51
|
Electrospinning as a novel strategy for the encapsulation of living probiotics in polyvinyl alcohol/silk fibroin. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
52
|
Mabrouk AM, Salama HH, El Sayed HS, El Sayed SM. Preparation of symbiotic whey protein gel as a carrier of free and encapsulated probiotic bacteria. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Heba H. Salama
- Dairy Science Department National Research Centre Giza Egypt
| | | | | |
Collapse
|
53
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
54
|
Barajas-Álvarez P, González-Ávila M, Espinosa-Andrews H. Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paloma Barajas-Álvarez
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Guadalajara, Jalisco, Mexico
| | - Hugo Espinosa-Andrews
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| |
Collapse
|
55
|
Doğan B, Kemer Doğan ES, Özmen Ö, Fentoğlu Ö, Kırzıoğlu FY, Calapoğlu M. Synergistic Effect of Omega-3 and Probiotic Supplementation on Preventing Ligature-Induced Periodontitis. Probiotics Antimicrob Proteins 2021; 14:114-120. [PMID: 34037942 DOI: 10.1007/s12602-021-09803-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/03/2023]
Abstract
Omega-3 and probiotics were shown to improve periodontal health by modulating the host immune response. Recently, the combination of omega-3 and probiotics has been shown to have a potential synergistic effect on host modulation. The aim of this study was to evaluate the prophylactic role of an omega-3 and probiotic combination on alveolar bone loss (ABL) via inflammatory response in an experimental periodontitis model. Forty-three rats were divided into 5 groups as control (C, n = 8), periodontitis (P, n = 8), omega-3 + periodontitis (O, n = 8), probiotic + periodontitis (Pro, n = 10), and omega-3 + probiotic + periodontitis (OPro, n = 9). Additionally to a standardized diet, omega-3 and/or probiotics were supplemented with oral gavage to the O, Pro, and OPro groups for 44 days. Periodontitis was induced by ligature to the P, O, Pro, and OPro groups on the 30th day for 2 weeks. ABL levels were measured histopathologically, and serum interleukin (IL) 1β, IL6, and IL10 levels were analysed by enzyme-linked immunosorbent assay. ABL increased in all periodontitis groups (P, O, Pro, and OPro), compared to C group. Compared to P group, all oral gavage groups (O, Pro, and OPro) revealed decreased ABL, which was lowest in OPro group. IL1β and IL6 decreased and IL10 increased in OPro group, compared to P group. In conclusion, prophylactic administration of omega-3 and probiotic combination reduced ABL and improved serum IL1β, IL6, and IL10 levels more than their single use.
Collapse
Affiliation(s)
- Burak Doğan
- Department of Periodontology, Faculty of Dentistry, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Esra Sinem Kemer Doğan
- Department of Periodontology, Faculty of Dentistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Özlem Fentoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Fatma Yeşim Kırzıoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Mustafa Calapoğlu
- Department of Biochemistry, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
56
|
Carpentier J, Conforto E, Chaigneau C, Vendeville JE, Maugard T. Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
57
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
58
|
Kahieshesfandiari M, Nami Y, Lornezhad G, Kiani A, Javanmard A, Jaymand M, Haghshenas B. Herbal hydrogel-based encapsulated Enterococcus faecium ABRIINW.N7 improves the resistance of red hybrid tilapia against Streptococcus iniae. J Appl Microbiol 2021; 131:2516-2527. [PMID: 33817937 DOI: 10.1111/jam.15098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
Abstract
AIMS The streptococcal disease has been associated with serious mortality and significant global economic loss in the tilapia farming industry. The overall goal of this work was to test herbal hydrogels based on encapsulated Enterococcus faecium ABRIINW.N7 for potential probiotic anti-microbial activity against Streptococcus iniae in red hybrid tilapia. METHODS AND RESULTS Abnormal behaviour, clinical signs, postinjection survival and histopathology (kidney, liver, eye and brain) were measured. Cumulative mortality of CON+ , free cells, ALG and treatments (F1-F7) was 30, 24, 22, 19, 17, 17, 16, 14, 14 and 12 out of 30 fish and the survival rates for E. faecium ABRIINW.N7 microencapsulated in an alginate-BS blend with 0·5, 1, 1·5, 2, 2·5 and 3% fenugreek were 43, 43, 47, 53, 53 and 60%, respectively. After the incorporation of fenugreek with the alginate-BS blend, there was an 8-21% increase in probiotic cell viability. Furthermore, the survival rate for the alginate-BS blend with 2·5 and 3% fenugreek (F6 and F7) was significantly (P ≤ 0·05) higher than other blends. The highest encapsulation efficiency, viability in gastrointestinal conditions and during storage time and excellent antipathogenicity against S. iniae were observed in alginate-BS +3% fenugreek formulation (F7). CONCLUSIONS It is recommended that probiotic strains like E. faecium ABRIINW.N7 in combination with local herbal gums, such as BS and fenugreek plus alginate, can be used as a suitable scaffold and an ideal matrix for the encapsulation of probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposes models connecting process parameters, matrix structure and functionality.
