51
|
Moon H, Lertpatipanpong P, Hong Y, Kim CT, Baek SJ. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
52
|
Zhang H, Chen H, Jiang S, Kang X. A Novel Functional Emulsifier Prepared with Modified Cassava Amylose with Octenyl Succinic Anhydride and Quercetin: Preparation and Application in the Pickering Emulsion. Molecules 2021; 26:molecules26226884. [PMID: 34833973 PMCID: PMC8620962 DOI: 10.3390/molecules26226884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
An emulsifier with a targeted antioxidant effect was prepared using the inclusion complexes of octenyl succinic anhydride (OSA)-modified cassava amylose (CA) and quercetin (Q). The designed emulsifier, a carbohydrate polymer-flavonoid complex, exhibited both amphiphilic and antioxidant properties. To investigate the physical and oxidation stabilities of the prepared emulsion, three types of emulsions were prepared: primary emulsions stabilized by enzyme-modified starch, secondary emulsions stabilized by OSA-CA, and tertiary emulsions stabilized by Q-encapsulated complexes (OSA-CA/Q). The structural characteristics of CA, OSA-CA, and OSA-CA/Q were investigated by scanning electron microscopy, Fourier transform infrared spectrometry, and small-angle X-ray scattering analysis. The stabilities of the emulsions were evaluated based on their particle size distribution, zeta potential, creaming stability, and peroxide value. The results showed that the secondary and tertiary emulsions exhibited a relatively narrower particle size distribution than the primary emulsions, but the particle size distribution of the tertiary emulsions was the narrowest (10.42 μm). Moreover, the secondary and tertiary emulsions had lower delamination indices than the primary emulsions after 7 days of storage. The results obtained from the antioxidant experiments indicated that OSA-CA/Q exhibited good oxidation stability for application in emulsion systems.
Collapse
Affiliation(s)
- Hailing Zhang
- College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai 264005, China;
| | - Haiming Chen
- Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qingshan Road, Haikou 571126, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, China;
- Correspondence: or (H.C.); (X.K.); Tel./Fax: +86-0898-6625-6495 (H.C. & X.K.)
| | - Shan Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, China;
| | - Xiaoning Kang
- Haikou Key Laboratory of Areca Processing and Research, Hainan Academy of Agricultural Sciences, 14 Xingdan Road, Haikou 571100, China
- Correspondence: or (H.C.); (X.K.); Tel./Fax: +86-0898-6625-6495 (H.C. & X.K.)
| |
Collapse
|
53
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
54
|
Sengupta P, Bose A, Sen K. Liposomal Encapsulation of Phenolic Compounds for Augmentation of Bio‐Efficacy: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priti Sengupta
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Adity Bose
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Kamalika Sen
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
| |
Collapse
|
55
|
Bhandarkar S, Prabhakar B, Shende P. Quercetin-loaded platelets as a potential targeted therapy for glioblastoma multiforme cell line U373-MG. Biotechnol J 2021; 16:e2100271. [PMID: 34562072 DOI: 10.1002/biot.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022]
Abstract
Over the globe, the incidence of glioblastoma multiforme (GM) is very low, that is, 1-4 cases per 100,000, but it is fatal and cancer grows very fast inside the brain tissues, namely astrocytes and oligodendrocytes. Because of the rapid growth, it is difficult to halt the dissemination of tumor in adjacent tissues. Although temozolomide (TMZ) is a currently approved standard of care, it develops resistance over the period. Therefore, there is a need to develop a novel drug delivery system. In this work, authors have developed platelets as drug delivery carriers-loaded with quercetin (QCT) for targeting GM. The effect of QCT and QCT-platelet was assessed on the U373-MG cell line. Natural human platelets were used as carriers for drug loading and drug delivery. Platelets possess an open canalicular system that allows the uptake of drug molecules in the platelet cytoplasm. The study showed that the maximum encapsulation efficiency of QCT-platelet was 93.96 ± 0.12% and the maximum drug release in 24 h was 76.26 ± 0.13% in-vitro at pH 5.5 that mimics the tumor microenvironment. In this work, there is a three-fold enhancement of solubility of QCT. The cytotoxic activity of QCT-platelets was studied in the U373-MG human astrocytoma glioblastoma cell line and the cell viability was 14.52 ± 1.53% after 48 h. Thus, platelets were proved as good carriers for therapeutic moieties and can be effectively used to target the glioblastoma tumor in the near future.
