NH4OAc, NH4NO3, and HCl). The average concentrations of Cu, Zn, Pb, Cd, and Mn in the soil samples all exceeded the local geochemical background value (background values of Cu, Zn, Pb, Cd, and Mn are 43.0, 81.0, 28.5, 0.196, and 616 mg/kg, respectively), and Cd over-standard rate was the highest, at 98%. Furthermore, soil total Cd concentrations (0.1–24.8 mg/kg) of more than 86% of the samples exceeded the soil pollution risk screening value (GB 15618-2018). The sources of Cu, Zn, Pb, Cd, and Mn in soils were mainly associated with mining activities. The key factors influencing heavy metal bioavailability were associated with the types of extractants (complexing agents or neutral salt extractants) and the metals. Cd and Pb concentrations in most wheat and rice grain samples exceeded the maximum allowable Cd and Pb levels in food, respectively, and Cd concentrations in approximately 10% of the rice grain samples exceeded 1.0 mg/kg. Furthermore, rice and wheat grains exhibited higher Cd accumulation capacity than rape grains, and despite the high soil Cd concentrations in the rape fields, the rape grains were safe for consumption. High soil pH and AK restricted Cd and Cu accumulation in wheat grains, respectively. Soil properties seemed to influence heavy metal accumulation in rice grains the most.
Collapse
Affiliation(s)
- Decong Xu
- School of Life Science, Hefei Normal University, Hefei, 230061, China.,School of Resources and Environmental Engineering, Anhui University, Hefei, 230061, China
| | - Zhangjun Shen
- School of Life Science, Hefei Normal University, Hefei, 230061, China
| | - Changming Dou
- Anhui Academy of Environmental Sciences, Hefei, 230061, China
| | - Zhiyong Dou
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230061, China
| | - Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230061, China
| | - Yi Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230061, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230061, China.
| |
Collapse
|
56
|
Waris M, Baig JA, Talpur FN, Kazi TG, Afridi HI. An environmental field assessment of soil quality and phytoremediation of toxic metals from saline soil by selected halophytes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:535-544. [PMID: 35669794 PMCID: PMC9163272 DOI: 10.1007/s40201-022-00800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/03/2022] [Indexed: 05/22/2023]
Abstract
The current study has aims to investigate the soil quality and phytoextraction of cadmium (Cd), chromium (Cr), and lead (Pb) from saline soils using Alhagi maurorum (camelthorn), Tamarix aphylla (saltcedar), Salvadora persica (mustard bush), and Suaeda nigra (bush seep weed). The saline bulk soil, rhizospheric soil, and different parts of selected plants were oxidized using the acid mixture and determined Cd, Cr, and Pb by atomic absorption spectrometry. The bio-concentration factor (BCF) and translocation factor (TF) of also examined. The quality parameters of soil like pH (< 8.5), and electrical conductivity (EC; > 4.00 dS m-1) indicated the soil is saline. The salinity of soil was lower the organic matters, and total nitrogen contents in studied saline bulk soil due to deterioration condition of soils. However, the rhizospheric soil showed the improved quality of saline soil reflected the good phytoextraction of salts from saline soil. The high contents of Cd in roots and shoots (1.02 and 0.65 µg g-1) of Alhagi maurorum, Cr in the roots and shoots (6.20, and 6.75 µg g-1) of Tamarix aphylla and Pb in the roots and shoots (5.63, and 5.75 µg g-1) of Suaeda nigra. The BCF and TF showed the Tamarix aphylla and Alhagi maurorum for Pb, Alhagi maurorum, and Salvadora persica for Cr considered as hyperaccumulator plants. Based on BCF and TF values of Alhagi maurorum, Tamarix aphylla for Cd, and Salvadora persica for Cr and Pb have the efficiency to uptake toxic metals from saline soil. Thus, it can be concluded that selected plant species may have ability for the phytoextraction the Cd, Cr and Pb from saline soil.
Collapse
Affiliation(s)
- Muhammad Waris
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Young Welfare Society, Jamshoro, 76080 Sindh Pakistan
| | - Farah Naz Talpur
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Tasneem Gul Kazi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Hassan Imran Afridi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| |
Collapse
|
57
|
Liu S, Yu F, Zhang J. Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106309. [PMID: 35627845 PMCID: PMC9140992 DOI: 10.3390/ijerph19106309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
While sewage irrigation relieves water shortages in Northern China, its excessive application triggers a series of environmental problems, such as heavy-metal pollution. Soil profile and river sediment profile samples from the sewage irrigation area (SIA) were collected by selecting the farmlands in which sewage irrigation activity has been reported since the 1960s, around Huiji River (HJR) and Huafei River (HFR) in Kaifeng, Henan Province, China, as research areas. In this study, the total amount of heavy metals (Cr, Cd, Pb, Mn, Zn, and Ni) and the heavy-metal speciation analysis using the modified BCR sequential extraction method were used to evaluate the impacts of wastewater on agricultural soils and the potential risk. Furthermore, the least contaminated Cr (VI) was selected for the study of adsorption characteristics to determine the environmental capacity of soils for heavy metals when the composition of wastewater changes under long-term effluent irrigation conditions. The results show that: (1) the concentrations of heavy metals in soil continuously decreased with depth, while the opposite was observed in sediment, reflecting the continuous improvement in water quality over the historical period; (2) In the topsoil, the mean concentrations (mg·kg−1) in rank order are as follows: Mn (588.68) > Zn (284.21) > Pb (99.76) > Cr (76.84) > Ni (34.71) > Cd (3.25), where Cd exceeded the control value by 3.15 times around HFR, and sediment samples also showed higher heavy metal concentrations in HFR than in HJR; (3) Speciation distribution and risk assessment code (RAC) indicate that Mn and Cd were at medium risk and that Cd warrants attention due to its being a non-essential toxic element in humans; (4) The adsorption rates of soil in various layers in different profiles within SIAs for Cr (VI) gradually increased with the increasing initial content of Cr (VI). Among the three isothermal adsorption models, the fit result obtained by the Langmuir equation was superior to those obtained by the Freundlich equation and the linear equation.
Collapse
Affiliation(s)
- Songtao Liu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (S.L.); (J.Z.)
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (S.L.); (J.Z.)
- Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, China
- Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, China
- Correspondence:
| | - Jianuo Zhang
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (S.L.); (J.Z.)
| |
Collapse
|
58
|
Wang H, Zhu R, Dong K, Zhang S, Zhao R, Jiang Z, Lan X. An experimental comparison: Horizontal evaluation of valuable metal extraction and arsenic emission characteristics of tailings from different copper smelting slag recovery processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128493. [PMID: 35739674 DOI: 10.1016/j.jhazmat.2022.128493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
This study comprehensively investigated arsenic's enrichment, distribution, and characteristics in tailings. XRD and SEM-EDS characterized the phase and morphology of tailings from various smelting processes. At the same time, the embedding characteristics of arsenic in the ore phase were analyzed by EPMA. The differences between arsenic's leading ore phase carriers in different recovery processes were found. It was discussed that this phenomenon would be related to the element-binding ability and the precipitation priority of the ore phase. The occurrence state of arsenic was discussed by sequential chemical extraction experiments. The proportion of leachable arsenic is higher than the low-risk limit, whatever which smelting method is adopted, which leads to high environmental risk. In the experiment of comparing the leaching toxicity of tailings by different leaching methods, the arsenic concentration in the leaching solution of tailings recovered by the flotation method exceeds the specified safety range. Although the tailings after reduction smelting did not show high leaching toxicity, a large number of accumulations also would not represent absolute safety.
Collapse
Affiliation(s)
- Hongyang Wang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Rong Zhu
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Kai Dong
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China.
| | - Siqi Zhang
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Civil and Resources Engineering, Beijing 100083, China
| | - Ruimin Zhao
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Zhenqiang Jiang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Xinyi Lan
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Automation and Electrical Engineering, Beijing 100083, China
| |
Collapse
|
59
|
Ecological and Health Risk Assessment of Heavy Metals in Soils from Recycled Lead Smelting Sites. WATER 2022. [DOI: 10.3390/w14091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this study, 258 soil samples were collected to determine the total content and each speciation fraction of chromium (Cr), manganese (Mn), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in the soil by inductively coupled plasma mass spectrometry (ICP-MS), and their potential ecological and human health risks were assessed using the geo-accumulation index (Igeo), risk assessment code (RAC), and health risk assessment. The results showed that: (1) The mean concentrations of heavy metals (HMs) (mg/kg) in the surface soil of the site were in the order of Pb (1921.77) > Mn (598.21) > Zn (162.29) > Cr (84.65) > Cu (15.16) > Cd (1.8), with the mean values of Cd and Pb exceeding the local background values by 164 and 725 times. (2) In the vertical direction, Cr, Mn, and Pb have no tendency to migrate downward; Cd and Zn demonstrate a strong ability to migrate. (3) The bioavailability of Cd is the highest in the surface soil, followed by Mn and Pb; in the soil below a depth of 0.5 m, the prevalent form of HMs is its residual state (F4). (4) The degree of Igeo pollution of each HMs is: Pb > Cd > Zn > Cr = Mn = Cu, where Pb pollutes the environment to an extremely contaminated level and Cd causes heavy pollution thereof. According to the RAC results, Cd in the surface soil poses a high risk to the environment, and Pb and Mn pose a moderate risk; meanwhile, with the increase of depth, the risk posed by Cd and Mn to the ecosystem shows a tendency to increase. Health risk evaluation indicated that respiratory intake was the main pathway affecting the carcinogenic risk (CR) and hazard quotient (HQ) of HMs, where Pb and Cr were the main hazard factors for non-CR and Cr was the main carcinogenic factor. This study can provide scientific guidance and technical support for soil risk control or remediation of HM-contaminated sites.
Collapse
|
60
|
Miler M, Bavec Š, Gosar M. The environmental impact of historical Pb-Zn mining waste deposits in Slovenia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114580. [PMID: 35124317 DOI: 10.1016/j.jenvman.2022.114580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Mining waste deposits (MWDs) represent significant and constant pollution source for the environment worldwide, thus it is very important to identify and diminish their environmental impacts. The aim of this study was to determine long-term environmental impacts and their temporal variations of MWDs in Pb-Zn mining districts in Slovenia and assess stability of potentially harmful element (PHE)-bearing phases in stream water. The results showed that investigated MWDs are important source of PHEs in stream sediments and that PHEs mostly occur as fine-grained and liberated PHE-bearing ore minerals. MWDs have generally stronger impact on sediments of smaller streams draining MWDs and main streams close to their confluences, however, fine-grained PHE-bearing material is transported along major watercourses over long distances causing regional pollution. Main ore minerals are mostly soluble in stream water. However, measured PHE leaching potential of MWDs is negligible. PHE levels in stream waters are thus low, demonstrating that drainage of MWDs predominantly contributes to PHE pollution in solid particulate form. Possible long-term remediation solution that would reduce environmental impact is recovery of metals from fine grain size fractions of MWDs, which could become an effective practice in sustainable management of historical MWDs. However, further studies of MWDs' secondary resource potential, processing technology and evaluation of environmental aspects of extraction are needed.