Collapse
Affiliation(s)
- M Kahieshesfandiari
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Y Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - G Lornezhad
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Javanmard
- Animal Genetics and Breeding Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - M Jaymand
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - B Haghshenas
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
59
|
Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106496] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Sun C, Wang C, Xiong Z, Fang Y. Properties of binary complexes of whey protein fibril and gum arabic and their functions of stabilizing emulsions and simulating mayonnaise. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Fraj J, Petrović L, Đekić L, Budinčić JM, Bučko S, Katona J. Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
63
|
Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Room Temperature Nanoencapsulation of Bioactive Eicosapentaenoic Acid Rich Oil within Whey Protein Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:575. [PMID: 33668857 PMCID: PMC7996356 DOI: 10.3390/nano11030575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
In this study, emulsion electrospraying assisted by pressurized gas (EAPG) has been performed for the first time to entrap ca. 760 nm droplets of the bioactive eicosapentaenoic acid (EPA)-rich oil into whey protein concentrate (WPC) at room temperature. The submicron droplets of EPA oil were encapsulated within WPC spherical microparticles, with sizes around 5 µm. The EPA oil did not oxidize in the course of the encapsulation performed at 25 °C and in the presence of air, as corroborated by the peroxide value measurements. Attenuated Total Reflection-Fourier Transform Infrared spectroscopy and oxygen consumption tests confirmed that the encapsulated EPA-rich oil showed increased oxidative stability in comparison with the free oil during an accelerated oxidation test under ultraviolet light. Moreover, the encapsulated EPA-rich oil showed increased thermal stability in comparison with the free oil, as measured by oxidative thermogravimetric analysis. The encapsulated EPA-rich oil showed a somewhat reduced organoleptic impact in contrast with the neat EPA oil using rehydrated powdered milk as a reference. Finally, the oxidative stability by thermogravimetric analysis and organoleptic impact of mixtures of EPA and docosahexaenoic acid (DHA)-loaded microparticles was also studied, suggesting an overall reduced organoleptic impact compared to pure EPA. The results here suggest that it is possible to encapsulate 80% polyunsaturated fatty acids (PUFAs)-enriched oils by emulsion EAPG technology at room temperature, which could be used to produce personalized nutraceuticals or pharmaceuticals alone or in combination with other microparticles encapsulating different PUFAs to obtain different targeted health and organoleptic benefits.
Collapse
Affiliation(s)
- Juan David Escobar-García
- Research & Development Department, Bioinicia S.L., Calle Algepser 65, 46980 Paterna, Spain; (J.D.E.-G.); (M.P.-F.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Research & Development Department, Bioinicia S.L., Calle Algepser 65, 46980 Paterna, Spain; (J.D.E.-G.); (M.P.-F.)