Collapse
Affiliation(s)
- Sayali Bhandarkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
56
|
Improving Physicochemical Stability of Quercetin-Loaded Hollow Zein Particles with Chitosan/Pectin Complex Coating. Antioxidants (Basel) 2021; 10:antiox10091476. [PMID: 34573108 PMCID: PMC8470427 DOI: 10.3390/antiox10091476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Hollow nanoparticles are preferred over solid ones for their high loading capabilities, sustained release and low density. Hollow zein particles are susceptible to aggregation with a slight variation in the ionic strength, pH and temperature of the medium. This study was aimed to fabricate quercetin-loaded hollow zein particles with chitosan and pectin coating to improve their physicochemical stability. Quercetin as a model flavonoid had a loading efficiency and capacity of about 86–94% and 2.22–5.89%, respectively. Infrared and X-ray diffraction investigations revealed the interaction of quercetin with zein and the change in its physical state from crystalline to amorphous upon incorporation in the composite particles. The chitosan/pectin coating improved the stability of quercetin-loaded hollow zein particles against heat treatment, sodium chloride and in a wide range of pH. The complex coating protected quercetin that was encapsulated in hollow zein particles from free radicals in the aqueous medium and enhanced its DPPH radical scavenging ability. The entrapment of quercetin in the particles improved its storage and photochemical stability. The storage stability of entrapped quercetin was enhanced both at 25 and 45 °C in hollow zein particles coated with chitosan and pectin. Therefore, composite hollow zein particles fabricated with a combination of polysaccharides can expand their role in the encapsulation, protection and delivery of bioactive components.
Collapse
|
57
|
Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D, Xiao B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021; 176:113887. [PMID: 34314785 DOI: 10.1016/j.addr.2021.113887] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is rapidly rising throughout the world. Although tremendous efforts have been made, limited therapeutics are available for IBD management. Natural active small molecules (NASMs), which are a gift of nature to humanity, have been widely used in the prevention and alleviation of IBD; they have numerous advantageous features, including excellent biocompatibility, pharmacological activity, and mass production potential. Oral route is the most common and acceptable approach for drug administration, but the clinical application of NASMs in IBD treatment via oral route has been seriously restricted by their inherent limitations such as high hydrophobicity, instability, and poor bioavailability. With the development of nanotechnology, polymeric nanoparticles (NPs) have provided a promising platform that can efficiently encapsulate versatile NASMs, overcome multiple drug delivery barriers, and orally deliver the loaded NASMs to targeted tissues or cells while enhancing their stability and bioavailability. Thus, NPs can enhance the preventive and therapeutic effects of NASMs against IBD. Herein, we summarize the recent knowledge about polymeric matrix-based carriers, targeting ligands for drug delivery, and NASMs. We also discuss the current challenges and future developmental directions.
Collapse
Affiliation(s)
- Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Brandon Cannup
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dengchao Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, South Korea
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
58
|
Development of Green and Efficient Extraction Methods of Quercetin from Red Onion Scales Wastes Using Factorial Design for Method Optimization: A Comparative Study. SEPARATIONS 2021. [DOI: 10.3390/separations8090137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Waste resulting from edible plants is considered one of the best sources of valuable phytochemicals. A promising approach for using these appreciated wastes is extracting precious medically important constituents, for example, free quercetin. Two new cost-effective and green extraction methods are introduced in the present study: ultrasound-assisted glycerol extraction (UAGE) and microwave-assisted extraction (MAE). These extraction protocols are optimized using factorial design to define the highest yield of extraction, and HPLC-UV at 370 nm was used as a method of yield analysis. Quercetin remained stable during the whole process in both extraction protocols. A standard addition technique was performed to quantify quercetin in different extracts and eliminate the matrix effect. In UAGE and MAE, extraction yields were 16.55 ± 0.81 and 27.20 ± 1.55 mg/1g from red onion scales on a dry base, respectively. The amount of quercetin extracted using MAE was superior to UAGE in terms of time and yield. A greenness assessment of the offered studies compared to previously published relevant extraction methods was performed using the analytical eco-scale assessment method (ESA) and national environmental methods index (NEMI). MAE showed to be a greener method with a higher ESA score and a greener NEMI pictogram.