Collapse
Affiliation(s)
- Miloš Miler
- Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia.
| | - Špela Bavec
- Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia.
| | - Mateja Gosar
- Geological Survey of Slovenia, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
61
|
Vertical Distributions and Bioavailabilities of Heavy Metals in Soil in An-Tea Plantations in Qimen County, China. Processes (Basel) 2022. [DOI: 10.3390/pr10040664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Heavy metals mainly enter tea from the soil. In this study, stratified soil samples were collected, at a depth of 0–60 cm, using a soil drill in An-tea plantations. Speciation of As, Cd, Cr, Cu, Ni, Pb, and Zn was determined using the European Community Bureau of Reference sequential extraction method, and the heavy metal concentrations in the extracts were determined by inductively coupled plasma−mass spectrometry. Compared with other soil layers, the mean Cd, Cu, Pb, and Zn concentrations were highest in the 0–20 cm layer, the Ni concentrations were highest in the 20–40 cm layer, and the As and Cr concentrations were highest in the 40–60 cm layer. The mean contributions of the non-residual fractions, including the acid-soluble, reducible, and oxidizable fractions, to the total concentrations were higher than those of the residual fraction for Cr, Cu, and Ni at all depths in soil from a flat area, as well as for Cd and Zn at all depths in soil from a sloping area. The contributions of non-residual fractions to the total As and Pb concentrations were higher than those of the residual fraction in soil from a depth of 0–20 cm from the flat area and soil from a depth of 20–60 cm from the sloping area. The total heavy metal concentrations correlated well with the acid-soluble fraction and reducible fraction concentrations in soil from 0–40 cm.
Collapse
|
62
|
Heavy Metal(loid)s Pollution of Agricultural Soils and Health Risk Assessment of Consuming Soybean and Wheat in a Typical Non-Ferrous Metal Mine Area in Northeast China. SUSTAINABILITY 2022. [DOI: 10.3390/su14052953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During mining, some of the essential metal(loid)s for plants or humans are discharged into the environment with non-essential metal(loid)s. Thus, comprehensive investigations of their distribution and the health risk of consuming food crops near mines are significant. A total of 26 soils and 25 food crops (soybean grains and wheat grains) were sampled to investigate arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), zinc (Zn), selenium (Se), molybdenum (Mo), and manganese (Mn) in soils and crops in a typical non-ferrous metal mine area in Northeast China. The distribution patterns of soil heavy metal(loid)s and principal component analysis (PCA) results indicated that Cd, Cu, Zn, Mo, and Mn in soils were significantly affected by mining activities and were mainly or partly derived from the mines. Moreover, these soil heavy metal(loid)s (except Se) in the Tongshan copper mine area were attenuated with distance in the downstream direction. The BCF (bioconcentration factor) values of non-essential elements (Se, Hg, Cr, As, Cd, Pb) were relatively lower and positively related to soil nutrients. On the contrary, higher BCF values of essential elements (Cu, Zn, and Mo) and a weak relationship between the BCF of essential elements and soil nutrients were found. The mean Igeo values of soil heavy metal(loid)s indicated that As and Cu were at an unpolluted-to-moderately-polluted level (Igeo > 1), while other heavy metal(loid)s all presented an unpolluted level (Igeo < 1). Nevertheless, some soil samples were obviously polluted (Igeo > 1), such as KQ, D1, D3, D5, D6, and T1. The HQ (hazard quotient) and HI (hazard index) values of As and Mn both exceeded 1, indicating the higher potential health risks of consuming soybean grains and wheat grains for all people groups.
Collapse
|
63
|
Rodríguez L, González-Corrochano B, Medina-Díaz HL, López-Bellido FJ, Fernández-Morales FJ, Alonso-Azcárate J. Does environmental risk really change in abandoned mining areas in the medium term when no control measures are taken? CHEMOSPHERE 2022; 291:133129. [PMID: 34861264 DOI: 10.1016/j.chemosphere.2021.133129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Studies regarding how environmental risk evolves in abandoned mining areas in the medium term have been seldom carried out. The answer to this question is not obvious despite it is essential in order to evaluate the need to take urgent control measures in these areas. Fifty-two samples corresponding to soils (from natural pasture and arable lands) and mine tailings were collected in the surroundings of an old Spanish Pb/Zn mine (San Quintín, Central Spain). Current concentrations of pseudo-total and available metal (loid)s (Pb, Zn, Cd, Cu, As and Ag) were determined and the environmental risk assessment (ERA) was conducted with these data and those corresponding to a sampling previously carried out in 2006. ERA was carried out by calculating the geoaccumulation index (Igeo), the pollution load index (PLI) and the potential ecological risk index (PER). Results demonstrated that Pb and Zn concentrations have increased in the soils of the plots surrounding the mining areas causing a moderate rise in most of the determined pollution indices between 2006 and 2020. It was especially significant in the pastureland areas, with increases up to 17% in the number of soil samples that reached the highest risk classification in 2020 as compared to those taken in 2006. The results obtained here demonstrate that the environmental risk can actually increase in a continuous way in abandoned mining areas despite the closure of the mining operation and the effect of the possible natural attenuation.
Collapse
Affiliation(s)
- Luis Rodríguez
- Chemical Engineering Department, Institute for Chemical and Environmental Technology ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela, S/n, 13071, Ciudad Real, Spain.
| | - Beatriz González-Corrochano
- Department of Physical Chemistry, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| | - Hassay L Medina-Díaz
- Chemical Engineering Department, Institute for Chemical and Environmental Technology ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela, S/n, 13071, Ciudad Real, Spain
| | - Francisco J López-Bellido
- Chemical Engineering Department, Institute for Chemical and Environmental Technology ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela, S/n, 13071, Ciudad Real, Spain
| | - Francisco J Fernández-Morales
- Chemical Engineering Department, Institute for Chemical and Environmental Technology ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela, S/n, 13071, Ciudad Real, Spain
| | - Jacinto Alonso-Azcárate
- Department of Physical Chemistry, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| |
Collapse
|
64
|
Miao F, Zhang Y, Li Y, Lin Q. A synthetic health risk assessment based on geochemical equilibrium simulation and grid spatial interpolation for zinc (II) species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114207. [PMID: 34864417 DOI: 10.1016/j.jenvman.2021.114207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Soil heavy metal pollution has become a global issue involving environmental safety and human health risks. This paper quantified the sources of heavy metals by positive matrix factorization (PMF) model and explored the spatial distribution of heavy metals by means of grid scales, with an industrial site as the study area in Suzhou. The PMF identified four pollution sources of heavy metal in soil, and the quantitative results revealed that industrial activities (33.5%) contributed the most to heavy metals, followed by soil parent materials (30.8%) and agricultural activities (19.7%). Zinc (Zn) was screened out as the targeted metal (TM) through the potential ecological risk assessment, the metal species of which was simulated by the geochemical software PHREEQC. This research aimed to determine the dominant metal species of TM with high-risk levels to realize the transformation of toxic metal species. Herein, according to the morphological evolution of metal species, the activity and concentration of the Zn ion species were obtained for both carcinogenic and non-carcinogenic risk assessment. The evaluation of the optimized human health risk demonstrated that the associated health risk of Zn (II) ions depended predominantly on its metal speciation. Overall, the optimized carcinogenic and non-carcinogenic risk value of Zn2S32- for adults was 2.01E-04 and for children was 1.31, resulting in corresponding hazardous risk to humans, which accounted for high-risk levels of 61.5% and 58.5% for adults and children, respectively. The OHRA method can provide a reference for the decision-making of soil heavy metal pollution and remediation for specific heavy metals in polluted areas.