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
64
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
65
|
Beldarrain-Iznaga T, Villalobos-Carvajal R, Leiva-Vega J, Sevillano Armesto E. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
67
|
Otálora MC, Camelo R, Wilches-Torres A, Cárdenas-Chaparro A, Gómez Castaño JA. Encapsulation Effect on the In Vitro Bioaccessibility of Sacha Inchi Oil ( Plukenetia volubilis L.) by Soft Capsules Composed of Gelatin and Cactus Mucilage Biopolymers. Polymers (Basel) 2020; 12:polym12091995. [PMID: 32887385 PMCID: PMC7564295 DOI: 10.3390/polym12091995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) seed oil is a rich source of polyunsaturated fatty acids (PUFAs) that are beneficial for human health, whose nutritional efficacy is limited because of its low water solubility and labile bioaccessibility (compositional integrity). In this work, the encapsulation effect, using blended softgels of gelatin (G) and cactus mucilage (CM) biopolymers, on the PUFAs’ bioaccessibility of P. volubilis seed oil was evaluated during in vitro simulated digestive processes (mouth, gastric, and intestinal). Gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID) were used for determining the chemical composition of P. volubilis seed oil both before and after in vitro digestion. The most abundant compounds in the undigested samples were α-linolenic, linoleic, and oleic acids with 59.23, 33.46, and 0.57 (g/100 g), respectively. The bioaccessibility of α-linolenic, linoleic, and oleic acid was found to be 1.70%, 1.46%, and 35.8%, respectively, along with the presence of some oxidation products. G/CM soft capsules are capable of limiting the in vitro bioaccessibility of PUFAs because of the low mucilage ratio in their matrix, which influences the enzymatic hydrolysis of gelatin, thus increasing the release of the polyunsaturated content during the simulated digestion.
Collapse
Affiliation(s)
- María Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
- Correspondence: (M.C.O.); (J.A.G.C.)
| | - Robinson Camelo
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
| | - Agobardo Cárdenas-Chaparro
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
- Correspondence: (M.C.O.); (J.A.G.C.)
| |
Collapse
|
68
|
Costa AM, Moretti LK, Simões G, Silva KA, Calado V, Tonon RV, Torres AG. Microencapsulation of pomegranate (Punica granatum L.) seed oil by complex coacervation: Development of a potential functional ingredient for food application. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
69
|
Zhao M, Huang X, Zhang H, Zhang Y, Gänzle M, Yang N, Nishinari K, Fang Y. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105790] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
70
|
Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
71
|
Nami Y, Lornezhad G, Kiani A, Abdullah N, Haghshenas B. Alginate-Persian Gum-Prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109190] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
72
|
Interplaying Effects of Wall and Core Materials on the Property and Functionality of Microparticles for Co-Encapsulation of Vitamin E with Coenzyme Q10. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02431-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Calderón‐Oliver M, Escalona‐Buendía HB, Ponce‐Alquicira E. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Sci Nutr 2020; 8:1325-1334. [PMID: 32180942 PMCID: PMC7063373 DOI: 10.1002/fsn3.1359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
This study evaluated the incorporation of microcapsules containing nisin and avocado peel extract on the shelf life of ground beef. Ten treatments were studied and divided into two groups: one packaged under vacuum and the other in permeable packaging. Each group contained: (a) control, (b) extract, (c) nisin, (d) empty microcapsules (only wall microcapsule system), and (e) microcapsules with extract and nisin. The samples containing the microcapsules presented lower bacterial growth and less oxidation. On day 10, the vacuum-packaged samples with microencapsulated preservative presented a reduction in the oxidation of proteins of approximately 45%, of 30% in the growth of mesophiles, and of 38% in the growth of coliforms, as well as a reduction in the changes in the pH and ɑ W that occur during storage, compared with the permeable control. The combination of microcapsules with vacuum packaging reduced the physicochemical and microbiological changes that occur in the controls.