Collapse
|
59
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
60
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
61
|
Development and Characterization of Bioactive Poly(butylene-succinate) Films Modified with Quercetin for Food Packaging Applications. Polymers (Basel) 2021; 13:polym13111798. [PMID: 34072417 PMCID: PMC8198733 DOI: 10.3390/polym13111798] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
The preparation of biodegradable active packaging materials is still a major challenge. Here, we report the fabrication and characterization of poly(butylene succinate)-based (PBS) films enriched with a natural polyphenolic antioxidant—quercetin. The PBS-based films with various quercetin content (0.05; 0.10; 0.25 and 0.50 pph on PBS) were prepared via a solvent casting method. Physical (optical, mechanical, thermal, moisture and water sorption, water vapor and UV–vis barrier) and biofunctional (antioxidant and antibacterial against Escherichia coli and Staphylococcus aureus) film properties were tested. The migration of quercetin into model food liquid systems was determined. As a result of quercetin addition, significant changes in color, opacity and UV-blocking effect were observed. The presence of the active substance did not significantly affect the thermal properties of the PBS matrix. However, the mechanical properties of the films were slightly decreased. The films exhibited excellent free radicals (DPPH, ABTS, O2−) scavenging and some bactericidal activities. PBS-quercetin films with superior functional properties have many possibilities for active food packaging applications.
Collapse
|
62
|
Rizzuti B, Grande F, Conforti F, Jimenez-Alesanco A, Ceballos-Laita L, Ortega-Alarcon D, Vega S, Reyburn HT, Abian O, Velazquez-Campoy A. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Biomedicines 2021; 9:biomedicines9040375. [PMID: 33918402 PMCID: PMC8066963 DOI: 10.3390/biomedicines9040375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has stimulated the search for antivirals to tackle COVID-19 infection. Molecules with known pharmacokinetics and already approved for human use have been demonstrated or predicted to be suitable to be used either directly or as a base for a scaffold-based drug design. Among these substances, quercetin is known to be a potent in vitro inhibitor of 3CLpro, the SARS-CoV-2 main protease. However, its low in vivo bioavailability calls for modifications to its molecular structure. In this work, this issue is addressed by using rutin, a natural flavonoid that is the most common glycosylated conjugate of quercetin, as a model. Combining experimental (spectroscopy and calorimetry) and simulation techniques (docking and molecular dynamics simulations), we demonstrate that the sugar adduct does not hamper rutin binding to 3CLpro, and the conjugated compound preserves a high potency (inhibition constant in the low micromolar range, Ki = 11 μM). Although showing a disruption of the pseudo-symmetry in the chemical structure, a larger steric volume and molecular weight, and a higher solubility compared to quercetin, rutin is able to associate in the active site of 3CLpro, interacting with the catalytic dyad (His41/Cys145). The overall results have implications in the drug-design of quercetin analogs, and possibly other antivirals, to target the catalytic site of the SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Ana Jimenez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain;
| | - Olga Abian
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| |
Collapse
|
63
|
Hussain Y, Mirzaei S, Ashrafizadeh M, Zarrabi A, Hushmandi K, Khan H, Daglia M. Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer Elimination and Reversing Chemoresistance. Cancers (Basel) 2021; 13:1602. [PMID: 33807174 PMCID: PMC8036441 DOI: 10.3390/cancers13071602] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second most leading and prevalent malignancy around the world, following lung cancer. Prostate cancer is characterized by the uncontrolled growth of cells in the prostate gland. Prostate cancer morbidity and mortality have grown drastically, and intensive prostate cancer care is unlikely to produce adequate outcomes. The synthetic drugs for the treatment of prostate cancer in clinical practice face several challenges. Quercetin is a natural flavonoid found in fruits and vegetables. Apart from its beneficial effects, its plays a key role as an anti-cancer agent. Quercetin has shown anticancer potential, both alone and in combination. Therefore, the current study was designed to collect information from the literature regarding its therapeutic significance in the treatment of prostate cancer. Studies performed both in vitro and in vivo have confirmed that quercetin effectively prevents prostate cancer through different underlying mechanisms. Promising findings have also been achieved in clinical trials regarding the pharmacokinetics and human applications of quercetin. In the meantime, epidemiological studies have shown a negative correlation between the consumption of quercetin and the incidence of prostate cancer, and have indicated a chemopreventive effect of quercetin on prostate cancer in animal models. The major issues associated with quercetin are its low bioavailability and rapid metabolism, and these require priority attention. Chemoresistance is another main negative feature concerning prostate cancer treatment. This review highlights the chemotherapeutic effect, chemo preventive effect, and chemoresistance elimination potential of quercetin in prostate cancer. The underlying mechanisms for elimination of prostate cancer and eradication of resistance, either alone or in combination with other agents, are also discussed. In addition, the nanoscale delivery of quercetin is underpinned along with possible directions for future study.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Control Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