Collapse
Affiliation(s)
- Fangfang Miao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Qianguo Lin
- Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China; Business School, The University of Edinburgh, Edinburgh, EH8 9JU, UK
| |
Collapse
|
65
|
Yang J, Zhou M, Yu K, Gin KYH, Hassan M, He Y. Heavy metals in a typical city-river-reservoir system of East China: Multi-phase distribution, microbial response and ecological risk. J Environ Sci (China) 2022; 112:343-354. [PMID: 34955217 DOI: 10.1016/j.jes.2021.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide. This study investigated the environmental behaviors and risks of heavy metals in the aquatic environment of a typical system composed of main watersheds in Suzhou and Jinze Reservoir in Shanghai. Results shown that Mn, Zn and Cu were the dominant metals detected in multiple phases. Cd, Mn and Zn were mainly presented in exchangeable fraction and exhibited high bioavailability. Great proportion and high mobility of metals were found in suspended particulate matter (SPM), suggesting that SPM can greatly affect metal multi-phase distribution process. Spatially, city system (CiS) exhibited more serious metal pollution and higher ecological risk than river system (RiS) and reservoir system (ReS) owing to the diverse emission sources. CiS and ReS were regarded as critical pollution source and sink, respectively, while RiS was a vital transportation aisle. Microbial community in sediments exhibited evident spatial variation and obviously modified by exchangeable metals and nutrients. In particular, Bacteroidetes and Firmicutes presented significant positive correlations with most exchangeable metals. Risk assessment implied that As, Sb and Ni in water may pose potential carcinogenic risk to human health. Nevertheless, ReS was in a fairly safe state. Hg was the main risk contributor in SPM, while Cu, Zn, Ni and Sb showed moderate risk in sediments. Overall, Hg, Sb and CiS were screened out as priority metals and system, respectively. More attention should be paid to these priority issues to promote the sustainable development of the watershed.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore
| | - Mingrui Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Muhammad Hassan
- Ecology and Chemical Engineering Department, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russian Federation
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
66
|
Liu N, Liu H, Wu P, Meng W, Li X, Chen X. Distribution characteristics and potential pollution assessment of heavy metals (Cd, Pb, Zn) in reservoir sediments from a historical artisanal zinc smelting area in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14288-14298. [PMID: 34608580 DOI: 10.1007/s11356-021-16824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/26/2021] [Indexed: 05/10/2023]
Abstract
Reservoir sediment contamination with heavy metals produced by mining activities has aroused widespread global concern owing to its potential threat to human health. In this study, the total concentrations and speciation of heavy metals (Cd, Pb, Zn) in the Lexi (LX) and Maoshui (MS) reservoirs around the historical artisanal zinc smelting area in Southwest China were determined, and pollution indices were applied to assess the pollution levels and potential ecological risks of the two reservoirs. The results showed that all the detected samples in the two reservoirs presented significant metal accumulation, especially for Cd, as compared with the soil background values in Guizhou Province. Between the two reservoirs, the vertical distribution characteristics of each metal in sediment columns were similar. The heavy metal concentrations of the three columns in the LX reservoir reached their maxima at 35, 15, and 10 cm and showed a trend of first increasing and then decreasing overall. However, the heavy metal contents of the three columns in the MS reservoir all exhibited wave-like characteristics in the vertical direction, and all of them reached a relatively obvious high point at approximately 5 and 30 cm. The geoaccumulation index (Igeo) and potential ecological risk index (RI) indicated that Cd was strongly enriched and represented the main risk factor, and the pollution level of the MS reservoir was significantly higher than that of the LX reservoir. Furthermore, the effect coefficients (ERMQ) confirmed that the two reservoirs are likely to have toxic impacts on aquatic organisms and need to be controlled and mitigated. The speciation analysis of heavy metals revealed that Cd was primarily in the acid-extractable fraction (69.57%, 68.28%), Pb was chiefly in the reducible fraction (55.24%, 42.18%) and oxidizable fraction (22.60%, 38.02%), and Zn was mainly in the oxidizable fraction (32.54%, 37.65%) in the LX and MS reservoirs, respectively. The ratios of the secondary phase and primary phase (RSP) and risk assessment code (RAC) evaluation demonstrated that Cd in the sediments of the two reservoirs presents a very high potential ecological risk, and Pb and Zn were at medium to high ecological risk levels. This study highlighted that the artisanal zinc smelting activities had caused serious heavy metal pollution in reservoir sediments, posing a threat to the local ecological environment.
Collapse
Affiliation(s)
- Nanting Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Wei Meng
- Guizhou Academy of Geological Survey, Guiyang, 550005, China
| | - Xuexian Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Xue Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
67
|
Nag R, O'Rourke SM, Cummins E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s - A focus on Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149839. [PMID: 34455276 DOI: 10.1016/j.scitotenv.2021.149839] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Elevated human exposure to metals and metalloids (metal(loid)s) may lead to acute sickness and pose a severe threat to human health. The human body is exposed to metal(loid)s principally through food, water, supplements, and (occasionally) air. There are inherent background levels of many metal(loid)s in regional soils as a consequence of geological sources. Baseline levels coupled with anthropogenic sources such as regional application of biosolids may lead to increased levels of certain metal(loid)s in soil, leading to potential transfer to water sources and potential uptake by plants. The latter could potentially transfer into the feed-to-food chain, viz. grazing animals, and bio-transfer to food products resulting in human exposure. This study addresses health concerns due to excessive intake of metal(loid)s by conducting a traditional review of peer-reviewed journals between 2015 and 2019, secondary references and relevant websites. The review identified the most researched metal(loid)s as Cu, Zn, Pb, Cd, Ni, Cr, As, Hg, Mn, Fe in the environment. The potential uptake of metal(loid)s by plants (phytoavailability) is a function of the mobility/retainability of metal(loid)s in the soil, influenced by soil geochemistry. The most critical parameters (including soil pH, soil organic matter, clay content, cation exchange capacity, the capability of decomposition of organic matter by microbes, redox potential, ionic strength) influencing metal(loid)s in soil are reviewed and used as a foundation to build a framework model for ranking metal(loid)s of concern. A robust quantitative risk assessment model is recommended for evaluating risk from individual metal(loid)s based on health-based indices (Daily Dietary Index (DDI), No Observed Adverse Effect Level (NOAEL), and Lowest Observed Adverse Effect Level (LOAEL)). This research proposes a risk assessment framework for potentially harmful metal(loid)s in the environment and highlights where regulation and intervention may be required.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Sharon Mary O'Rourke
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
68
|
de Lima Veloso V, da Silva FBV, Dos Santos NM, do Nascimento CWA. Phytoattenuation of Cd, Pb, and Zn in a Slag-contaminated Soil Amended with Rice Straw Biochar and Grown with Energy Maize. ENVIRONMENTAL MANAGEMENT 2022; 69:196-212. [PMID: 34480611 DOI: 10.1007/s00267-021-01530-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Biochar has attracted interest due to its ability to improve soil fertility, soil carbon, and crop yield. Also, biochar can adsorb metals and render them less bioavailable. We investigated the soil availability, sequential extraction, and maize uptake of Cd, Pb, and Zn in a highly contaminated soil amended with rice straw biochar rates (0.0, 5.0, 10.0, 20.0, and 30.0 Mg ha-1). We hypothesized that biochar application to the soil cultivated with maize attenuates metal toxicity and mobility in slag-polluted soils near an abandoned Pb smelting plant in Brazil. Results showed that applying biochar increased the soil organic carbon, CEC, and P up to 27, 30, and 107, respectively. Plant accumulation of P and N was 104 and 32% higher than control, while aerial and root biomasses were increased by 18 and 23%. The sequential extraction showed that Pb and Zn in the original soil were retained mainly in residual fractions (94 and 87%, respectively), while Cd was mostly allocated in the organic fraction (47%). Biochar rates increased the proportion of Cd in the organic fraction to 85%, while Pb and Zn were redistributed mainly into iron oxides. The Cd, Pb, and Zn bioavailability assessed by DTPA decreased 32% in the biochar-amended soil, reducing plants' metal uptake. The maize biomass increase, metal soil bioavailability decrease, and low metal concentration in shoots driven by biochar indicate that phytoattenuation using rice straw biochar and maize cultivation could reduce risks to humans and the environment in the polluted sites of Santo Amaro.
Collapse
Affiliation(s)
- Venâncio de Lima Veloso
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | | | | |
Collapse
|
69
|
Impact of Small-Scale Mining Activities on Physicochemical Properties of Soils in Dunkwa East Municipality of Ghana. ScientificWorldJournal 2021; 2021:9915117. [PMID: 34873394 PMCID: PMC8643228 DOI: 10.1155/2021/9915117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
The quality of soils in rehabilitated small-scale mined sites needs thorough investigation since a lot of changes do occur. The study assessed the impacts of small-scale mining activities on concentration and distribution of soil physicochemical properties and heavy metals. The soil samples were collected from 120 (50 m × 50 m) plots. The concentrations of soil physicochemical properties (Ca, Mg, Na, N, P, K, and OC and EC) varied significantly (p < 0.05) between unmined and mined soils. However, there were no statistically, significant differences (p < 0.05) observed in the concentrations of Cd, Hg, Pb, As, and Cu between the unmined and mined soils. Despite the generally poor (33.8%) soil quality in the study area, mining activities further reduced it by 24.2%. Soils from mined sites with unfilled/partially filled pits had higher levels of K, Mg, and Na. As mined sites fallow period increased, concentrations of OC and Cd increased, while Ca, Mg, pH, Cu, Pb, and As and value of EC decreased. The number of years that mined land remained fallow, and whether the pits were filled or unfilled during this period should be factored into the mined land rehabilitation processes.
Collapse
|
70
|
Liu Y, Ma Z, Liu G, Jiang L, Dong L, He Y, Shang Z, Shi H. Accumulation risk and source apportionment of heavy metals in different types of farmland in a typical farming area of northern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5177-5194. [PMID: 34115270 DOI: 10.1007/s10653-021-01002-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The types of land used for farmland can greatly influence the source and accumulation risk of heavy metals in soil. However, the apportioning quantitatively the source of soil heavy metals has been studied insufficiently, especially in terms of different types of farmland. In this study, a total of 252 soil samples were taken from dry land, paddy fields and greenhouse fields in the Jinyuan district of Taiyuan city, China, to assess the accumulation risk of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn). The results were then integrated, and source apportionment was evaluated by geospatial analysis, multivariate statistical analysis and positive matrix factorization (PMF). Cr, Cd and Hg were the dominant pollutants in the studied area. Accumulation risk by Cd and Cu was more severe in greenhouse fields than in dry land or paddy fields, whereas As, Hg and Pb had relatively higher accumulation in paddy fields than in dry land or greenhouse fields. Hg was derived mainly from coal combustion by atmospheric precipitation for the three types of farmland. Long-term irrigation using sewage is the main reason for the accumulation of Cu and Ni in dry land soil, Cu and Zn in paddy field soil and Zn in greenhouse soil. Cd in dry land, Cd and Pb in paddy fields and Cd, Cu, Ni and Pb in greenhouse fields were primarily added to soil through fertilization. Sewage irrigation and fertilization were the dominant sources of heavy metals for paddy field (31.3%) and greenhouse field (33.1%), respectively.
Collapse
Affiliation(s)
- Yongbing Liu
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing, 100037, China
| | - Zihui Ma
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Guannan Liu
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Jiang
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People Republic of China, Nanjing, 210042, China
| | - Zhifeng Shang
- Shanxi Jingtianhuize Environmental Protection Technology Co., Ltd., Taiyuan, 030012, China
| | - Huading Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| |
Collapse
|
71
|
Zhao Q, He J, Yan X, Li C, Li J, Li Y, Tian S, Huang J, Ning P. Formation Process of Silicate-Iron Oxyhydroxide Complex and Its Influence on the Distribution of Heavy Metals in Mining Area. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:990-995. [PMID: 34195860 DOI: 10.1007/s00128-021-03300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Silicate-iron oxyhydroxide complex formed by mineral weathering has an important influence on the geochemical reactions of heavy metals in mining areas. In this work, tailings were collected from an abandoned iron tailings pond, and the physicochemical properties and distribution of heavy metals were studied under natural weathering and hydraulic processes. The results showed that Fe2+ in the iron tailings were transported to the surface during the weathering process, and then the iron oxyhydroxide formed by mineralization adsorbed Cu2+ and Zn2+. Silicic acid and exchangeable acid were released during the formation of binary agglomerates between hydroxy iron oxide and kaolin, then they migrated to the lower area of a tailing pond via surface runoff. Finally, silicate-iron oxyhydroxide complex were formed. The heavy metals were replaced by H+ and penetrated to the bottom layer with water. This research provides an important scientific basis for the prevention and control of heavy metal pollution in mining areas.