Collapse
Affiliation(s)
- Mariel Calderón‐Oliver
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasToluca de LerdoMexico
- Departamento de BiotecnologíaUniversidad Autónoma MetropolitanaIztapalapaMexico
| | | | | |
Collapse
|
74
|
Gul LB, Gul O, Yilmaz MT, Dertli E, Con AH. Optimization of cryoprotectant formulation to enhance the viability of
Lactobacillus brevis
ED25: Determination of storage stability and acidification kinetics in sourdough. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Latife Betul Gul
- Department of Food Engineering Faculty of Engineering Ondokuz Mayis University Samsun Turkey
| | - Osman Gul
- Department of Food Engineering Faculty of Engineering and Architecture Kastamonu University Kastamonu Turkey
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering Faculty of Engineering King Abdulaziz University Jeddah Saudi Arabia
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Yıldız Technical University İstanbul Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Engineering Bayburt University Bayburt Turkey
| | - Ahmet Hilmi Con
- Department of Food Engineering Faculty of Engineering Ondokuz Mayis University Samsun Turkey
| |
Collapse
|
75
|
Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Compr Rev Food Sci Food Saf 2020; 19:857-874. [DOI: 10.1111/1541-4337.12532] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | | | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNatl. Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang Univ. Hangzhou 310003 China
| |
Collapse
|
76
|
Timilsena YP, Haque MA, Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/fns.2020.116035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
77
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
78
|
da Silva TM, de Deus C, de Souza Fonseca B, Lopes EJ, Cichoski AJ, Esmerino EA, de Bona da Silva C, Muller EI, Moraes Flores EM, de Menezes CR. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Res Int 2019; 125:108577. [DOI: 10.1016/j.foodres.2019.108577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 01/23/2023]
|
79
|
Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Zhang H, Fan Q, Li D, Chen X, Liang L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids Surf B Biointerfaces 2019; 181:749-755. [PMID: 31234062 DOI: 10.1016/j.colsurfb.2019.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 06/15/2019] [Indexed: 11/28/2022]
Abstract
In protein-stabilized oil-in-water emulsions, a co-emulsifier may also be an antioxidant, increasing the oxidative stability of the oil and adding nutritional value to the formulation. We investigated the impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions produced using whey protein isolate in the absence and presence of calcium. Gum Arabic increased the protein and resveratrol contents at the oil-water interface and the stability of resveratrol, which was enhanced by calcium. Resveratrol increased the oxidative stability of the oil. These results indicate that resveratrol is stable in the interfacial membrane of emulsions made with whey protein isolate, calcium and gum Arabic and suggest that oil-in-water emulsions could be used as potential carriers of co-encapsulated functional oils and polyphenolic antioxidants.
Collapse
Affiliation(s)
- Haixia Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qi Fan
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan, Shandong, China
| | - Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
81
|
Weiss J, Salminen H, Moll P, Schmitt C. Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures. Adv Colloid Interface Sci 2019; 271:101987. [PMID: 31325651 DOI: 10.1016/j.cis.2019.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Mixed protein-polysaccharide structures have found widespread applications in various fields, such as in foods, pharmaceuticals or personal care products. A better understanding and a more precise control over the molecular interactions between the two types of macromolecules leading to an engineering of nanoscale and colloidal building blocks have fueled the design of novel structures with improved functional properties. However, these building blocks often do not constitute the final matrix. Rather, further process operations are used to transform the initially formed structural entities into bulk matrices. Systematic knowledge on the relation between molecular structure design and subsequent mesoscopic scale transitions induced by processing is scarce. This article aims at establishing a connection between these two approaches. Therefore, it reviews not only studies on the underlying molecular interaction phenomena leading to either a segregative or associative phase behavior and nanoscale or colloidal structures, but also looks at the less systematically studied approach of using macroscopic processing operations such as shearing, heating, crosslinking, and concentrating/drying to transform the initially generated structures into bulk matrices. Thereby, a more comprehensive look is taken at the relationship between different influencing factors, namely solvent conditions (i.e. pH, ionic strength), biopolymer characteristics (i.e. type, charge density, mixing ratio, biopolymer concentration), and processing parameters (i.e. temperature, mechanical stresses, pressure) to generate bulk protein-polysaccharide matrices with different morphological features. The need for a combinatorial approach is then demonstrated by reviewing in detail current mixed protein-polysaccharide applications that increasingly make use of this. In the process, open scientific questions that will need to be addressed in the future are highlighted.
