51
|
Altintas C, Keskin S. MOF Adsorbents for Flue Gas Separation: Comparison of Material Ranking Approaches. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Seo K, Chen Z, Edgar TF, Brennecke JF, Stadtherr MA, Baldea M. Modeling and optimization of ionic liquid-based carbon capture process using a thin-film unit. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
53
|
Goel C, Mohan S, Dinesha P. CO 2 capture by adsorption on biomass-derived activated char: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149296. [PMID: 34325142 DOI: 10.1016/j.scitotenv.2021.149296] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon capture and storage has been recognized as the most promising method for CO2 control. Among the many sorbents, char derived from pyrolysis and hydrothermal carbonization (HTC) of biomass have demonstrated excellent CO2 adsorption capability. This paper reviews the different parameters to produce a higher yield of biochar and hydrochar suitable for carbon sequestration. The mechanism of physisorption and chemisorption is briefly presented. The different kinetic models, diffusion models to describe adsorption mechanism, and adsorption isotherms for CO2 uptake from biomass-derived hydrochar are reviewed. The different factors that affect the CO2 uptake are the type of activation, surface area and porosity, the ratio of activation agent to char, activation temperature, adsorption pressure and temperature, additives, and other physicochemical properties. The optimal conditions for CO2 uptake with chemical activation of KOH is a KOH/char ratio of 2-3, activation temperature of 700 °C, and an adsorption temperature below 50 °C.
Collapse
Affiliation(s)
- Chirag Goel
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sooraj Mohan
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - P Dinesha
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
54
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
55
|
Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation of CO2 into renewable energy source: A review. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
56
|
Mahdipoor HR, Ganji Babakhani E, Halladj R, Sadeghzadeh Ahari J, Amjad-Iranagh S. Post-combustion CO2 capture using nontoxic iron-based amino-MIL-101(Fe). INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
57
|
Yüzbaşıoğlu AE, Tatarhan AH, Gezerman AO. Decarbonization in ammonia production, new technological methods in industrial scale ammonia production and critical evaluations. Heliyon 2021; 7:e08257. [PMID: 34765764 PMCID: PMC8569438 DOI: 10.1016/j.heliyon.2021.e08257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
With the synthesis of ammonia with chemical methods, global carbon emission is the biggest threat to global warming. However, the dependence of the agricultural industry on ammonia production brings with it various research studies in order to minimize the carbon emission that occurs with the ammonia synthesis process. In order to completely eliminate the carbon emissions from ammonia production, both the hydrogen and the energy needed for the operation of the process must be obtained from renewable sources. Thus, hydrogen can be produced commercially in a variety of ways. Many processes are discussed to accompany the Haber Bosch process in ammonia production as potential competitors. In addition to parameters such as temperature and pressure, various plasma catalysts are being studied to accelerate the ammonia production reaction. In this study, various alternative processes for the capture, storage and complete removal of carbon gas released during the current ammonia production are evaluated and the current conditions related to the applicability of these processes are discussed. In addition, it has been discussed under which conditions it is possible to produce larger capacities as needed in the processes studied in order to reduce carbon gas emissions during ammonia production in order to provide raw material source for fertilizer production and energy sector. However, if the hydrogen gas required for ammonia production is produced using a solid oxide electrolysis cell, the reduction in the energy requirement of the process and in this case the reduction of energy costs shows that it will play an important role in determining the method to be used for ammonia production. In addition, it is predicted that working at lower temperature (<400 °C) and pressure (<10 bar) values in existing ammonia production technologies, despite increasing possible energy costs, will significantly reduce process operating costs.
Collapse
Affiliation(s)
| | - Ali Hikmet Tatarhan
- Toros Agri Industry, Agricultural Technic & Digital Marketing Department, Istanbul, Turkey
| | | |
Collapse
|
58
|
Dunstan MT, Donat F, Bork AH, Grey CP, Müller CR. CO 2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chem Rev 2021; 121:12681-12745. [PMID: 34351127 DOI: 10.1021/acs.chemrev.1c00100] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.