64
|
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:658400. [PMID: 33860002 PMCID: PMC8042157 DOI: 10.3389/fcvm.2021.658400] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium occupies a catalog of functions that contribute to the homeostasis of the cardiovascular system. It is a physically active barrier between circulating blood and tissue, a regulator of the vascular tone, a biochemical processor and a modulator of coagulation, inflammation, and immunity. Given these essential roles, it comes to no surprise that endothelial dysfunction is prodromal to chronic age-related diseases of the heart and arteries, globally termed cardiovascular diseases (CVD). An example would be ischemic heart disease (IHD), which is the main cause of death from CVD. We have made phenomenal advances in treating CVD, but the aging endothelium, as it senesces, always seems to out-run the benefits of medical and surgical therapies. Remarkably, many epidemiological studies have detected a correlation between a flavonoid-rich diet and a lower incidence of mortality from CVD. Quercetin, a member of the flavonoid class, is a natural compound ubiquitously found in various food sources such as fruits, vegetables, seeds, nuts, and wine. It has been reported to have a wide range of health promoting effects and has gained significant attention over the years. A growing body of evidence suggests quercetin could lower the risk of IHD by mitigating endothelial dysfunction and its risk factors, such as hypertension, atherosclerosis, accumulation of senescent endothelial cells, and endothelial-mesenchymal transition (EndoMT). In this review, we will explore these pathophysiological cascades and their interrelation with endothelial dysfunction. We will then present the scientific evidence to quercetin's anti-atherosclerotic, anti-hypertensive, senolytic, and anti-EndoMT effects. Finally, we will discuss the prospect for its clinical use in alleviating myocardial ischemic injuries in IHD.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Pauline Mury
- Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Pierre Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
65
|
Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes ( Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants (Basel) 2020; 9:antiox9121233. [PMID: 33291854 PMCID: PMC7762022 DOI: 10.3390/antiox9121233] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The valorization of onion skin wastes (OSW) through the extraction, identification, and quantification of phenolic compounds was studied in this work, using subcritical water in a semicontinuous extractor (2.5 mL/min; 105-180 °C; 5 MPa). The extraction of flavonoids resulted to be fast (<30 min) and temperature sensitive (maximum at 145 °C; total flavonoids, 27.4 ± 0.9 mg/g dry OSW (DOSW)). The experimental results were fitted to the Weibull model. The influence of the solvent properties on the flavonoids quantification was found to be critical. A precipitate was formed once the extracts cooled down. If removed, a significant fraction of the high temperature extracted flavonoids (as much as 71%, at 180 °C) was lost. Such a condition affected especially those compounds that show extremely low solubility in water at room temperature, whereas quercetin glycosylated derivatives were less affected by the polarity change of the medium induced by the temperature change. It was demonstrated that it is necessary to re-dissolve the subcritical water extracts by the addition of ethanol, which led to a medium with a polarity equivalent to that obtained with water at high temperature. At 145 °C, quercetin (15.4 ± 0.4 mg/g DOSW) and quercetin-4'-glucoside (8.4 ± 0.1 mg/g DOSW) accounted for the 90% of the total flavonoids identified. By recovering high added value bioactive compounds from OSW the principles of circular economy were fulfilled, providing a new use for this agricultural waste.
Collapse
|
66
|
Cunico LP, Cobo AM, Al-Hamimi S, Turner C. Solubility and Thermal Degradation of Quercetin in CO 2-Expanded Liquids. Molecules 2020; 25:molecules25235582. [PMID: 33261120 PMCID: PMC7730818 DOI: 10.3390/molecules25235582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/04/2023] Open
Abstract
The solubility of quercetin and its thermal degradation was studied in CO2-expanded ethanol and ethyl lactate. An equipment setup was constructed that enabled the separation of the products of degradation while quantifying the solubility of quercetin. Three different conditions of temperature were analyzed (308, 323, and 343 K) at 10 MPa. Higher solubility and thermal degradation of quercetin were observed for CO2-expanded ethyl lactate in comparison with CO2-expanded ethanol. At the same time, as the amount of CO2 was increased in the CO2-expanded liquids mixtures, the thermal degradation of quercetin decreased for almost all the conditions of temperature considered in this work. The importance of considering thermal degradation while performing solubility measurements of compounds that are thermally unstable such as quercetin was highlighted.