Collapse
Affiliation(s)
- Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Jiangtao He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Xinrui Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - YingJie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China
| |
Collapse
|
72
|
Terrones-Saeta JM, Suárez-Macías J, Bernardo-Sánchez A, Álvarez de Prado L, Menéndez Fernández M, Corpas-Iglesias FA. Treatment of Soil Contaminated by Mining Activities to Prevent Contamination by Encapsulation in Ceramic Construction Materials. MATERIALS 2021; 14:ma14226740. [PMID: 34832142 PMCID: PMC8623602 DOI: 10.3390/ma14226740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022]
Abstract
Mining is an essential activity for obtaining materials necessary for the well-being and development of society. However, this activity produces important environmental impacts that must be controlled. More specifically, there are different soils near new or abandoned mining productions that have been contaminated with potentially toxic elements, and currently represent an important environmental problem. In this research, a contaminated soil from the mining district of Linares was studied for its use as a raw material for the conforming of ceramic materials, bricks, dedicated to construction. Firstly, the contaminated soil was chemically and physically characterized in order to evaluate its suitability. Subsequently, different families of samples were conformed with different percentages of clay and contaminated soil. Finally, the conformed ceramics were physically and mechanically characterized to examine the variation produced in the ceramic material by the incorporation of the contaminated soil. In addition, in this research, leachate tests were performed according to the TCLP method determining whether encapsulation of potentially toxic elements in the soil occurs. The results showed that all families of ceramic materials have acceptable physical properties, with a soil percentage of less than 80% being acceptable to obtain adequate mechanical properties and a maximum of 70% of contaminated soil to obtain acceptable leachate according to EPA regulations. Therefore, the maximum percentage of contaminated soil that can be incorporated into the ceramic material is 70% in order to comply with all standards. Consequently, this research not only avoids the contamination that contaminated soil can produce, but also valorizes this element as a raw material for new materials, avoiding the extraction of clay and reducing the environmental impact.
Collapse
Affiliation(s)
- Juan María Terrones-Saeta
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
- Correspondence:
| | - Jorge Suárez-Macías
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| | - Antonio Bernardo-Sánchez
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Laura Álvarez de Prado
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Marta Menéndez Fernández
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Francisco Antonio Corpas-Iglesias
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| |
Collapse
|
73
|
Pollution and Risk Assessment of Heavy Metals in the Sediments and Soils around Tiegelongnan Copper Deposit, Northern Tibet, China. J CHEM-NY 2021. [DOI: 10.1155/2021/8925866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The surface sediments of the Rongna River and the surface soils around the Tiegelongnan copper deposit were collected, and the heavy metals Cu, Zn, Pb, Cr, Cd, As, Hg, and Ni were measured for their concentrations and health risk assessment. When the Rongna River passed through the Cu deposit area, the concentrations of Cu, Zn, As, Cd, Ni, and Hg in the surface sediments increased significantly, and the concentrations of Cu, Zn, and As exceeded the corresponding Grade II environmental quality standard. The heavy metals in the soil of the mining area were greater than the background value of the soil in Tibet. The geoaccumulation index indicated that the sediments of the river entering the mining area were very highly polluted by Cu and moderately polluted by Cd and Zn, and the soils in the mining area were moderately polluted by Cu. The potential ecological risk (PER) indices revealed that the sediments of the river entering the mining area had significantly high ecological risks, while the PER of the sediments away from the river section of the mining area was low, and the PER of the soils around the Cu deposit was moderate. The results of the health risk assessment indicated that the noncarcinogenic risks of heavy metals in sediments and soil of the mining area were within the acceptable range for adults and children. However, the carcinogenic risk of As and Cd in the sediment and As in the soil exceeds the relevant national standards, which may pose a certain risk to human health.
Collapse
|
74
|
Rao K, Tang T, Zhang X, Wang M, Liu J, Wu B, Wang P, Ma Y. Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. CHEMOSPHERE 2021; 282:131041. [PMID: 34090003 DOI: 10.1016/j.chemosphere.2021.131041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The surface sediment concentrations of heavy metals (Cu, Zn, Pb, Cd, Cr, Hg, and As), major metals (Fe and Mn), and the nutrient concentrations in the interstitial water of Lake Houguan, a large eutrophic shallow lake, were surveyed for three years. The results showed that Cu, Zn, and Fe were significantly higher in the east lake parts, and Cd in November was significantly higher than April. 19% of Hg and all of As were larger than the probable effect concentrations (PECs) according to the consensus-based sediment quality guidelines (SQGs), and the geo-accumulation index (Igeo) indicated As, Hg, and Cd were slightly polluted to severely polluted. The RI value (average 704.2) of the potential ecological risk index (PERI) suggested that heavy metals posed very high ecological risks with most of the contributions induced by Cd and Hg. The consequence of hierarchical clustering analysis (HCA) and principle component analysis (PCA) identified Cd, As, and Pb might originate from urbanization, industrial pollution, and agricultural activity; Hg might be from atmospheric deposition and anthropogenic sources above; Cu, Zn, Cr, Fe, and Mn might be from both natural and anthropogenic sources. The Spearman correlation analysis indicated Pb and As were significantly positively correlated with total nitrogen, while Cd significantly negatively correlated with sulfate; As was significantly correlated with ammonia, sulfate, and nitrate in the interstitial water. These results suggested eutrophication might affect sedimental heavy metals by increasing organic matter or influencing the redox potentials in the sediment.
Collapse
Affiliation(s)
- Ke Rao
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China.
| | - Tao Tang
- Hydrology and Water Resources Center of Hubei Province, Wuhan, 430071, China
| | - Xiang Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Mo Wang
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| | - Jianfeng Liu
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Bi Wu
- Changjiang Water Resources Protection Institute, Changjiang Water Resources Commission, Wuhan, 430051, China
| | - Ping Wang
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| | - Yongliang Ma
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| |
Collapse
|
75
|
Evaluating Spatial Regression-Informed Cokriging of Metals in Soils near Abandoned Mines in Bumpus Cove, Tennessee, USA. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11110434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inorganic contaminants, including potentially toxic metals (PTMs), originating from un-reclaimed abandoned mine areas may accumulate in soils and present significant distress to environmental and public health. The ability to generate realistic spatial distribution models of such contamination is important for risk assessment and remedial planning of sites where this has occurred. This study evaluated the prediction accuracy of optimized ordinary kriging compared to spatial regression-informed cokriging for PTMs (Zn, Mn, Cu, Pb, and Cd) in soils near abandoned mines in Bumpus Cove, Tennessee, USA. Cokriging variables and neighborhood sizes were systematically selected from prior statistical analyses based on the association with PTM transport and soil physico-chemical properties (soil texture, moisture content, bulk density, pH, cation exchange capacity (CEC), and total organic carbon (TOC)). A log transform was applied to fit the frequency histograms to a normal distribution. Superior models were chosen based on six diagnostics (ME, RMS, MES, RMSS, ASE, and ASE-RMS), which produced mixed results. Cokriging models were preferred for Mn, Zn, Cu, and Cd, whereas ordinary kriging yielded better model results for Pb. This study determined that the preliminary process of developing spatial regression models, thus enabling the selection of contributing soil properties, can improve the interpolation accuracy of PTMs in abandoned mine sites.
Collapse
|
76
|
Long Z, Wu Y, Bing H, Zhu H. Vanadium accumulation mode of Heteropogon contortus and its driving factors in Majiatian tailing reservoir in Panzhihua, Southwestern China. CHEMOSPHERE 2021; 281:130981. [PMID: 34289627 DOI: 10.1016/j.chemosphere.2021.130981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Native plants in metal pollution sites have great potentials for mine rehabilitation. In the presented work, we investigated Vanadium (V) concentrations of soils and plants (Heteropogon contortus) in Majiatian V-Ti magnetite tailing reservoir in Panzhihua, Southwestern China. The objectives were to explore the V accumulation mode of H. contortus and its driving factors, as well as the phytoremediation potential of H. contortus. As the results, H. contortus accumulated 37.53 mg/kg and 8.69 mg/kg of V in root and aerial part, respectively. With the increase of rehabilitation age, root V concentrations decreased, while aerial part V concentrations remained constant. The significant negative correlations between root V and soil V, acid-soluble V (VHAc) (P < 0.05) indicated that increasing soil V and VHAc concentrations drove the V accumulation mode of H. contortus. Soil properties had a little influence on the V accumulation mode of H. contortus. Therefore, H. contortus might be not the suitable plant extractant to remove V from mine tailing for its lower V accumulation capacity. On the other hand, it can tolerate high V stress through elimination and detoxification/isolation V. Furthermore, the settlement of H. contortus increased the content of soil organic matter and might thus improve the soil quality. The cover of H. contortus is also beneficial to reduce the dispersion of the tailings and prevent contaminating surrounding soil. Therefor it showed a great potential to serve as a pioneer plant in the remediation of V-rich tailing reservoirs and other V-contaminated sites with similar poor soil condition.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
77
|
Pellinen V, Cherkashina T, Gustaytis M. Assessment of metal pollution and subsequent ecological risk in the coastal zone of the Olkhon Island, Lake Baikal, Russia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147441. [PMID: 33984706 DOI: 10.1016/j.scitotenv.2021.147441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Olkhon Island is the largest island in Lake Baikal and a part of Baikal National Park, Russia. The first objective of this study is to establish relationships between the particle size of accumulating sediments and their elemental composition, as well as the concentrations of heavy metals (Hg, Cd, As, Pb, Cr, Co, Ni, Cu, and Zn). The second goal is to completely assess the contamination level and to identify the possible sources of heavy metals using geochemical indices, including enrichment (EF) and contamination (Cf) factors, contamination degree (Cd), geoaccumulation index (Igeo), and pollution load index (PLI). The results obtained are summarized as follows. Heavy metal pollution in the coastal zone of Olkhon Island ranged from moderate to significant levels for Hg, As, Cd, Pb, and Cu. The EF and Igeo indices showed that Hg, Cd, Pb, and Cu sources were more likely to be anthropogenic, whereas the As, Cr, Co, Ni, and Zn sources were similar to crustal sources. Thus, Hg, Cd, and Pb are the main pollutants in the study area and pose high ecological risks. Pearson correlation analysis indicated high positive correlations between Pb and Hg (0.741), As and Cd (0.730), and Cd and Pb (0.803), and strong positive correlations among Cr, Co, Ni, Cu, Zn and Fe. This can reflect the same source and migration pathway, either crustal or anthropogenic. However, it does not indicate that Cr, Co, Ni, Cu, and Zn have anthropogenic origins because these metals are linked with FeMn deposits. These findings could contribute to a more effective investigation of relationships between heavy metals and their sources. We emphasize that Hg, Cd, and Pb could rise to dangerous levels. These reliable results allow us to use our study as a model for studies relating to heavy metal contamination in different areas.