Collapse
Affiliation(s)
- Matthew T Dunstan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Alexander H Bork
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
59
|
Gao XJ, Zheng HG. The difference in the CO 2 adsorption capacities of different functionalized pillar-layered metal-organic frameworks (MOFs). Dalton Trans 2021; 50:9310-9316. [PMID: 34132290 DOI: 10.1039/d1dt00498k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excessive use of fossil energy has caused the CO2 concentration in the atmosphere to increase year by year. MOFs are ideal CO2 adsorbents that can be used in CO2 capture due to their excellent characteristics. Studies of the structure-activity relationship between the small structural differences in MOFs and the CO2 adsorption capacities are helpful for the development of efficient MOF-based CO2 adsorbents. Therefore, a series of pillar-layered MOFs with similar structural and different functional groups were designed and synthesized. The CO2 adsorption tests were carried out at 273 K to explore the relationship between the small structural differences in MOFs caused by different functional groups and the CO2 adsorption capacities. Significantly, compound 6 which contains a pyridazinyl group has a 30.9% increase in CO2 adsorption capacity compared to compound 1 with no functionalized group.
Collapse
Affiliation(s)
- Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
60
|
Abbo HS, Gupta KC, Khaligh NG, Titinchi SJJ. Carbon Nanomaterials for Wastewater Treatment. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanna S. Abbo
- University of the Western Cape Department of Chemistry Cape Town South Africa
- University of Basrah Department of Chemistry Basrah Iraq
| | - K. C. Gupta
- Indian Institute of Technology Polymer Research Laboratory Department of Chemistry 247 667 Roorkee India
| | - Nader G. Khaligh
- University of Malaya Nanotechnology and Catalysis Research Center Institute of Postgraduate Studies Kuala Lumpur Malaysia
| | | |
Collapse
|
61
|
Effect of micropores on CO2 capture in ordered mesoporous CMK-3 carbon at atmospheric pressure. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Al-Hamed KHM, Dincer I. A comparative review of potential ammonia-based carbon capture systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112357. [PMID: 33765524 DOI: 10.1016/j.jenvman.2021.112357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Carbon capturing technologies are recognized as a cornerstone solution in reducing greenhouse gas emissions to meet the 2050 emissions targets set during the past Paris agreement. Recently, ammonia has become a major carbon-free chemical to absorb CO2 emissions from flue gases. In this regard, this paper concerns the recently developed novel ammonia-based carbon capturing systems in the open literature and comparatively evaluates them from various perspectives in addition to discussing their advantages and disadvantages. The systems considered are basically classified into three categories, namely renewable energy-based systems, energy savings-focused systems, and Integrated Gasification Combined Cycle (IGCC)-based systems. Then, comparative assessments of the novel systems are conducted to see their advantages and weaknesses as compared to the typical chilled ammonia process. Generally, the novel systems have significantly lower energy requirements. The highest reduction is 37.3%. Another result of the comparative study is that renewable energy-based systems of carbon capturing have higher operational costs that can reach up to C$136 ton-1 of CO2 captured. Future efforts are expected to focus on reducing these costs since renewable energy-based systems are also used to co-produce chemical commodities, such as urea and ammonium bicarbonate. These high-value commodities have the potential to generate enough economic value to compensate for the operational costs of carbon capturing using ammonia as a chemical solvent.
Collapse
Affiliation(s)
- Khaled H M Al-Hamed
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada.
| | - Ibrahim Dincer
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada.
| |
Collapse
|
63
|
Development of polyethylenimine (PEI)-impregnated mesoporous carbon spheres for low-concentration CO2 capture. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
64
|
Abdelkareem MA, Lootah MA, Sayed ET, Wilberforce T, Alawadhi H, Yousef BAA, Olabi AG. Fuel cells for carbon capture applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144243. [PMID: 33493911 DOI: 10.1016/j.scitotenv.2020.144243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The harmful effect of carbon pollution leads to depletion of the ozone layer, which is one of the main challenges confronting the world. Although progress is made in developing different carbon dioxide (CO2) capturing methods, these methods are still expensive and face several technical challenges. Fuel cells (FCs) are efficient energy converting devices that produce energy via an electrochemical process. Recently varying kinds of fuel cells are considered as an effective method for CO2 capturing and/or conversion. Among the different types of fuel cells, solid oxide fuel cells (SOFCs), molten carbonate fuel cells (MCFCs), and microbial fuel cells (MFCs) demonstrated promising results in this regard. High-temperature fuel cells such as SOFCs and MCFCs are effectively used for CO2 capturing through their electrolyte and have shown promising results in combination with power plants or industrial effluents. An algae-based microbial fuel cell is an electrochemical device used to capture and convert carbon dioxide through the photosynthesis process using algae strains to organic matters and simultaneously power generation. This review present a brief background about carbon capture and storage techniques and the technological advancement related to carbon dioxide captured by different fuel cells, including molten carbonate fuel cells, solid oxide fuel cells, and algae-based fuel cells.
