51
|
Zhang B, Salieb-Beugelaar GB, Nigo MM, Weidmann M, Hunziker P. Diagnosing dengue virus infection: rapid tests and the role of micro/nanotechnologies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1745-61. [PMID: 26093055 DOI: 10.1016/j.nano.2015.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Due to the progressive spread of the dengue virus and a rising incidence of dengue disease, its rapid diagnosis is important for developing countries and of increasing relevance for countries in temperate climates. Recent advances in bioelectronics, micro- and nanofabrication technologies have led to new miniaturized point-of-care devices and analytical platforms suited for rapid detection of infections. Starting from the available tests for dengue diagnosis, this review examines emerging rapid, micro/nanotechnologies-based tools, including label-free biosensor methods, microarray and microfluidic platforms, which hold significant potential, but still need further development and evaluation. The epidemiological and clinical setting as key determinants for selecting the best analytical strategy in patients presenting with fever is then discussed. This review is aimed at the clinicians and microbiologists to deepen understanding and enhance application of dengue diagnostics, and also serves as knowledge base for researchers and test developers to overcome the challenges posed by this disease. FROM THE CLINICAL EDITOR Dengue disease remains a significant problem in many developing countries. Unfortunately rapid diagnosis with easy and low cost tests for this disease is currently still not realized. In this comprehensive review, the authors highlighted recent advances in nanotechnology which would enable development in this field, which would result in beneficial outcomes to the population.
Collapse
Affiliation(s)
- Bei Zhang
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland.
| | - Georgette B Salieb-Beugelaar
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; CLINAM-European Foundation for Clinical Nanomedicine, Basel, Switzerland.
| | - Maurice Mutro Nigo
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; Institut Supérieur des Techniques Médicales-NYANKUNDE, Bunia, Congo.
| | | | - Patrick Hunziker
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; CLINAM-European Foundation for Clinical Nanomedicine, Basel, Switzerland.
| |
Collapse
|
52
|
Cheng HJ, Luo YH, Wan SW, Lin CF, Wang ST, Hung NT, Liu CC, Ho TS, Liu HS, Yeh TM, Lin YS. Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients. Am J Trop Med Hyg 2015; 92:989-95. [PMID: 25758647 DOI: 10.4269/ajtmh.14-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that anti-dengue virus nonstructural protein 1 (anti-DENV NS1) antibodies cross-react with endothelial cells, and several autoantigens have been identified. This study shows that the antibody levels against these self-proteins are higher in sera from patients with dengue hemorrhagic fever (DHF) than those in control sera. Anti-protein disulfide isomerase (PDI) and anti-heat shock protein 60 (anti-HSP60) IgM levels correlated with both anti-endothelial cells and anti-DENV NS1 IgM titers. A cross-reactive epitope on the NS1 amino acid residues 311-330 (P311-330) had been predicted. We further found that there were higher IgM and IgG levels against P311-330 in DHF patients' sera than those in the control sera. In addition, correlations were observed between anti-PDI with anti-P311-330 IgM and IgG levels, respectively. Therefore, our results indicate that DENV NS1 P311-330 is a major epitope for cross-reactive antibodies to PDI on the endothelial cell surface, which may play an important role in DENV infection-induced autoimmunity.
Collapse
Affiliation(s)
- Hsien-Jen Cheng
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Yueh-Hsia Luo
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Shu-Wen Wan
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Chiou-Feng Lin
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Shan-Tair Wang
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Hung
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Ching-Chuan Liu
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Tzong-Shiann Ho
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Trai-Ming Yeh
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, Department of Microbiology and Immunology, Institute of Clinical Medicine, Institute of Gerontology, Department of Pediatrics, Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dengue Hemorrhagic Fever, Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| |
Collapse
|
53
|
Abstract
Dengue viruses have spread rapidly within countries and across regions in the past few decades, resulting in an increased frequency of epidemics and severe dengue disease, hyperendemicity of multiple dengue virus serotypes in many tropical countries, and autochthonous transmission in Europe and the USA. Today, dengue is regarded as the most prevalent and rapidly spreading mosquito-borne viral disease of human beings. Importantly, the past decade has also seen an upsurge in research on dengue virology, pathogenesis, and immunology and in development of antivirals, vaccines, and new vector-control strategies that can positively impact dengue control and prevention.