Collapse
Affiliation(s)
- Vadim Pellinen
- Institute of the Earth's Crust, Siberian Branch of Russian Academy of Sciences, Lermontov St., 128, Irkutsk 664033, Russia.
| | - Tatiana Cherkashina
- Institute of the Earth's Crust, Siberian Branch of Russian Academy of Sciences, Lermontov St., 128, Irkutsk 664033, Russia
| | - Marya Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, avenue ak. Kptyuga, 3, Novosibirsk 630090, Russia
| |
Collapse
|
78
|
Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China. LAND 2021. [DOI: 10.3390/land10090934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Middle Route Project of China’s South-to-North Water Diversion Project (SNWDP) is a national-level water source protection zone and the ecological safety of its water quality and surrounding soil is of great significance. In this study, heavy metals in the surface water and topsoil in the core water source area were quantitatively analyzed using a geographic information system (GIS) and geostatistical techniques combined with environmental pollution and ecological risk assessment models to determine their environmental contamination levels, ecological risk levels, and spatial distribution patterns. Cd was identified as an essential factor responsible for the overall slight heavy metal pollution in the topsoil layer. Heavy metal contamination in surface water was primarily driven by alert-level concentrations of Hg and was consistently distributed in areas with high concentrations of Hg in the topsoil. Applying the potential ecological risk index (RI) revealed two key results. First, surface water showed no ecological risk. The concentrations of heavy metals in surface water met the goals set by relevant authorities in China. Second, overall, the topsoil was at low ecological risk, with a spatial pattern primarily influenced by Cd and Hg. Some heavy metals might have similar pollution sources and originate from human activities such as industrial activities, mining and smelting, and pesticide and chemical fertilizer applications. The study is important for improving the soil and water ecology in the reservoir area and ensuring the northward diversion of high-quality water. In addition, it provides a sound basis for making decisions about local heavy-metal remediation and treatment projects.
Collapse
|
79
|
Kang M, Tian Y, Zhang H, Wan C. Spatial distribution characteristics and health risk assessment of heavy metals in surface sediment of the Hai River and its tributaries in Tianjin, China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1487-1497. [PMID: 34559082 DOI: 10.2166/wst.2021.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To assess the spatial distribution characteristics and health risk of heavy metals (Cu, Zn, Ni, Cd, Pb, and Cr) in surface sediment of the Hai River and its tributaries in Tianjin, China, 32 surface sediment samples were collected. All the heavy metals mainly occurred in residue, except Cd. Cd primarily existed in the exchangeable fraction and posed a high risk to the aquatic environment. The mean values of pollution index followed a decreasing trend of Cu > Cd > Ni > Pb > Cr > Zn. The results of health risk assessment showed that the heavy metals were not a threat to local residents and Cr and Pb were the main contributors to the health risk. The carcinogenic risk posed by Cr was two orders of magnitude higher than that posed by Cd. A self-organizing map divided the 32 sites into three clusters and more attention should be paid to cluster 3. The results will be conducive to understanding the heavy metal pollution patterns and implementing effective and accurate management programs.
Collapse
Affiliation(s)
- Mengxin Kang
- College of Architecture Engineering, Northeast Electric Power University, 169 Changchun Road, Jilin, 132012, China E-mail: ; School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Haiya Zhang
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Cheng Wan
- College of Architecture Engineering, Northeast Electric Power University, 169 Changchun Road, Jilin, 132012, China E-mail:
| |
Collapse
|
80
|
Hou S, Dong H, Du X, Feng L. Early warning on risk development in compound lead and cadmium contaminated sites. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126174. [PMID: 34492949 DOI: 10.1016/j.jhazmat.2021.126174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Based on the transformation among metal fractions defined by the Tessier sequential extraction procedure and integrated risk information assessed by delayed geochemical hazard (DGH) methodology, including development paths and their burst probabilities, trigger conditions, and the contribution of each metal to risk development, an approach was proposed to provide an early warning on risk development in metal compound-contaminated sites and tested in a lead and cadmium-contaminated site. Risk assessment indicated that the site was at a high to extremely high ecological risk. DGH analysis revealed that the transformation from the fraction bound to carbonate and organic matter to the exchangeable fraction was dominant in the development of either single or combined lead and cadmium risk, which was triggered by soil acidification and the continuous decline of soil organic matter; risk development might have occurred in 6.52-80.4% of the case site with burst probabilities of 6.52-80.4%, 8.70-39.1% and 8.70-80.4% for lead risk, cadmium risk and combined lead-cadmium risk, respectively; with the dominant role of lead, the two metals overall accelerated the development of their compound risk by changing each other's DGH paths. The proposed DGH-based approach is promising for early warning on risk development in compound contaminated sites.
Collapse
Affiliation(s)
- Shu Hou
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haochen Dong
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Division of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158540, Japan
| | - Xiaokun Du
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
81
|
Qiao L, Liu X, Zhang S, Zhang L, Li X, Hu X, Zhao Q, Wang Q, Yu C. Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: A metagenomics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146502. [PMID: 34030239 DOI: 10.1016/j.scitotenv.2021.146502] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/26/2023]
Abstract
Metal mining has caused the accumulation of waste mine tailing dumps from abandoned mines. The pollution of farmlands surrounding metal tailings by heavy metals has been a long-recognized problem. However, the distribution of antibiotic resistance genes (ARGs) in tailings and the main factors influencing this distribution have rarely been reported. In this study, a metagenomics approach was used to investigate the microbial community and ARGs present in farmland surrounding gold tailings in northern China. The results showed that the main pollutants in the farmland were As, Pb, and Cd. Proteobacteria and Actinobacteria were the dominant phyla of microbes in farmlands surrounding gold tailings. A total of 75 ARGs with 327 ARG subtypes were detected in soil samples. Macrolide-, lincosaminide-, and streptogramin B resistant genes accounted for the majority of ARGs in this study, and Actinobacteria, Proteobacteria, and Acidobacteria were the hosts of most ARGs. Partial least squares path modeling revealed that the microbial community was the most influential driver moderating the distribution of soil ARGs near tailings, and heavy metals have direct and partially indirect effects on these ARGs. In contrast to previous analyses of ARGs, our study found that mobile gene elements had a minimal impact on ARGs. Overall, this study presents a complete ARG survey that sheds light on the distribution and fate of ARGs under heavy metal contamination in farmland around gold tailings.
Collapse
Affiliation(s)
- Longkai Qiao
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, 100032 Beijing, China
| | - Shuo Zhang
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Luying Zhang
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Xianhong Li
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Xuesong Hu
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Qiancheng Zhao
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Qingyu Wang
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China
| | - Caihong Yu
- School of Chemistry and Environment Engineering, China University of Mining and Technology, Beijing, 100083, Beijing, China.
| |
Collapse
|
82
|
Chen Q, Tao Y, Feng Y, Zhang Q, Liu Y. Utilization of modified copper slag activated by Na 2SO 4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112608. [PMID: 33901826 DOI: 10.1016/j.jenvman.2021.112608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Serious heavy metals pollution was characterized in the lead/zinc mine tailings dam and surrounding soils, as well as copper slag disposal sites. This study investigates the efficacy of modified granulated copper slag (MGCS) as a partial replacement of ordinary Portland cement (OPC) for lead/zinc mine tailings-based cemented paste backfill (CPB) application using Na2SO4 (CSN) and CaO (CSC) as alkali-activated materials. The effect of different scenarios was ascertained by unconfined compressive strength (UCS). Also, the correlated microstructural evolution and mineralogical phase generation were obtained by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray diffraction (XRD). The main findings proved that CSN was more effective in improving mechanical performance. Na2SO4 was found associated with C-S-H gel formation accompanied by a compact microstructure and better pore distribution with lower porosity. However, deposition of chloride compound was found in the surface layer of CSN samples, which could bring deterioration to the mechanical properties. Results above extend the knowledge of reusing MGCS as supplementary material to CPB, promoting the concept of a circular economy demand for both lead/zinc mine extraction and copper industries.
Collapse
Affiliation(s)
- Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; Sinosteel Maanshan Institute of Mining Research Company Limited, Maanshan, 243000, China
| | - Yunbo Tao
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Yan Feng
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qinli Zhang
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Yikai Liu
- Department of Geosciences, University of Padova, Padova, 35131, Italy.
| |
Collapse
|
83
|
Amnai A, Radola D, Choulet F, Buatier M, Gimbert F. Impact of ancient iron smelting wastes on current soils: Legacy contamination, environmental availability and fractionation of metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145929. [PMID: 33647670 DOI: 10.1016/j.scitotenv.2021.145929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Past and present metallurgical activity is the origin of the metallic contamination of some current soils. The purpose of this research is to assess the environmental risk of ancient Fe smelting wastes to the terrestrial compartment. For this purpose, two study sites were investigated in Bourgogne-Franche Comté (France). For each site, the soil contamination (Co, Cu, Fe, Mn, Ni and Zn) and the mobility of each metal from the slag to the topsoils were assessed. The principal results show that the topsoils are particularly enriched in Fe and Mn compared to the reference soils. The bulk chemistry of the slag showed high Fe and Mn content related to the mineralogy of slags, in which the minerals include fayalite, spinel, wustite and glass. In the topsoils, we also observed newly formed minerals (clay minerals, goethite and hematite), which were absent in the reference soils. The presence of slag microfragments in soils and the partial weathering of slags, which contributed to the release of metals in the soils, can explain the contribution of slags to the current contamination of soils. The extensive study of a depth profile from Puisaye showed a low vertical diffusion of the released metal in the heap substratum. We also investigated the fractionation of metals in soils and their environmental availability. The results showed that Mn is generally present in reducible forms or associated with the residual fraction but is less adsorbed to the organic matter (OM) or present in easily exchangeable forms. In contrast, the low extractability of Fe indicates that it is mostly bound to the residual (i.e., mineral) fraction. Based on the easily exchangeable metal concentrations measured in soils, low to medium ecological risks were identified at the sites investigated.