Collapse
Affiliation(s)
- Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Center for Advanced Materials Research, Research Institute Of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Maryam Abdullah Lootah
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Enas Taha Sayed
- Center for Advanced Materials Research, Research Institute Of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| | - Tabbi Wilberforce
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute Of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Dept. of Applied Physics, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Bashria A A Yousef
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - A G Olabi
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
65
|
A Process for Carbon Dioxide Capture Using Schiff Bases Containing a Trimethoprim Unit. Processes (Basel) 2021. [DOI: 10.3390/pr9040707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental problems associated with the growing levels of carbon dioxide in the atmosphere due to the burning of fossil fuels to satisfy the high demand for energy are a pressing concern. Therefore, the design of new materials for carbon dioxide storage has received increasing research attention. In this work, we report the synthesis of three new Schiff bases containing a trimethoprim unit and the investigation of their application as adsorbents for carbon dioxide capture. The reaction of trimethoprim and aromatic aldehydes in acid medium gave the corresponding Schiff bases in 83%–87% yields. The Schiff bases exhibited surface areas ranging from 4.15 to 20.33 m2/g, pore volumes of 0.0036–0.0086 cm3/g, and average pore diameters of 6.64–1.4 nm. An excellent carbon dioxide uptake (27–46 wt%) was achieved at high temperature and pressure (313 K and 40 bar, respectively) using the Schiff bases. The 3-hydroxyphenyl-substituted Schiff base, which exhibited a meta-arrangement, provided the highest carbon dioxide uptake (46 wt%) due to its higher surface area, pore volume, and pore diameter compared with the other two derivatives with a para-arrangement.
Collapse
|
66
|
Abstract
Carbon sequestration via the carbon capture and storage (CCS) method is one of the most useful methods of lowering CO2 emissions in the atmosphere. Ethylenediamine (EDA)- and triethylenetetramine (TETA)-modified mesoporous carbon (MC) has been successfully prepared as a CO2 storage material. The effect of various concentrations of EDA or TETA added to MC, as well as activated carbon (AC), on their CO2 adsorption capacity were investigated using high-purity CO2 as a feed and a titration method to quantitatively measure the amount of adsorbed CO2. The results showed that within 60 min adsorption time, MCEDA49 gave the highest CO2 capacity adsorption (19.68 mmol/g), followed by MC-TETA30 (11.241 mol/g). The improvement of CO2 adsorption capacity at low TETA loadings proved that the four amine functional groups in TETA gave an advantage to CO2 adsorption. TETA-functionalized MC has the potential to be used as a CO2 storage material at a low concentration. Therefore, it is relatively benign and friendly to the environment.
Collapse
|
67
|
Bahamon D, Anlu W, Builes S, Khaleel M, Vega LF. Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO 2 Capture and Separation: A Molecular Simulation Study. Front Chem 2021; 8:574622. [PMID: 33585395 PMCID: PMC7873881 DOI: 10.3389/fchem.2020.574622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Different types of amine-functionalized MOF structures were analyzed in this work using molecular simulations in order to determine their potential for post-combustion carbon dioxide capture and separation. Six amine models -of different chain lengths and degree of substitution- grafted to the unsaturated metal sites of the M2(dobdc) MOF [and its expanded version, M2(dobpdc)] were evaluated, in terms of adsorption isotherms, selectivity, cyclic working capacity and regenerability. Good agreement between simulation results and available experimental data was obtained. Moreover, results show two potential structures with high cyclic working capacities if used for Temperature Swing Adsorption processes: mmen/Mg/DOBPDC and mda-Zn/DOBPDC. Among them, the -mmen functionalized structure has higher CO2 uptake and better cyclability (regenerability) for the flue gas mixtures and conditions studied. Furthermore, it is shown that more amine functional groups grafted on the MOFs and/or full functionalization of the metal centers do not lead to better CO2 separation capabilities due to steric hindrances. In addition, multiple alkyl groups bonded to the amino group yield a shift in the step-like adsorption isotherms in the larger pore structures, at a given temperature. Our calculations shed light on how functionalization can enhance gas adsorption via the cooperative chemi-physisorption mechanism of these materials, and how the materials can be tuned for desired adsorption characteristics.