Collapse
Affiliation(s)
- Larissa P. Cunico
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (L.P.C.); (A.M.C.); (S.A.-H.)
| | - Andrés Medina Cobo
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (L.P.C.); (A.M.C.); (S.A.-H.)
| | - Said Al-Hamimi
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (L.P.C.); (A.M.C.); (S.A.-H.)
- OQ, SablaX, P.O Box 261, P.C 118 Muscat, Oman
| | - Charlotta Turner
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (L.P.C.); (A.M.C.); (S.A.-H.)
- Correspondence: ; Tel.: +46-46-222-8125
| |
Collapse
|
67
|
Rha CS, Kim HG, Baek NI, Kim DO, Park CS. Amylosucrase from Deinococcus geothermalis can be modulated under different reaction conditions to produce novel quercetin 4'-O-α-d-isomaltoside. Enzyme Microb Technol 2020; 141:109648. [PMID: 33051009 DOI: 10.1016/j.enzmictec.2020.109648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/01/2022]
Abstract
Amylosucrase (ASase, EC.4.2.1.4) is well-known for its distinguishable property of transglycosylation of many flavonoids and phenolics. Quercetin has diverse biological functions, however, its use is limited due to poor solubility and bioavailability. ASase derived from Deinococcus geothermalis (DGAS) showed conditional preference for producing unusual quercetin glucosides (QGs). DGAS produced a variety of QGs including quercetin monoglucosides (QG1), diglucosides (QG2 and QG2'), and triglucoside from quercetin and sucrose. The newly synthesized QG2' was recognized as a novel quercetin isomaltoside with an α-1,6 linkage branched at the -OH of C4' in quercetin by mass and nuclear magnetic resonance spectra. With a higher conversion yield from quercetin to QGs (60-92%), the optimum conditions for producing QG2' were examined under various pH and sucrose concentrations by response surface methodology. QG2' was predominantly produced under acidic conditions (pH 5.0) and at high sucrose concentrations (1000-1500 mM). In contrast, QG1 was generated as an intermediate of consecutive glycosylation. Kinetic evaluations indicated that considerable differences of transglycosylation velocities were caused by the pH and buffer salts of the reaction, which had a 3.9-fold higher overall performance (kcat/K'm) of generating QG2' at pH 5 compared to at pH 7. A rationale of unusual transglycosylations was demonstrated with a molecular docking simulation. Taken together, our study demonstrated that ASase can be used to synthesize unusually branched flavonoid glycosides from flavonol aglycones with clear patterns by modulating reaction conditions.
Collapse
Affiliation(s)
- Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeong Geun Kim
- Graduate School of Biotechnology, Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology, Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea; Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
68
|
A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113914] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
69
|
Experiments, Correlation, and Modeling of Curcumin Solubility in Subcritical Water (Water/Ethanol). Chromatographia 2020. [DOI: 10.1007/s10337-020-03946-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
|
71
|
Jantarat C, Attakitmongkol K, Nichsapa S, Sirathanarun P, Srivaro S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1961-1976. [PMID: 32586219 DOI: 10.1080/09205063.2020.1787602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cellulose (BC) has been used in the combination with molecularly imprinted polymer (MIP) for controlled-release drug delivery. In the present study, the molecular imprinting was directly performed on BC to avoid the use of synthetic materials for sustained-release of quercetin, which was used as the template molecule. The phase inversion method was successfully used to prepare molecularly imprinted BC (MI-BC). The molecular recognition ability and controlled drug release behavior of MI-BC were then evaluated. MI-BC was found to have approximately 1.6 times higher ability to bind quercetin than the non-imprinted BC (NI-BC) did. The composite membrane containing MI-BC and quercetin (MI-BC-com) delayed and sustained drug release more effectively than the composite membrane containing NI-BC and quercetin (NI-BC-com). MI-BC-com released quercetin approximately two times more slowly than NI-BC-com did at the final hour of the drug release study. The mechanism of quercetin release followed the Higuchi model. Due to the relatively simple method of preparing the drug delivery system without using synthetic MIP, the application of MI-BC may be of great interest in medicine and pharmaceutics.