Collapse
Affiliation(s)
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
54
|
Tsai TT, Chuang YJ, Lin YS, Chang CP, Wan SW, Lin SH, Chen CL, Lin CF. Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 2014; 8:e3320. [PMID: 25412261 PMCID: PMC4239119 DOI: 10.1371/journal.pntd.0003320] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear. Principle Finding We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication. Significance These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication. IL-10 has multiple cellular functions, including anti-inflammatory and immunomodulatory effects. Clinical studies have demonstrated that the serum levels of IL-10 are significantly increased in DENV-infected patients with severe disorders. However, the molecular mechanism underlying DENV-induced IL-10 production is still unresolved. In this study, we demonstrate a molecular mechanism for DENV-induced IL-10 production, which may be exacerbated by ADE through Fcγ receptor-mediated extrinsic and intrinsic pathways, leading to IL-10/SOCS3-mediated advantages for viral replication. With or without Fcγ receptor- or CLEC5A-mediated DENV infection, a common Syk/PKA-regulated PI3K/PKB activation results in a decrease in GSK-3β activity followed by an increase in CREB-mediated IL-10 expression not only in THP-1 monocytic cells but also in human monocytes. Taken together, we demonstrate a potential regulation and a pathological role for ADE-induced IL-10 overproduction during DENV replication. Therefore, inhibiting immunosuppression by targeting the IL-10 pathways identified in this study may help to prevent the progression of severe dengue diseases.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jui Chuang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
55
|
Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J Virol 2014; 88:13759-68. [PMID: 25231318 DOI: 10.1128/jvi.02166-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) is the most common cause of viral hemorrhagic fever, and it may lead to life-threating dengue hemorrhagic fever and shock syndrome (DHF/DSS). Because most cases of DHF/DSS occur in patients with secondary DENV infection, anti-DENV antibodies are generally considered to play a role in the pathogenesis of DHF/DSS. Previously, we have found that antithrombin antibodies (ATAs) with both antithrombotic and profibrinolytic activities are present in the sera of dengue patients. However, the mechanism by which these autoantibodies are induced is unclear. In this study, we demonstrated that antibodies induced by DENV immunization in mice and rabbits could bind to DENV antigens as well as to human thrombin and plasminogen (Plg). The binding of anti-DENV antibodies to thrombin and Plg was inhibited by preadsorption with DENV nonstructural protein 1. In addition, affinity-purified ATAs from DENV-immunized rabbit sera could inhibit thrombin activity and enhance Plg activation both in vitro and in vivo. Taken together, our results suggest that molecular mimicry between DENV and coagulation factors can induce the production of autoantibodies with biological effects similar to those of ATAs found in dengue patients. These coagulation-factor cross-reactive anti-DENV antibodies can interfere with the balance of coagulation and fibrinolysis, which may lead to the tendency of DHF/DSS patients to bleed. IMPORTANCE Dengue virus (DENV) infection is the most common mosquito-borne viral disease in tropical and subtropical areas. Over 50 million DENV infection cases develop each year, and more than 2.5 billion people are at risk of dengue-induced hemorrhagic fever and shock syndrome. Currently, there is no vaccine or drug treatment for DENV. In the present study, we demonstrated that DENV immunization could induce thrombin and plasminogen (Plg) cross-reactive antibodies, which were able to inhibit thrombin activity and enhance Plg activation. These results suggest that molecular mimicry between DENV antigens, thrombin, and Plg may elicit antibodies that disturb hemostasis. The selection of appropriate candidate antigens for use in DENV vaccines should prevent these potentially dangerous autoimmune responses.
Collapse
|
56
|
Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol 2013; 8:1431-51. [DOI: 10.2217/fmb.13.104] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelets have been shown to cover a broad range of functions. Besides their role in hemostasis, they have immunological functions and thus participate in the interaction between pathogens and host defense. Platelets have a broad repertoire of receptor molecules that enable them to sense invading pathogens and infection-induced inflammation. Consequently, platelets exert antimicrobial effector mechanisms, but also initiate an intense crosstalk with other arms of the innate and adaptive immunity, including neutrophils, monocytes/macrophages, dendritic cells, B cells and T cells. There is a fragile balance between beneficial antimicrobial effects and detrimental reactions that contribute to the pathogenesis, and many pathogens have developed mechanisms to influence these two outcomes. This review aims to highlight aspects of the interaction strategies between platelets and pathogenic bacteria, viruses, fungi and parasites, in addition to the subsequent networking between platelets and other immune cells, and the relevance of these processes for the pathogenesis of infections.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Jürgen Löffler
- Laboratory of Innate Immunity, Infection, Inflammation, University Hospital Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute – Clinical Microbiology, Immunology & Hygiene, University Hospital of Erlangen & Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Cornelia Lass-Flörl
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| |
Collapse
|
57
|
Chuang YC, Wang SY, Lin YS, Chen HR, Yeh TM. Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci 2013; 20:42. [PMID: 23806052 PMCID: PMC3704815 DOI: 10.1186/1423-0127-20-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS.
Collapse
Affiliation(s)
- Yung-Chun Chuang
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
58
|
Tsai TT, Chuang YJ, Lin YS, Wan SW, Chen CL, Lin CF. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci 2013; 20:40. [PMID: 23800014 PMCID: PMC3700829 DOI: 10.1186/1423-0127-20-40] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Infection with dengue virus (DENV) causes both mild dengue fever and severe dengue diseases, such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms for DENV are complicated, involving viral cytotoxicity, immunopathogenesis, autoimmunity, and underlying host diseases. Viral load correlates with disease severity, while the antibody-dependent enhancement of infection largely determines the secondary effects of DENV infection. Epidemiological and experimental studies have revealed an association between the plasma levels of interleukin (IL)-10, which is the master anti-inflammatory cytokine, and disease severity in patients with DENV infection. Based on current knowledge of IL-10-mediated immune regulation during infection, researchers speculate an emerging role for IL-10 in clinical disease prognosis and dengue pathogenesis. However, the regulation of dengue pathogenesis has not been fully elucidated. This review article discusses the regulation and implications of IL-10 in DENV infection. For future strategies against DENV infection, manipulating IL-10 may be an effective antiviral treatment in addition to the development of a safe dengue vaccine.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
59
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Ho TS, Wang SM, Anderson R, Liu CC. Antibodies in dengue immunopathogenesis. J Formos Med Assoc 2012; 112:1-2. [PMID: 23332422 DOI: 10.1016/j.jfma.2012.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Tzong-Shiann Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | |
Collapse
|