Collapse
Affiliation(s)
- Daniel Bahamon
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wei Anlu
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Chemical Engineering Department, China University of Petroleum, Dongying, China
| | - Santiago Builes
- Process Engineering Department, EAFIT University, Medellin, Colombia
| | - Maryam Khaleel
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Lourdes F Vega
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
68
|
Rashidi NA, Yusup S. Co-valorization of delayed petroleum coke - palm kernel shell for activated carbon production. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123876. [PMID: 33264948 DOI: 10.1016/j.jhazmat.2020.123876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
In this study, a binary mixture of petroleum coke and palm kernel shell had been investigated as potential starting materials for activated carbon production. Single-stage potassium carbonate (K2CO3) activation under nitrogen (N2) atmosphere was adopted in this research study. Effect of several operating parameters that included the impregnation ratio (1-3 wt./wt.), activation temperature (600-800 °C), and dwell time (1-2 hrs) were analyzed by using the Box-Behnken experimental design. Influence of these parameters towards activated carbon yield (Y1) and carbon dioxide (CO2) adsorption capacity at an atmospheric condition (Y2) were investigated. The optimum conditions for the activated carbon production were attained at impregnation ratio of 1.75:1, activation temperature of 680 °C, and dwell time of 1 h, with its corresponding Y1 and Y2 is 56.2 wt.% and 2.3991 mmol/g, respectively. Physicochemical properties of the pristine materials and synthesized activated carbon at the optimum conditions were analyzed in terms of their decomposition behavior, surface morphology, elemental composition, and textural characteristics. The study revealed that the blend of petroleum coke and palm kernel shell can be effectively used as the activated carbon precursors, and the experimental findings demonstrated comparable CO2 adsorption performance with commercial activated carbon as well as that in literatures.
Collapse
Affiliation(s)
- Nor Adilla Rashidi
- Chemical Engineering Department, National Higher Institution Centre of Excellence - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Suzana Yusup
- Chemical Engineering Department, National Higher Institution Centre of Excellence - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
69
|
Equilibrium and Kinetics of CO2 Adsorption by Coconut Shell Activated Carbon Impregnated with Sodium Hydroxide. Processes (Basel) 2021. [DOI: 10.3390/pr9020201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The equilibrium and kinetics of CO2 adsorption at 273 K by coconut-shell activated carbon impregnated with sodium hydroxide (NaOH) was investigated. Based on nitrogen adsorption isotherms, porous properties of the tested activated carbons decreased with the increase of NaOH loading, with the decrease resulting primarily from the reduction of pore space available for nitrogen adsorption. Equilibrium isotherms of CO2 adsorption by activated carbons impregnated with NaOH at 273 K and the pressure up to 100 kPa displayed an initial part of Type I isotherm with most adsorption taking place in micropores in the range of 0.7–0.9 nm by pore-filling mechanisms. The amount of CO2 adsorbed increased with the increase of NaOH loading and passed through a maximum at the optimum NaOH loading of 180 mg/g. The CO2 isotherm data were best fitted with the three-parameter Sips equation, followed by Freundlich and Langmuir equations. The pore diffusion model, characterized by the effective pore diffusivity (De), could well describe the adsorption kinetics of CO2 in activated carbons impregnated with NaOH. The variation of De with the amount of CO2 adsorbed showed three consecutive regions, consisting of a rapid decrease of De for CO2 loading less than 40 mg/g, a relatively constant value of De for the CO2 loading of 40–80 mg/g and a slow decrease of De for the CO2 loading of 80–200 mg/g. The maximum De occurred at the optimum NaOH loading of 180 mg/g, in line with the equilibrium adsorption results. The values of De varied from 1.1 × 10−9 to 5.5 × 10−9 m2/s, which are about four orders of magnitude smaller than the molecular diffusion of CO2 in air. An empirical correlation was developed for predicting the effective pore diffusivity with the amount of CO2 adsorbed and NaOH loading.