Collapse
Affiliation(s)
- Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.,School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Supirada Nichsapa
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Suthon Srivaro
- Petrochemical and Polymer Program, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Materials Science and Innovation Program, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
72
|
Gambuti A, Picariello L, Rinaldi A, Forino M, Blaiotta G, Moine V, Moio L. New insights into the formation of precipitates of quercetin in Sangiovese wines. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2602-2611. [PMID: 32549610 DOI: 10.1007/s13197-020-04296-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/24/2020] [Accepted: 02/16/2020] [Indexed: 01/31/2023]
Abstract
Wines produced from Sangiovese (sg) grapes, the most cultivated red grape variety in Italy and widely grown across the world, is often subjected to loss of clarity due to the formation of a deposit constituted by fine needle-shaped crystals. In this work, a qualitative study by 1H-NMR and 13C-NMR analysis of the deposit obtained by filtering cloudy sg wines showed that it was constituted by crystals of quercetin (Q). The analysis of hydro-alcoholic solutions (12% ethanol and pH 3.2.) and red wines added with increasing amounts of Q showed that, above 3 mgL-1 of Q, a deposit can be detected and, the time necessary for its formation depends on the medium. The comparison among sg and other 11 monovarietal wines showed that sg was the richest in Q and quercetin glycosides (GQ). Both Q and GQ decreased in the analyzed solutions over time and the decrease was faster for Q than for GQ. The controlled exposure to oxygen determined a decrease of Q higher than the 50% of the initial values. Data obtained in this study suggested that practices as micro-oxygenation and wood aging could help to decrease the amount of Q in sg wines.
Collapse
Affiliation(s)
- Angelita Gambuti
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy
| | - Luigi Picariello
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy
| | - Alessandra Rinaldi
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy.,Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
| | - Martino Forino
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy
| | - Virginie Moine
- Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
| | - Luigi Moio
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples "Federico II", Viale Italia, 83100 Avellino, Italy
| |
Collapse
|
73
|
Rashwan RS, Hammad DM. Toxic effect of Spirulina platensis and Sargassum vulgar as natural pesticides on survival and biological characteristics of cotton leaf worm Spodoptera littoralis. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
74
|
Deposition of CAP/Antioxidants Systems on Silica Particles Using the Supercritical Antisolvent Process. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supercritical carbon dioxide has been used to deposit co-precipitates of natural antioxidants with a polymer onto silica microparticles. The supercritical antisolvent process (SAS) was carried out with the antioxidants by introducing the silica microparticles into the precipitator vessel. Two different configurations were employed to pump the solution. In one configuration, the antioxidant and the polymer were dissolved and injected together through a nozzle. In the second configuration, the antioxidant and the polymer were dissolved in different solutions and sprayed through different nozzles. The use of operating conditions significantly above the critical point (180 bar and 323 K) led to the formation of composites made up of co-precipitates and silica. Delivery profiles showed that the presence of the polymer and the silica delayed release of the antioxidant into gastric media, thus protecting it and allowing its full delivery to the intestinal fluids to improve the effectiveness of the antioxidant.
Collapse
|
75
|
Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
76
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
77
|
Gois Ruivo da Silva M, Skrt M, Komes D, Poklar Ulrih N, Pogačnik L. Enhanced Yield of Bioactivities from Onion ( Allium cepa L.) Skin and Their Antioxidant and Anti-α-Amylase Activities. Int J Mol Sci 2020; 21:ijms21082909. [PMID: 32326342 PMCID: PMC7216267 DOI: 10.3390/ijms21082909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing concern for reduction of the ecological impacts of industrial waste caused by fruits and vegetables. To reduce costs of onion waste disposal while obtaining value-added products, onion skin can be used to extract quercetin, a natural flavonoid with antioxidant, anti-inflammatory and anti-cancer effects. The aim was to optimize quercetin extraction from brown onion (Allium cepa L.) skin through investigation of the effects of different parameters on quercetin yield. Operational parameters for conventional maceration extraction and for ultrasound-assisted extraction were compared: solvent type, mass-to-liquid ratio, extraction time and temperature. Antioxidant capacity was determined using DPPH· radical scavenging assays and quercetin yield using HPLC/DAD. Anti-α-amylase activity of onion skin extracts was investigated using α-amylase inhibition assays. Optimal extraction conditions of quercetin from onion skin were obtained with maceration extraction, 50% ethanol, 1:100 mass-to-liquid ratio, 25 °C, for 15 min. Under these conditions, the antioxidant capacity (expressed as quercetin equivalents) was 18.7 mg/g and the mass fraction of quercetin was 7.96 mg/g. The onion skin extracts showed a dose-dependent relationship between dry extract concentration and α-amylase inhibition, which confirms that this onion skin extract can be considered as an anti-diabetes agent.