Collapse
Affiliation(s)
- Adnane Amnai
- UMR CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Diane Radola
- UMR CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Flavien Choulet
- UMR CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Martine Buatier
- UMR CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Frédéric Gimbert
- UMR CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France.
| |
Collapse
|
84
|
Medha I, Chandra S, Vanapalli KR, Samal B, Bhattacharya J, Das BK. (3-Aminopropyl)triethoxysilane and iron rice straw biochar composites for the sorption of Cr (VI) and Zn (II) using the extract of heavy metals contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144764. [PMID: 33736157 DOI: 10.1016/j.scitotenv.2020.144764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 05/04/2023]
Abstract
Heavy metals like Cr (VI), when released into the environment, pose a serious threat to animal and human health. In this study, iron and (3-Aminopropyl)triethoxysilane (APTES) biochar composites were prepared from the biochar, which was produced through the pyrolysis of rice straw at 400 and 600 °C, using the chemical processes with an aim that the doping of pristine biochar structure with the Fe and NH2 radicals would enhance the removal of Cr (VI) and Zn (II) adsorption in both aqueous solution and soil. Both biochar composites were mixed at a rate of 3% (w/w) with the mine soil for the soil incubation test, and after completion of the test, a soil fertility index (SFI) was calculated. Results showed that both iron and APTES biochar composites followed the Langmuir-Freundlich isotherm showing the maximum removal capacity of 100.59 mg/g for Cr (VI) by APTES/SiBC 600 and maximum adsorption capacity of 83.92 mg/g for Zn2+ by Fe/BC 400. The SFI of the mine-soil amended with both Fe and APTES biochar composites were 16.67 and 13.04%, respectively higher than the controlled study. The mitotic index of the A. cepa cells that grew up in the soil amended with Fe/BC and APTES/SiBC were 40.47 and 44.45%, respectively, higher than the controlled study. The results indicated that the incorporation of the Fe and APTES biochar composites in the soil effectively reduced the metal toxicity and improved the soil physicochemical properties. This study opens up the prospects of using biochar composites in contaminated soil and water treatments.
Collapse
Affiliation(s)
- Isha Medha
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Subhash Chandra
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Biswajit Samal
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Jayanta Bhattacharya
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Zelence Industries Private Limited, India.
| | | |
Collapse
|
85
|
Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11060233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The geochemical characterization of the mine deposits and soils in metal mining areas is essential in order to develop an effective mine reclamation strategy. The determination of total potentially toxic element (PTE) content, together with the application of chemical extraction procedures, can give insight into the behavior of contaminants after the application of different mine reclamation solutions, as well as identify the areas where urgent action is needed. This work presents a practical application to the evaluation of the pollution potential of trace elements in soils affected by mining activities, to be used in metallic mine reclamation. The PTE behavior was assessed by single extractions in order to simulate four environmental conditions: PTE mobility under rainfall conditions, acid mine drainage, reducing conditions, and plant uptake. The spatial distribution of contaminants in the study area was evaluated by determination of PTE total content in soil samples. Trace elements with high natural mobility, such as Zn, appeared concentrated at water and sediment discharge areas, while As, Pb, and Cu contents were higher near the mine wastes. The results obtained after the extractions suggested that the highest PTE content was extracted in the complexing–reducing medium, due to the dissolution of secondary sulfates and Fe3+ oxyhydroxides and the subsequent release of PTEs associated with those mineral phases. Reclamation strategies applied in the study area should promote efficient water drainage, infiltration, and subsuperficial water circulation in order to maintain oxidant conditions in the soil. The methodology applied in this study may constitute a valuable tool to define the geochemical constraints in metal mining areas, as well as help to develop appropriate mine reclamation solutions.
Collapse
|
86
|
Gao L, Li R, Liang Z, Wu Q, Yang Z, Li M, Chen J, Hou L. Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124590. [PMID: 33234397 DOI: 10.1016/j.jhazmat.2020.124590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Identifying the mobilization mechanisms and predicting the potential toxicity risk of metals in sediment are essential to contamination remediation in river basins. In this study, a sequential extraction procedure and diffusive gradients in thin film (DGT) were employed to investigate the mobilization mechanisms, release characteristics, and potential toxicity of sediment metals (Cu, Zn, Ni, and Pb). Acid-soluble and reducible fractions were the dominant geochemical species of Cu, Zn, Ni, and Pb in sediments, indicating high mobility potentials for these metals under reducing conditions. In summer, the sediment acted as a source of water-column metals due to mineralization of organic matter and reductive dissolution of iron/manganese oxides in surface sediments, and the formation of metal sulfide precipitates markedly lowered DGT-labile metal concentrations with depth, while localized sulfide oxidation was responsible for fluctuating labile metal concentrations. Stable distribution patterns of labile metals resulted from the weak reducing conditions of sediment in winter, when the sediment shifted to a metal sink. The interstitial water criteria toxicity unit (IWCTU), calculated from DGT measurements, indicated no and low-to-moderate toxic risk of sediments in summer and winter seasons, respectively, and Pb was the major contributor to the predicted toxic effects in the soft interstitial water.
Collapse
Affiliation(s)
- Lei Gao
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rui Li
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qirui Wu
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhigang Yang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Manzi Li
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Lei Hou
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
87
|
Gallego S, Esbrí JM, Campos JA, Peco JD, Martin-Laurent F, Higueras P. Microbial diversity and activity assessment in a 100-year-old lead mine. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124618. [PMID: 33250311 DOI: 10.1016/j.jhazmat.2020.124618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Mining activities frequently leave a legacy of residues that remain in the area for long periods causing the pollution of surroundings. We studied on a 100 year-old mine, the behavior of potentially toxic elements (PTEs) and their ecotoxicological impact on activity and diversity of microorganisms. The PTEs contamination assessment allowed the classification of the materials as highly (reference- and contaminated-samples) and very highly polluted (illegal spill of olive mill wastes (OMW), tailings, and dumps). OMW presented the lowest enzymatic activities while tailings and dumps had low dehydrogenase and arylsulfatase activities. All the α-diversity indices studied were negatively impacted in dumps. Tailings had lower Chao1 and PD whole tree values as compared to those of reference-samples. β-diversity analysis showed similar bacterial community composition for reference- and contaminated-samples, significantly differing from that of tailings and dumps. The relative abundance of Gemmatimonadetes, Bacteroidetes, and Verrucomicrobia was lower in OMW, tailings, and dumps as compared to reference-samples. Fifty-seven operational taxonomic units were selected as responsible for the changes observed between samples. This study highlights that assessing the relationship between physicochemical properties and microbial diversity and activity gives clues about ongoing regulating processes that can be helpful for stakeholders to define an appropriate management strategy.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France.
| | - José María Esbrí
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| | - Juan Antonio Campos
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Jesús Daniel Peco
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Pablo Higueras
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| |
Collapse
|
88
|
Song Z, Song G, Tang W, Zhao Y, Yan D, Zhang W. Spatial and temporal distribution of Mo in the overlying water of a reservoir downstream from mining area. J Environ Sci (China) 2021; 102:256-262. [PMID: 33637251 DOI: 10.1016/j.jes.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to evaluate the spatial and temporal variations of molybdenum (Mo) in the downstream water body of a Mo mine during three hydrologic periods (wet, dry and medium seasons). The physical properties in Luhun Reservoir reflected seasonal variations in different hydrological periods. The redox potential (ORP) and dissolved oxygen (DO) increased in the dry season. The concomitant decrease in temperature (T), conductivity (COND) and total dissolved solids (TDS) were lowest in the wet season. The pH value did not change significantly during the three hydrologic periods. The distribution of Mo in the dry season was high in upstream and low in downstream areas, which was significantly different from that of the wet and medium seasons. The total Mo concentration in wet (150.1 µg/L) and medium season (148.2 µg/L) was higher than that in the dry season, but the TDS (288.3 mg/L) and the percentage dissolved Mo (81.3%) in overlying water was lowest in the wet season. There was no significant relationship between the dissolved Mo and the total Mo with TDS. In the dry season, the mean total Mo concentration was 116.3 µg/L, which was higher than the standard limit value (70 µg/L) for drinking water (US EPA-United States Environmental Protection Agency recommended value 40 µg/L). Non-point source pollution is the main characteristic of mining area pollution, which was closely related to rainfall. Thus, the Luhun Reservoir contains substantial Mo pollution, which was a significant concern given that it is used as a source of drinking and irrigation water.
Collapse
Affiliation(s)
- Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dandan Yan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Weilong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| |
Collapse
|
89
|
Kang MJ, Yu S, Jeon SW, Jung MC, Kwon YK, Lee PK, Chae G. Mobility of metal(loid)s in roof dusts and agricultural soils surrounding a Zn smelter: Focused on the impacts of smelter-derived fugitive dusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143884. [PMID: 33321339 DOI: 10.1016/j.scitotenv.2020.143884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
The mobility of Zn, Cd, Pb, Cu, and As was assessed in an atmospheric environment and soil system near a Zn smelter by performing sequential extraction as well as Pb isotopic and mineralogical analyses for fugitive and roof dusts and agricultural soils. Transmission electron microscopy observations with selected area electron diffraction patterns confirmed that micron-sized roof dusts originated from the Zn smelter. Both fugitive and roof dusts contained zincite, massicot, franklinite, anglesite, and willemite. The sequential extraction of the fugitive dust from the Zn smelter stacks showed that Zn, Cd, and Pb were predominantly bound to the exchangeable (FI), carbonate (FII), and reducible (FIII) fractions, whereas Cu and As were significantly associated with the residual (FV) fraction and had low mobility. The estimation of remobilized concentrations of Zn, Cd, and Pb bound to labile fractions (FI and FII) in the fugitive dust implied their severe environmental and human health risks. In contrast, the studied metal(loid)s in the roof dust had low mobility except for Pb, implying the insignificant risks of roof dusts, although anthropogenic dusts from the Zn smelter significantly impacted FV as well as the non-residual fractions based on the Pb isotopic compositions of geochemical fractions. Similarly, the mobility and bioavailability of the studied metal(loid)s were low in agricultural soils, except for Cd, suggesting a low adverse effect on crops cultivated in the soil. The decrease in labile Cd fractions with depth indicated that the agricultural soil did not retain anthropogenic Cd in the soil subsurface. The mineralogical investigation combined with sequential extraction revealed that the different mobility of Zn, Cd, and Pb between fugitive dusts, roof dusts and agricultural soils resulted from the different solubility of metal-bearing minerals, e.g., zincite, willemite, simonkolleite which were not detected in the residuals of the fugitive dust collected after FIII extraction.