Collapse
Affiliation(s)
- Jochen Weiss
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Hanna Salminen
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Pascal Moll
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Food Physics and Meat Science (150g), Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Christophe Schmitt
- Nestec Research, Nestlé Institute of Material Sciences, Department of Chemistry, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| |
Collapse
|
82
|
Esquerdo VM, Monte ML, Pinto LADA. Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
83
|
Paula DDA, Martins EMF, Costa NDA, de Oliveira PM, de Oliveira EB, Ramos AM. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int J Biol Macromol 2019; 133:722-731. [PMID: 31002903 DOI: 10.1016/j.ijbiomac.2019.04.110] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The objectives of this study were i) to microencapsulate probiotic cells of Lactobacillus plantarum through a dual process consisting of emulsification followed by complex coacervation using gelatin and gum arabic, ii) to characterize the lyophilized microcapsules, iii) to evaluate their behavior in simulated in vitro gastrointestinal conditions and iv) to evaluate the survival of microencapsulated probiotic cells during 45 days of storage at 8 °C, 25 °C and -18 °C. The optimized conditions for complex coacervation consisted of a 50:50 biopolymer ratio and pH = 4.0. Emulsification was followed by complex coacervation using gelatin and gum arabic. The microcapsules presented dispersibility of 0.183 ± 0.17 g·mL-1, moisture content of 4.5%, water activity of 0.34 ± 0.03 and hygroscopicity of 9.20 ± 0.43 g of absorbed water per 100 g. Their size ranged from 66.07 ± 3.04 μm to 105.66 ± 3.24 μm. Viability of the encapsulated L. plantarum cells was 8.6 log CFU·g-1 and the encapsulation efficiency was 97.78%. After in vitro simulation of gastrointestinal conditions, viability of the encapsulated cells was 80.4% whereas it was only 25.0% for the free cells at 37 °C. Probiotic cell viability was maintained during storage at 8 °C and - 18 °C for 45 days.
Collapse
Affiliation(s)
- Daniele de Almeida Paula
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil.
| | - Eliane Maurício Furtado Martins
- Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Food Science and Technology Department, Av. Dr. José Sebastião da Paixão - Lindo Vale, 36180-000 Rio Pomba, Minas Gerais, Brazil
| | - Nataly de Almeida Costa
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Patrícia Martins de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Eduardo Basílio de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Afonso Mota Ramos
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
84
|
Satapathy M, Quereshi D, Hanh Nguyen TT, Pani D, Mohanty B, Anis A, Maji S, Kim D, Sarkar P, Pal K. Preparation and characterization of cocoa butter and whey protein isolate based emulgels for pharmaceutical and probiotics delivery applications. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1583577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Monalisha Satapathy
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Dilshad Quereshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Thi Thanh Hanh Nguyen
- Department of International Agricultural Technology & Institute of Green Bioscience and Technology, Seoul National University, Seoul, Republic of Korea
| | | | | | - Arfat Anis
- Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Samarendra Maji
- Department of Chemistry and Research Institute, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, India
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green Bioscience and Technology, Seoul National University, Seoul, Republic of Korea
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
85
|
Assadpour E, Jafari SM. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu Rev Food Sci Technol 2019; 10:103-131. [PMID: 30649963 DOI: 10.1146/annurev-food-032818-121641] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many natural food bioactive ingredients are sensitive to processing and environmental conditions and thus it is necessary to improve their stability to create products with long shelf lives. Encapsulation by spray drying is a widely used economical strategy to tackle this issue, and many scientists and manufacturers are using it in their research, development, and production activities. In this review, the spray-drying process is described, as are recent trends in the encapsulation of fish oils, essential fatty acids, probiotics, phenolic compounds, and natural food colorants. The formulation and process conditions used in previous research and the results obtained are tabulated. Also, new innovations in bioactive encapsulation using nano-spray drying are described.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
| |
Collapse
|
86
|
Ambros S, Vollmer A, Youssef N, Kulozik U. Structural basis of the impact of microwave drying on survival and shelf life of Lactobacillus paracasei. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
87
|
Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob Proteins 2018; 10:1-10. [PMID: 29124564 DOI: 10.1007/s12602-017-9347-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Probiotic encapsulation is an entire system that not only involves but also depends on many factors. Elements such as the encapsulation method itself, materials, environmental conditions, and last, but not least, the strain; all play an important role in the encapsulation process. The current paper focuses on the right selection of probiotics, the various stress factors that impact the survival capacity of probiotics during and after encapsulation, and the rational selection of appropriate protection strategies to overcome these factors and achieve the highest possible encapsulation efficiency under optimal conditions. This review discusses the effects of temperature, moisture content, and water activity as well as pH, oxygen, and pressure on the viabilities of microorganisms. The effect of the surface and structure of the capsules on the encapsulated microorganisms and the impact of the materials used for the encapsulation are discussed as well. Last, but not least, the importance of choosing the right bacteria is reviewed.