Collapse
Affiliation(s)
- Mariana Gois Ruivo da Silva
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
| | - Mihaela Skrt
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
- The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, 1000 Ljubljana, Slovenia
| | - Lea Pogačnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
- Correspondence:
| |
Collapse
|
78
|
Nouiri E, Ben Ali R, Ghali R, Araoud M, Véronique El May M, Hedhili A. Protective and Curative Effects of Aqueous Extract of Terfezia Boudieri (Edible Desert Truffle Specie) against Paracetamol Acute Toxicity in the Rat. Nutr Cancer 2020; 73:113-123. [PMID: 32192374 DOI: 10.1080/01635581.2020.1742359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current study was aimed to evaluate the protective and curative effect of aqueous extract of edible desert truffle specie (Terfezia boudieri) against rat's liver and kidney injuries induced by paracetamol (PCM). Terfezia boudieri was genetically identified by PCR and then sequencing (Genbank NCBI: LT718236.1). Terfezia boudieri aqueous extract (TBAE) was characterized by antioxidant capacity evaluated by 1,1-diphenyl-2-picryl-hydrazyl test (EC50 = 0.415 mg/ml). LC-MS analysis shows that TBAE contains several actives biomolecules such as B3 vitamin (2.73 ± 0.3 mg/100g dm), quinic acid (2 ± 0.22 mg/100g dm), chlorogenic acid (0.18 ± 0.02 mg/100g dm) and quercetin-3-o-rhamonoside (0.09 ± 0.01 mg/100g dm). Liver and kidney Biochemical parameters showed no significant variation in rat's plasma treated with PCM and/or TBAE. However, the histological studies showed that the liver injuries induced by PCM were characterized by hemorrhage and inflammation. The pretreatment by TBAE showed preservation of normal liver and kidney architecture, this finding suggests its protective effects on these two organs. The co-treatment by TBAE reduced the PCM hepatotoxicity proved by normal central vein and small vacuols. In addition, TBAE reduced kidney PCM toxicity proved by less area inflammation and normal glomerulus. Therefore, TBAE is promoting eventual protective and curative drug against acute toxicity.
Collapse
Affiliation(s)
- Ezzeddine Nouiri
- Mahmoud Yaacoub Center of Urgent Medical Assistance of Tunis, Laboratory of Toxicology and Environment (LR12SP07) - Montfleury, University of Carthage, Faculty of Sciences of Bizerte, Tunis, Tunisia
| | - Ridha Ben Ali
- Faculty of Medicine of Tunis15rue Jebbel Lakhdar, Unit of Experimental Medicine and Unit Research n°17/ES/13 Tunis El Manar University, Tunis, Tunisia
| | - Ridha Ghali
- Mahmoud Yaacoub Center of Urgent Medical Assistance of Tunis, Laboratory of Toxicology and Environment (LR12SP07) - Montfleury, Tunis, Tunisia
| | - Manel Araoud
- Mahmoud Yaacoub Center of Urgent Medical Assistance of Tunis, Laboratory of Toxicology and Environment (LR12SP07) - Montfleury, Tunis, Tunisia
| | - Michele Véronique El May
- Histology, Embryology and Cell Biology Laboratory, Unit research N°17ES13, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abderrazek Hedhili
- Mahmoud Yaacoub Center of Urgent Medical Assistance of Tunis, Laboratory of Toxicology and Environment (LR12SP07) - Montfleury, Tunis, Tunisia
| |
Collapse
|
79
|
Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf B Biointerfaces 2020; 191:110982. [PMID: 32220813 DOI: 10.1016/j.colsurfb.2020.110982] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/24/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Combination of natural agents has received a great attention in cancer treatment because of synergistically increased apoptotic effect on cancer cell lines by triggering several apoptotic signaling pathways. However, the hydrophobic nature, poor bioavailability and low cellular uptake of most natural agents limit their therapeutic effectiveness. The purpose of this study was to design Apoferritin nanoparticles loaded with Quercetin and Curcumin (Que-Cur-HoS-Apo NPs) and to test their synergistic antitumor properties on a breast cancer cell line (MCF7). The physico-chemical characterization of the Que-Cur-HoS-Apo NPs by Size Exclusion Chromatography (FPLC) and Dynamic Light Scattering (DLS) confirmed the encapsulation of the compounds in the protein cage with narrow size distribution in the range 17.4 ± 1.2 nm. Cell viability study indicated that Que-Cur-HoS-Apo NPs were able to exert a more pronounced effect at lower dose on the MCF7 cell line when compared to the free combination of the drugs. The Que-Cur-HoS-Apo system allowed cellular uptake of natural agents thus triggering enhanced apoptosis. These effects were confirmed by Annexin-V/7-AAD Staining Assay and intracellular Reactive Oxygen Species (ROS) quantitative detection. These results suggest the potential of Que-Cur-HoS-Apo NPs as a promising anti-cancer agent in breast cancer therapy and pave the way to examine Que-Cur-HoS-Apo NPs effect in vivo.