Collapse
|
70
|
Zhang X, Elsayed I, Song X, Shmulsky R, Hassan EB. Microporous carbon nanoflakes derived from biomass cork waste for CO 2 capture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142465. [PMID: 33113689 DOI: 10.1016/j.scitotenv.2020.142465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Porous structure design is considered to be a promising strategy for the development of effective sorbents for CO2 capture. Herein, a series of carbon nanoflakes with large surface area (up to 2380 m2/g) and high micropore volume (up to 0.896 m3/g) were synthesized from a renewable precursor, cork dust waste, to capture CO2 at atmospheric pressure. The nanoflakes exhibited superior CO2 uptake performance at 1 bar with the maximum capacity of 7.82 and 4.27 mmol/g at 0 and 25 °C, respectively, in sharp contrast to previously reported porous carbon materials. The existence of large numbers of narrow micropores with the pore width less than 0.86 nm and 0.70 nm play a critical role in the CO2 uptake at 0 and 25 °C, respectively. Moreover, the CNFs exhibited good recyclability and high selectivity for CO2 uptake from the mixture of CO2 and N2. By taking advantage of the unique hollow honeycomb cell, the three-layered cell wall structure, as well as the unique chemical composition of a cork precursor, such delicate microporous carbon nanoflakes were able to be achieved by simple thermal pretreatment combined with chemical activation. This bioinspired precursor-synthesis route poses a great potential for the facile production of porous carbons for a variety of diverse applications including CO2 capture.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Islam Elsayed
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xiaozhou Song
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rubin Shmulsky
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
71
|
Panda D, Saini C, Kumar EA, Singh SK. In situ casting of rice husk ash in metal organic frameworks induces enhanced CO 2 capture performance. Sci Rep 2020; 10:20219. [PMID: 33214652 PMCID: PMC7678836 DOI: 10.1038/s41598-020-77213-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/08/2020] [Indexed: 12/02/2022] Open
Abstract
Incorporation of rice-husk-ash (RHA), an agricultural waste, in situ during the synthesis of MIL-101(Cr) resulted in a significant improvement in the CO2 adsorption properties over the synthesized RHA-MIL-101(Cr). The newly synthesized RHA-MIL-101(Cr) composite exhibited an enhancement of 14-27% in CO2 adsorption capacity as compared to MIL-101(Cr) at 25 °C and 1 bar. The content of RHA incorporated in RHA-MIL-101(Cr) fine tuned the CO2 capture performance to achieve high working capacity (0.54 mmol g-1), high purity (78%), superior CO2/N2 selectivity (18) and low isosteric heat of adsorption (20-30 kJ mol-1). The observed superior CO2 adsorption performance of RHA-MIL-101(Cr) is attributed to the fine tuning of textural characteristics-enhancement of 12-27% in BET surface area, 12-33% in total pore volume and 18-30% in micropore volume-upon incorporation of RHA in MIL-101(Cr).
Collapse
Affiliation(s)
- Debashis Panda
- Discipline of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Chanchal Saini
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - E Anil Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517506, India
| | - Sanjay Kumar Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
72
|
Synthesis and use of carvedilol metal complexes as carbon dioxide storage media. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
The consequences of increased fossil fuel consumption on the environment presents a challenge. Carbon dioxide capture is a useful technique to reduce global warming. Therefore, three carvedilol metal (nickel, cobalt, and copper) complexes were synthesized as potential carbon dioxide storage media. The structural and textural properties of metal carvedilol complexes have been established using various techniques. The metal complexes have mesoporous structures in which pore size was approximately 3 nm. Particle size ranged from 51.0 to 393.9 nm with a relatively small surface area (6.126–9.073 m2/g). The carvedilol metal complexes have either type-III or IV nitrogen adsorption–desorption isotherm. The complexes showed reasonable capacity towards carbon dioxide uptake (up to 18.21 cm3/g) under the optimized condition (40 bar and 323 K).