Collapse
|
88
|
Vaziri AS, Alemzadeh I, Vossoughi M, Khorasani AC. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr Polym 2018; 199:266-275. [PMID: 30143129 DOI: 10.1016/j.carbpol.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the co-microencapsulation of Lactobacillus plantarum and DHA-rich oil in a novel gastrointestinal-resistant biocomposite composed of alginate, pectin and gelatin. The optimal biocomposite consisted of 1.06% alginate, 0.55% pectin and 0.39% gelatin showed 88.66% survivability of the microencapsulated cells compared to the free cells (50.36%). In addition, co-microencapsule containing probiotic and DHA fatty acid was synthesized and physicochemically analyzed using SEM, FTIR, TGA, XRD. The results from SEM clearly confirmed that cells were completely entrapped in the matrix and DHA increased smoothness and compactness of the surface of the particles. FTIR spectra revealed the formation of hydrogen and Van der Waals bonds between macromolecules and the core materials. X-ray pattern of co-microencapsules identified amorphous structure compared to capsules containing only DHA or probiotic. TGA analysis revealed the thermal stability of DHA-loaded capsules compared to un-loaded ones.
Collapse
Affiliation(s)
- Asma Sadat Vaziri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran.
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran.
| | - Alireza Chackoshian Khorasani
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14155-4838, Tehran, Iran.
| |
Collapse
|
89
|
Feng K, Zhai MY, Zhang Y, Linhardt RJ, Zong MH, Li L, Wu H. Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10890-10897. [PMID: 30260640 DOI: 10.1021/acs.jafc.8b02644] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For the enhancement of the probiotics' survivability, a nanostructured fiber mat was developed by electrospinning. The probiotic Lactobacillus plantarum was encapsulated in the nanofibers with fructooligosaccharides (FOS) as the cell material. Fluorescence microscope image and scanning electron microscopy (SEM) showed that viable cells were successfully encapsulated in nanofibers (mean diameter = 410 ± 150 nm), and the applied voltage had no significant influence on their viability ( P > 0.05). A significantly improved viability (1.1 log) was achieved by incorporating 2.5% (w/w) of FOS as the electrospinning material ( P < 0.001). Additionally, compared with free cells, the survivability of cells encapsulated in electrospun FOS/PVA/ L. plantarum nanofibers was significantly enhanced under moist heat treatment (60 and 70 °C). This study shows that the obtained nanofiber is a feasible entrapment structure to improve the viability and thermal stability of encapsulated probiotic cells and provides an alternative approach for the development of functional food.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Meng-Yu Zhai
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Ying Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Min-Hua Zong
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Lin Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Hong Wu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| |
Collapse
|
90
|
Farrag A, Mohammed E T, Mohamed El M, Nour Solim T, Mohamed Fa H. Microencapsulation of Grape Phenolic Compounds Using Whey Proteins as a Carrier Vehicle. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jbs.2018.373.380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
91
|
Lee JJL, Zhao G, Kim J, Castillo-Zacarias C, Ramirez-Arriaga MT, Parra-Saldivar R, Chen WN. Dual Use of a Biopolymer From Durian (Durio zibethinus) Seed as a Nutrient Source and Stabilizer for Spray Dried Lactobacillus Plantarum. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
92
|
Zhao M, Wang Y, Huang X, Gaenzle M, Wu Z, Nishinari K, Yang N, Fang Y. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food Funct 2018; 9:1000-1008. [PMID: 29345267 DOI: 10.1039/c7fo01802a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ambient storage of dry powdered probiotics is necessary for manufacturer's cost reduction and customer's convenience. Complex coacervation is a promising microencapsulation technique. In this work, a probiotic matrix of type-A gelatin/gum arabic/sucrose (GE/GA/S) with high coacervation pH was designed, based on the alkaline isoelectric point of type-A gelatin. Bacterial survival during ambient storage at room temperature and certain relative humidity were detected. To clarify the protection factors of the coacervation matrix of GE/GA/S, dry microcapsules of GA, GE, GE/sucrose and GE/GA were prepared as controls and compared in terms of their morphology, moisture content, dynamic vapor absorption and cell viability. Probiotics in GE/GA/S5.5 microcapsules behaved the best during spray drying, ambient storage and heat treatment. The results proved that sucrose addition was necessary for cell viability against environmental stresses, and that encapsulation by complex coacervation was a positive factor in cell protection, especially at neutral coacervation pH.