Collapse
Affiliation(s)
- Min-Ju Kang
- Department of Environmental Safety Diagnosis, HQ of Western Metropolitan Area, Korea Environment Corporation, 8F Gangseo IT Valley, 82 Hwagok-ro 68-gil, Gangseo-gu, Seoul 07566, Republic of Korea; Department of Geoenvironmental Sciences, Kongju National University, Chungcheongnamdo, 32588, Republic of Korea
| | - Soonyoung Yu
- Korea-CO(2) Storage Environmental Management (K-COSEM) Research Center, Korea University, Seoul 02841, Republic of Korea
| | - Soon Won Jeon
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Myung Chae Jung
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yi Kyun Kwon
- Department of Geoenvironmental Sciences, Kongju National University, Chungcheongnamdo, 32588, Republic of Korea
| | - Pyeong-Koo Lee
- Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yusung-gu, Taejon 34132, Republic of Korea.
| | - Gitak Chae
- Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yusung-gu, Taejon 34132, Republic of Korea
| |
Collapse
|
90
|
Peli M, Bostick BC, Barontini S, Lucchini RG, Ranzi R. Profiles and species of Mn, Fe and trace metals in soils near a ferromanganese plant in Bagnolo Mella (Brescia, IT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143123. [PMID: 33160660 DOI: 10.1016/j.scitotenv.2020.143123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
For the last forty-five years (from 1974 to present) ferroalloy production in Bagnolo Mella, Northern Italy, has generated particulate emissions enriched in potentially toxic metals and metalloids including arsenic (As), lead (Pb) and manganese (Mn). Of these, Mn is unique in that it has a significant background concentration and is seldom studied as a contaminant but is potentially a significant toxin derived from dusts regionally. Here we examine the distribution, redistribution, speciation and bioavailability of the Mn-contaminated top soils affected by atmospheric emissions adjacent to the ferroalloy plant. Four sites, variably located in the study area in terms of both distance and direction from the plant, were considered as representative of increasing levels of industrial influence. Soil profiles showed that metal concentrations (measured by X-ray fluorescence) varied considerably by location, i.e. higher in the sites closer to the plant and also at the surface level, although distributed throughout the top 15 cm, suggesting appreciable redistribution possibly due to soil mixing or infiltration. Most metal concentrations were correlated, except Mn which was independent and more variable across the sites than the other elements. Sequential chemical extractions indicated that Pb was primarily associated with Mn oxides, while As was most significantly associated with iron oxides. When Mn concentration significantly exceeded background levels, it was present in phases that were resistant to acid dissolution, very different from typical uncontaminated soils. X-ray Absorption Near Edge Spectroscopy (XANES) analyses suggested this recalcitrant Mn phase is likely a Mn-bearing spinel such as magnetite, that can be particularly toxic if ingested or inhaled. These first results highlight the legacy of ferroalloy production on surrounding soils, as well as the importance of Mn speciation for soil apportionment evaluation and human exposure estimation.
Collapse
Affiliation(s)
- Marco Peli
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University; 61 Route 9W - PO Box 1000, Palisades, NY 10964-8000, USA.
| | - Stefano Barontini
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| | - Roberto G Lucchini
- Dipartimento di Specialità Medico Chirurgiche, Scienze Radiologiche e Sanità Pubblica, DSMC - Università dezgli Studi di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy; Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 17 E 102 St Floor Third - West Tower, New York, NY 10029, USA.
| | - Roberto Ranzi
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| |
Collapse
|
91
|
Zhang Q, Zhang F, Huang C. Heavy metal distribution in particle size fractions of floodplain soils from Dongchuan, Yunnan Province, Southwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:54. [PMID: 33428009 DOI: 10.1007/s10661-020-08836-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The heavy metal pollution level in soils is heavily affected by the soil particle size distribution. However, the heavy metal loss during particle size extraction and the effect of calcite on the heavy metals removal in terms of the particle size are unclear. In this study, the distribution of heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb, U, and V) was determined in five particle fractions (> 2, 2-0.25, 0.25-0.02, 0.02-0.002, and < 0.002 mm) of two soil and one sediment samples collected from the floodplain of Dongchuan, Yunnan Province, Southwest China. The sampled floodplain soils were mainly composed of gravel and sand fractions (> 97%). The concentrations of all nine heavy metals in the sampled soils and sediment increase significantly with decreasing particle sizes. The maximal loss rate of Cd and Cu reaches 54% and 8.6%, respectively, which should be considered in the process of particle size fraction extraction in soils. The removal amount and removal rate of heavy metals in solution by pure calcite ranks in the order of Pb2+ > Cu2+ > Cr6+, while the removal rate of Pb (93.13%) is much higher than that of Cu (24.56%) and Cr (10.71%), which increase with the calcite particle size decreasing. The stabilization of carbonate minerals in soils is crucial for heavy metal pollution control in floodplain soils with high carbonate concentrations in Dongchuan, China.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Environmental Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Fangfang Zhang
- Department of Environmental Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
- College of Resources and Environmental Sciences, Northwest Agricultural and Forestry University, Xianyang, 712100, Shanxi, China
| | - Chengmin Huang
- Department of Environmental Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
92
|
Zhou H, Liu G, Zhang L, Zhou C. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123293. [PMID: 32629353 DOI: 10.1016/j.jhazmat.2020.123293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Separating copper and arsenic has always been a major problem in the copper slag flotation process, which influences copper slag utilization and the environmental safety. A comparative study of flash smelting furnace (FSF) slag and its flotation products (concentrate and tailing) reveals the factors affecting the separation of copper and arsenic in the beneficiation process from the perspective of mineralogy and morphology. The elemental fractionation in the process shows a positive correlation of As, Cu and Cd and an obvious correlation between speciation transformation of copper and arsenic was observed. The occurrence of arsenic and copper in FSF slag correlate the key phases of arsenic copper alloys, accounted for 88.91 % of total arsenic-bearing phases and 32.28% of copper-bearing phases. Closely-embeded matte and copper-arsenic alloys incerease the difficulty of the separation suggesting the finer grinding is needed for slag. Arsenic is liberated and oxidized into arsenate compounds while the recombination of As-O and Cu-S happened in the process affecting the selectivity of copper and arsenic. Arsenic fixed in silicate minerals is discharged into tailing which suggested to induce and fix arsenic into silicate minerals can facilitate arsenic removal from concentrate. FSF slag and its flotation concnetrate show risks of some of some of HMs which should be cautiously transported, disposed, and utilized.
Collapse
Affiliation(s)
- Huihui Zhou
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shanxi 710075, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shanxi 710075, China.
| | - Liqun Zhang
- School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
93
|
Mao L, Yan N, Kong H, Ye H, Li F. Ecological risk assessment of trace metals in sediments under reducing conditions based on isotopically exchangeable pool. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:171-180. [PMID: 33357161 DOI: 10.1080/10934529.2020.1857154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Determination of potential mobility of toxic trace metals in sediments under changing redox condition is important in ecological risk assessment. Current methods are limited in risk prediction in such dynamic environment. In this study, we have discussed the general disagreement from widely used methods (sediment quality guideline (SQGs), potential ecological risk index (PERI), risk assessment code (RAC) using BCR fraction information). In addition, the stable isotopic dilution method (IDM) was also modified to quantify metal lability in a microcosm experiment mimicking river bank sediment turning into anaerobic. The isotopically exchangeable Cd, Cu, Pb, and Zn quantified by IDM (%E incub) was used in the RAC to reveal the trend of risk during this process. Strong risks from Cd are suggested by the PERI and RAC as a result of high toxicity and mobility of the element, while SQGs suggests medium risk for Cu, Pb, and Zn in certain samples. The disagreement between the results of RAC assessed by metal lability (%E dry) and by BCR metal fractionation reflects the effect of sediment properties and source of metal contamination. The RAC based on the non-residual fractions is likely to overestimate the potential risk for most metals even there is a significant change in sediment Eh. The RAC assessed by %E incub reveals that the variability in risk in response to the reducing Eh is not consistent. Large fluctuation in %E incub for Cd (28.5%, 49.5%), Pb (27.6%, 18.2%), and Cu (14.4%, 24.7%) can shift the risks to a higher level in certain range of Eh in two sediments. In sediment with lower contents of metal binding phases (e.g. mineral oxides, organic matters), the release of metals can be more significant, thus higher ecological risk in changing redox condition.
Collapse
Affiliation(s)
- Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Nanxia Yan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Kong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua Ye
- Shanghai Textile Architectural Design Research Institute Co., Ltd, Shanghai, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
94
|
Zhang H, Zhen H, Huang C, Wang K, Qiao Y. The effects of biochar and AM fungi (Funneliformis mosseae) on bioavailability Cd in a highly contaminated acid soil with different soil phosphorus supplies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44440-44451. [PMID: 32770333 DOI: 10.1007/s11356-020-10363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Due to the increase of cadmium (Cd)-contaminated land area worldwide, effective measures should be taken to minimize the Cd bioavailability in crops. A study was performed to explore the effectiveness of biochar pyrolyzed from rice straw at 400 °C alone or combined with AM fungi (Funneliformis mosseae) on the corn growth and Cd uptake in corn in Cd-contaminated soil with different levels of phosphorus supplies. The results showed that biochar significantly reduced 66% and 38% of Cd uptake in shoot and root respectively (P < 0.001) attributed to the increase of soil pH and dissolved organic matter. In contrast, AM fungi inoculation of corn plants had little effect on Cd bioavailability due to the AM was suppressed by the highly contaminated acid soil (31.76 mg/kg), and had neither synergistic effect with biochar on decreasing the Cd bioavailability with high or low phosphorus supplies. This study demonstrated that biochar application could be a promising method to immobilize Cd in the contaminated soil to ensure the safety of agro-product while high Cd-contaminated soil would suppress the growth of mycorrhizae, so this remains an open question to be further studied.