Graphical Abstract
Collapse
|
73
|
Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite. ENERGIES 2020. [DOI: 10.3390/en13174556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coal combustion flue gas contains CO2, a greenhouse gas and driver of climate change. Therefore, CO2 separation and removal is necessary. Fortunately, 5A zeolites are highly porous and can be used as a CO2 adsorbent. In addition, they act as nuclei for hydrate formation. In this work, a composite technology, based on the physical adsorption of CO2 by 5A zeolite and hydrate-based gas separation, was used to separate CO2/N2 gas mixtures. The influence of water content, temperature, pressure, and particle size on gas adsorption and CO2 separation was studied, revealing that the CO2 separation ability of zeolite particles sized 150–180 μm was better than that of those sized 380–830 μm at 271.2 K and 273.2 K. When the zeolite particles were 150–180 μm (type-B zeolite) with a water content of 35.3%, the gas consumption per mole of water (ngas/nH2O ) reached the maximum, 0.048, and the CO2 separation ratio reached 14.30%. The CO2 molar concentration in the remaining gas phase (xCO2gas) was lowest at 271.2 K in the type-B zeolite system with a water content of 47.62%. Raman analysis revealed that CO2 preferentially occupied the small hydrate cages and there was a competitive relationship between N2 and CO2.
Collapse
|
74
|
Liu S, Rao L, Yang P, Wang X, Wang L, Ma R, Yue L, Hu X. Superior CO 2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin. J Environ Sci (China) 2020; 93:109-116. [PMID: 32446445 DOI: 10.1016/j.jes.2020.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/28/2023]
Abstract
In this study, N-doped porous carbons were produced with commercial phenolic resin as the raw material, urea as the nitrogen source and KOH as the activation agent. Different from conventional carbonization-nitriding-activation three-step method, a facile two-step process was explored to produce N-incorporated porous carbons. The as-obtained adsorbents hold superior CO2 uptake, i.e. 5.01 and 7.47 mmol/g at 25 °C and 0 °C under 1 bar, respectively. The synergistic effects of N species on the surface and narrow micropores of the adsorbents decide their CO2 uptake under 25 °C and atmospheric pressure. These phenolic resin-derived adsorbents also possess many extremely promising CO2 adsorption features like good recyclability, quick adsorption kinetics, modest heat of adsorption, great selectivity of CO2 over N2 and outstanding dynamic adsorption capacity. Cheap precursor, easy preparation strategy and excellent CO2 adsorption properties make these phenolic resin-derived N-doped carbonaceous adsorbents highly promising in CO2 capture.
Collapse
Affiliation(s)
- Shenfang Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Linli Rao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Pupu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xinyi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Linlin Wang
- College of Engineering, Zhejiang Normal University, 688 Yingbin Ave. Jinhua 321004, PR China
| | - Rui Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Limin Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
75
|
Huang YH, Garcia-Segura S, de Luna MDG, Sioson AS, Lu MC. Beyond carbon capture towards resource recovery and utilization: fluidized-bed homogeneous granulation of calcium carbonate from captured CO 2. CHEMOSPHERE 2020; 250:126325. [PMID: 32234625 DOI: 10.1016/j.chemosphere.2020.126325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric carbon dioxide (CO2) imbalance due to anthropogenic emissions has direct impact in climate change. Recent advancements in the mitigation of industrial CO2 emissions have been brought about by a paradigm shift from mere CO2 capture onto various adsorbents to CO2 conversion into high value products. The present study proposes a system which involves the conversion of CO2 into high purity, low moisture, compact and large CaCO3 solids through homogeneous granulation in a fluidized-bed reactor (FBR). In the present study, synthetic solutions of potassium carbonate (K2CO3) and calcium hydroxide (Ca(OH)2) were used as sources of carbonate and precipitant, respectively. The effects of the degree of supersaturation (S) as chemical loading and influx flow rate (QT) as hydraulic loading on CaCO3 granulation efficiency were investigated. In the study, S was varied from 10.2 to 10.8 and QT from 40 to 80 mL min-1 while the operating pH and calcium-is-to-carbonate molar ratio ([Ca2+]/[CO32-]) were set at 10 ± 0.2 and 1.50, respectively. Results showed that carbonate ions end product distribution had a highest carbonate granulation efficiency at [Carbonate]G of 95-96% using S of 10.6 and QT of 60 mL min-1. Characterization of the granules confirmed high purity calcium carbonate. Overall, the transformation of industrial CO2 emissions into a valuable solid product can be a significant move towards the mitigation of climate change from anthropogenic emissions.