Collapse
Affiliation(s)
- Meng Zhao
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Vega-Sagardía M, Rocha J, Sáez K, Smith CT, Gutierrez-Zamorano C, García-Cancino A. Encapsulation, with and without oil, of biofilm forming Lactobacillus fermentum UCO-979C strain in alginate-xanthan gum and its anti- Helicobacter pylori effect. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
94
|
Effect of exopolysaccharides-producing strain on oxidation stability of DHA micro algae oil microcapsules. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Santos MB, da Costa NR, Garcia-Rojas EE. Interpolymeric Complexes Formed Between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Compr Rev Food Sci Food Saf 2018; 17:792-805. [DOI: 10.1111/1541-4337.12350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Monique Barreto Santos
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
| | - Naiara Rocha da Costa
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
| | - Edwin Elard Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA); Univ. Federal Fluminense (UFF); Av. dos Trabalhadores, 420, Volta Redonda/RJ 27255-125 Brazil
| |
Collapse
|
96
|
Fu N, Huang S, Xiao J, Chen XD. Producing Powders Containing Active Dry Probiotics With the Aid of Spray Drying. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:211-262. [PMID: 29860975 DOI: 10.1016/bs.afnr.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are microorganisms capable of conferring health benefits to humans and animals when ingested. Probiotic products that prevail in food market usually contain viable bacteria from Lactobacillus and Bifidobacterium genera. Bacterial strains in these genera often have complex nutrient requirements and tend to be fragile under environmental stresses. How to incorporate the cells into food matrix without causing undesired viability loss is a key issue for developing products of viable probiotics. Spray drying offers a rapid way to produce powders encapsulating probiotics in a matrix of protectant(s), which may extend the term of viability preservation and expand the application of probiotic products. In spray drying, feed solution that contains probiotic cells and dissolved or suspended protectant solids are atomized into droplets, which are quickly converted into particles by drying in a hot airflow. The harsh conditions and interplaying stresses make the maintenance of cell viability a challenging task. To enhance cell survival in dried powders, various approaches have been attempted, including the enhancement of the intrinsic stress tolerance of cells, adjustment of protectant composition, and optimization of the production process and dryer settings. This chapter discusses important factors influencing probiotic viability during spray drying from aspects of microbiology, food chemistry, and drying process. The mechanisms underlying the influences at the droplet and cellular levels and strategies taken to protect cell viability at the process level are discussed.
Collapse
Affiliation(s)
- Nan Fu
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China.
| | - Song Huang
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China; UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Jie Xiao
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Xiao Dong Chen
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| |
Collapse
|
97
|
Eghbal N, Choudhary R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.036] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Eratte D, Dowling K, Barrow CJ, Adhikari B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
99
|
Chawda PJ, Shi J, Xue S, Young Quek S. Co-encapsulation of bioactives for food applications. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
100
|
Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1347668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Soma Chakraborty
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Quezon City, Manila, Philippines
| |
Collapse
|