Collapse
Affiliation(s)
- Huawei Zhang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Changzhi University, Changzhi, 046011, Shanxi, China
| | - Huayang Zhen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Caide Huang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Kun Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuhui Qiao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
95
|
The Use of Mining Waste Materials for the Treatment of Acid and Alkaline Mine Wastewater. MINERALS 2020. [DOI: 10.3390/min10121061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mining of metal ores generates both liquid and solid wastes, which are increasingly important to manage. In this paper, an attempt was made to use waste rocks produced in the mining of zinc and lead to neutralizing acid mine drainage and alkaline flotation wastewater. Waste rock is a quartz-feldspar rock of hydrothermal origin. It is composed of, besides quartz and potassium feldspar (orthoclase), phyllosilicates (chlorite and mica), and sulfides (chiefly pyrite). To determine its physicochemical parameters and their variability, acid mine water and flotation wastewater were monitored for 12 months. Acid mine drainage (AMD) is characterized by a low pH (~3), high zinc concentration (~750 mg·L−1), and high sulfate content (~6800 mg·L−1). On the other hand, the determinations made for flotation wastewater showed, among others, a pH of approximately 12 and ca. 780 mg·L−1 of sulfates. AMD and flotation wastewater neutralization by the waste rock was shown to be possible and efficient. However, in both cases, the final solution contained elevated concentrations of metals and sulfates. Premixing AMD with alkaline flotation wastewater in the first step and then neutralizing the obtained mixture with the waste rock was considered the best solution. The produced solution had a circumneutral pH. However, the obtained solution does not meet the legislative requirements but could be further treated by, for example, passive treatment systems. It is noteworthy that the proposed approach is low cost and does not require any chemical reagents.
Collapse
|
96
|
Elmayel I, Esbrí JM, García-Ordiales E, Elouaer Z, Garcia-Noguero EM, Bouzid J, Campos JA, Higueras PL. Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine, Central Tunisia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3529-3542. [PMID: 32399635 DOI: 10.1007/s10653-020-00595-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution associated with potentially toxic elements (PTEs) from mining residues is a significant problem worldwide. The decommissioned Jebal Trozza mine, located in central Tunisia, may pose a serious problem because of the possible high concentrations of PTEs present in its wastes. This mine is a potential source of contamination for agriculture in this area due to both direct causes (pollution of agricultural soils) and indirect causes (pollution of sediments that accumulate in a dam used for irrigation). The aim of the study reported here was to assess the effects of local mining activity in two respects: (1) in terms of soil quality, as determined by soil edaphological parameters and PTEs contents in the mining wastes and local soils; and (2) in terms of biological quality, as evaluated by quantification of enzymatic activity as an indicator of bacterial activity in soils and wastes. The mine tailings contained high levels of Pb (1.83-5.95%), Zn (7.59-12.48%) and Cd (85.95-123.25 mg kg-1). The adjacent soils were also highly contaminated with these elements, with average concentrations of Pb, Zn and Cd that exceeded the European standard values for agricultural soils (3, 300 and 300 mg kg-1 for Cd, Pb and Zn, respectively). Enzymatic dehydrogenase showed zero activity in waste piles and very low activity in PTE-contaminated soils, but this activity returned to normal values as the pollution decreased, thus demonstrating the effect that the contamination load had on the health of the studied soils. A Statistical Factor Analysis clearly distinguished three groups of samples, and these are related to the influence that mining on the soils and sediments had on the PTE concentrations and their effects on the biological quality of the soil. An environmental assessment based on the enrichment factor criteria indicated risk levels that varied from strongly to severely polluted. The risk appears to be greater close to the mine, where the highest PTE levels were determined.
Collapse
Affiliation(s)
- Intissar Elmayel
- Laboratoire Génie Environnement Ecotechnologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - José M Esbrí
- Instituto de Geología Aplicada, EIMI Almadén, Universidad de Castilla-La Mancha, 13400, Almadén, Ciudad Real, Spain
| | - Efrén García-Ordiales
- Escuela de Ingeniería de Minas, Energía y Materiales de Oviedo, Universidad de Oviedo, C. Independencia 13, 33004, Oviedo, Asturias, Spain
| | - Zouheir Elouaer
- Laboratoire Génie Environnement Ecotechnologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Eva M Garcia-Noguero
- Instituto de Geología Aplicada, EIMI Almadén, Universidad de Castilla-La Mancha, 13400, Almadén, Ciudad Real, Spain
| | - Jalel Bouzid
- Laboratoire Génie Environnement Ecotechnologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Juan Antonio Campos
- Instituto de Geología Aplicada, ETSIACR, Universidad de Castilla-La Mancha, Ronda de Calatrava s/n, 13071, Ciudad Real, Spain
| | - Pablo L Higueras
- Instituto de Geología Aplicada, EIMI Almadén, Universidad de Castilla-La Mancha, 13400, Almadén, Ciudad Real, Spain.
| |
Collapse
|
97
|
Peco JD, Campos JA, Romero-Puertas MC, Olmedilla A, Higueras P, Sandalio LM. Characterization of mechanisms involved in tolerance and accumulation of Cd in Biscutella auriculata L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110784. [PMID: 32485494 DOI: 10.1016/j.ecoenv.2020.110784] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/19/2023]
Abstract
Biscutella auriculata L. is one of the rare species that is able to grow in a very contaminated mining area in Villamayor de Calatrava (Ciudad Real, Spain). In an effort to understand the mechanisms involved in the tolerance of this plant to high metal concentrations, we grew B. auriculata in the presence of 125 μM Cd(NO3)2 for 15 days and analysed different parameters associated with plant growth, nitric oxide and reactive oxygen species metabolism, metal uptake and translocation, photosynthesis rate and biothiol (glutathione and phytochelatins) content. Treatment with Cd led to growth inhibition in both the leaves and the roots, as well as a reduction of photosynthetic parameters, transpiration and stomatal conductance. The metal was mainly accumulated in the roots and in the vascular tissue, although most Cd was detected in areas surrounding their epidermal cells, while in the leaves the metal accumulated mainly in spongy mesophyll, stomata and trichrome. Based on the Cd bioaccumulation (5.93) and translocation (0.15) factors, this species denoted enrichment of the metal in the roots and its low translocation to the upper tissues. Biothiol analysis showed a Cd-dependent increase of reduced glutathione (GSH) as well as the phytochelatins (PC2 and PC3) in both roots and leaves. Cd-promoted oxidative damage occurred mainly in the leaves due to disturbances in enzymatic and nonenzymatic antioxidants, while the roots did not show significant damage as a result of induction of antioxidant defences. It can be concluded that B. auriculata is a new Cd-tolerant plant with an ability to activate efficient metal-sequestering mechanisms in the root surface and leaves and to induce PCs, as well as antioxidative defences in roots.
Collapse
Affiliation(s)
- J D Peco
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM). Ronda de Calatrava, 7, 13071, Ciudad Real, Spain; Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM). Plaza de Manuel Meca, 1, 13400, Almadén, Ciudad Real, Spain
| | - J A Campos
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM). Ronda de Calatrava, 7, 13071, Ciudad Real, Spain; Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM). Plaza de Manuel Meca, 1, 13400, Almadén, Ciudad Real, Spain
| | - M C Romero-Puertas
- Department of Biochemistry Cellular and Molecular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - A Olmedilla
- Department of Biochemistry Cellular and Molecular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - P Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM). Plaza de Manuel Meca, 1, 13400, Almadén, Ciudad Real, Spain
| | - L M Sandalio
- Department of Biochemistry Cellular and Molecular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
98
|
Adewumi AJ, Laniyan TA, Ikhane PR. Distribution, contamination, toxicity, and potential risk assessment of toxic metals in media from Arufu Pb–Zn–F mining area, northeast Nigeria. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1815787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Temitope A. Laniyan
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Phillips R. Ikhane
- Department of Earth Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| |
Collapse
|
99
|
Wu W, Qu S, Nel W, Ji J. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139480. [PMID: 32464386 DOI: 10.1016/j.scitotenv.2020.139480] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
This paper presents the heavy metal content in river water, sediment and bedrock in the karst area of the Pearl River Basin in China to evaluate the long-term impact of natural weathering and mining on the ecological environment. The results show that Cd and As is 2-3 times more enriched within the carbonate bedrock of the Pearl River Basin compared to the upper continental crust (UCC), which is indicative of high geological background values. Within the river water of the upper reaches of the Diaojiang River (a tributary of the Pearl River), which flows through the Dachang super-large orefield, Zn, As, Cd and Sb exceeds the environmental quality standards for surface water (WQS) by more than an order of magnitude. Among these, Zn and Cd sharply decreases to within the WQS in the lower reaches of the river, but the content of As and Sb in the estuary is still several times higher than the WQS. Cd in the sediments of the small carbonate watersheds and in the mainstream of the Pearl River only present a low-moderate ecological risk. In contrast, severe heavy metal pollution of the sediments of the Diaojiang River Basin is observed. Even in the lower reaches, remote from the mining area, the content of Pb, Zn, As and Cd in the sediments is still two orders of magnitude higher than the soil background values. The content of both Cd and As presents a very high ecological risk, indicating that under the cumulative effect of high geological background values and mining, full restoration of the ecological environment in the Diaojiang River Basin is a complex and long-term process.
Collapse
Affiliation(s)
- Weihua Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Shuyi Qu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China
| | - Werner Nel
- Dept. of Geography and Environmental Science, University of Fort Hare, Alice 5700, South Africa
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
100
|
Metal Mobility in Afforested Sites of an Abandoned Zn-Pb Ore Mining Area. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heaps of waste material constitute a serious environmental problem in regions where the historical exploitation and processing of metal ores has taken place. The presented paper describes the trace metal distribution in selected heaps in the lead-zinc mining area of an abandoned mine in Poland, as well as the soil horizons beneath. The study aims at the estimation of the metal remobilization rate in vertical profiles in the spontaneously afforested area in the context of the potential danger it poses to the local groundwater. Individual samples were taken from profiles dug in heaps found in deciduous and coniferous forests. The bulk density, pH, organic matter and carbonate content, as well as the concentration and chemical forms of metals were analysed. Buffer properties and the mineralogical composition were also determined for the selected samples. The investigation indicates excessive cadmium, zinc and lead concentrations in the analysed heap material and the significant secondary enrichment of former soil horizons. A large percentage of these metals occur in potentially mobile forms. It suggests that, despite the high pH of the heap material and the good buffer properties of soil, cadmium and to a lesser extent, zinc, has migrated downwards to depths of at least several dozen centimetres over a period of about 200 years. This is related to soil acidity, particularly in profiles abundant in organic matter resulting from the encroachment of forest communities, particularly of coniferous forest. Spontaneous afforestation forming the litter cover contribute to the stabilization of the heap material and limiting groundwater pollution. Even though specific remediation measures are not needed in this area, it requires long-term monitoring.
Collapse
|