Collapse
Affiliation(s)
- Yao-Hui Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, United States
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines; Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| | - Arianne S Sioson
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan, ROC.
| |
Collapse
|
76
|
Rouzitalab Z, Maklavany DM, Jafarinejad S, Rashidi A. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process. CHEMOSPHERE 2020; 246:125756. [PMID: 31918088 DOI: 10.1016/j.chemosphere.2019.125756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The increasing demand for energy all around the world has led to a rise in greenhouse gases (GHGs), of which carbon dioxide (CO2) is the most important. CO2 is largely responsible for global warming and climate change. Processes such as carbon dioxide capture and storage (CCS), which have an effective role in climate mitigation, seem to be promising. In recent years, porous carbons, particularly activated carbons (ACs), have rapidly emerged as one of the most effective adsorbents of CO2. However, the implementation of pristine ACs in the real world is still hindered due to their physical and weak adsorption, which makes these adsorbents sensitive to temperature and relatively poor in selectivity. Hence, the surface modification of ACs is essential in order to improve their surface area, pore structure and alkalinity. Numerous studies have reported lignocellulose-based ACs as very promising adsorbents of CO2. In this review, the sources, health and environmental effects of CO2, and the abatement methods of GHGs are described. In addition, the capture and separation of CO2 from gas stream using various types of lignocellulose-based ACs are summarized. Furthermore, the key factors controlling the adsorption of CO2 by ACs (characteristics of adsorbents, preparation conditions, as well as adsorption conditions) are comprehensively and critically discussed. Finally, future research needs and prospective research challenges are summarized.
Collapse
Affiliation(s)
- Zahra Rouzitalab
- Civil Engineering Division, College of Environment, Karaj, P.O. Box 31746-74761, Alborz, Iran
| | - Davood Mohammady Maklavany
- Carbon & Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, P.O. Box 31746-74761, Tehran, Iran
| | - Shahryar Jafarinejad
- Department of Chemical Engineering, College of Engineering, Tuskegee University, Tuskegee, P.O. Box 5899, Alabama, 36088, USA
| | - Alimorad Rashidi
- Carbon & Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, P.O. Box 31746-74761, Tehran, Iran.
| |
Collapse
|
77
|
Liu W, Wu Y, Cai T, Xu Z, Liu D, Ma J, Chen X, Liu D. A molding method of Na2CO3/Al2O3 sorbents with high sphericity and low roughness for enhanced attrition resistance in CO2 sorption/desorption process via extrusion-spheronization method. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Porous Aromatic Melamine Schiff Bases as Highly Efficient Media for Carbon Dioxide Storage. Processes (Basel) 2019. [DOI: 10.3390/pr8010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy demand has led to excessive fuel consumption and high-concentration CO2 production. CO2 release causes serious environmental problems such as the rise in the Earth’s temperature, leading to global warming. Thus, chemical industries are under severe pressure to provide a solution to the problems associated with fuel consumption and to reduce CO2 emission at the source. To this effect, herein, four highly porous aromatic Schiff bases derived from melamine were investigated as potential media for CO2 capture. Since these Schiff bases are highly aromatic, porous, and have a high content of heteroatoms (nitrogen and oxygen), they can serve as CO2 storage media. The surface morphology of the Schiff bases was investigated through field emission scanning electron microscopy, and their physical properties were determined by gas adsorption experiments. The Schiff bases had a pore volume of 0.005–0.036 cm3/g, an average pore diameter of 1.69–3.363 nm, and a small Brunauer–Emmett–Teller surface area (5.2–11.6 m2/g). The Schiff bases showed remarkable CO2 uptake (up to 2.33 mmol/g; 10.0 wt%) at 323 K and 40 bars. The Schiff base containing the 4-nitrophenyl substituent was the most efficient medium for CO2 adsorption and, therefore, can be used as a gas sorbent.
Collapse
|
79
|
Baby R, Saifullah B, Hussein MZ. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. NANOSCALE RESEARCH LETTERS 2019; 14:341. [PMID: 31712991 PMCID: PMC6848366 DOI: 10.1186/s11671-019-3167-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.
Collapse
Affiliation(s)
- Rabia Baby
- Education Department Sukkur IBA University, Sukkur, Sindh 65200 Pakistan
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Bullo Saifullah
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Zobir Hussein
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
80
|
Synthesis of Novel Heteroatom-Doped Porous-Organic Polymers as Environmentally Efficient Media for Carbon Dioxide Storage. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
Collapse
|