Collapse
|
80
|
Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R. Antioxidant and Antitumor Activities of Novel Quercetin-Loaded Electrospun Cellulose Acetate/Polyethylene Glycol Fibrous Materials. Antioxidants (Basel) 2020; 9:antiox9030232. [PMID: 32168830 PMCID: PMC7139677 DOI: 10.3390/antiox9030232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of present study was to obtain novel fibrous materials based on cellulose derivative and polyethylene glycol loaded with natural biologically active compound quercetin by electrospinning. Several methods including scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), water contact angle measurements, differential scanning calorimetry (DSC), and UV-VIS spectroscopy were utilized to characterize the obtained materials. The incorporation of polyethylene glycol in the fibrous material resulted in increased hydrophilicity and burst release of quercetin from the fibers. Quercetin-containing fibrous mats exhibited high antioxidant activity as estimated by DPPH free radical scavenging method. In vitro tests with HeLa tumor cells and SH-4 melanoma skin cells were performed in order to determine the cytotoxicity of the novel materials. It was found that the fibrous CA/PEG/QUE materials exhibited high cytotoxic effect against both cell lines. Therefore, the novel polymeric materials containing quercetin are promising candidates for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
- Correspondence: (M.S.); (I.R.); Fax: +359-02-870-0309 (M.S. & I.R.)
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
- Correspondence: (M.S.); (I.R.); Fax: +359-02-870-0309 (M.S. & I.R.)
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| |
Collapse
|
81
|
Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
82
|
Li C, Gao L, Zhang Y, Simpson BK. Preparation of Quercetin Loaded Microparticles and their Antitumor Activity against Human Lung Cancer Cells (A549) in vitro. Curr Pharm Biotechnol 2019; 20:945-954. [PMID: 31264544 DOI: 10.2174/1573407215666190628145902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Novel quercetin-loaded microparticles (QM) were fabricated using coaxial electrospraying, characterized for surface morphology and release profile, and evaluated for antitumor activity in vitro. METHODS QM exhibited an average diameter of 1.69 ±1.13 mm, which was an appropriate size suitable for respiratory delivery. X-ray diffraction patterns showed that the components in QM existed in an amorphous physical form, leading to favorable interactions between the drug (quercetin), the polymer matrix (polyvinylpyrrolidone, PVP) and other excipients (sodium dodecyl sulfate and sucralose). RESULTS QM performed much faster release rate compared with free quercetin powder (Q) in vitro. Furthermore, QM also showed more potent inhibitory effects on A549 cell growth with reduced cell viability, decreased cell migration and induced more G0/G1 phase cell cycle arrest than Q. CONCLUSION Thus, the quercetin loaded microparticles exhibited more potent inhibitory effects than free quercetin on A549 cell. The increased antitumor activity could be attributed to the enhanced accumulation of quercetin in the A549 cells with the QM. However, further studies are necessary to elucidate the exact mechanisms.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University; No. 92, Wucheng Road, Taiyuan 030006, China
| | - Liufang Gao
- School of Life Science, Shanxi University; No. 92, Wucheng Road, Taiyuan 030006, China
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus); Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus); Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
83
|
Luzi F, Pannucci E, Santi L, Kenny JM, Torre L, Bernini R, Puglia D. Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers (Basel) 2019; 11:E1999. [PMID: 31816935 PMCID: PMC6960607 DOI: 10.3390/polym11121999] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023] Open
Abstract
Gallic acid (GA) and quercetin (QC) were used as active ingredients in poly(vinyl alcohol) (PVA) film formulations obtained by solvent casting process. The effect of two different percentages (5 and 10 % wt.) on morphological behavior, thermal stability, optical, mechanical, and release properties of PVA were investigated, while migration with food stimulants and antioxidant properties were tested taking into account the final application as food packaging systems. The results showed how different dispersability in PVA water solutions gave different results in term of deformability (mean value of ε PVA/5GA = 280% and ε PVA/5QC = 255%, with 190% for neat PVA), comparable values for antioxidant activity at the high contents (Radical Scavenging Activity, RSA(%) PVA/10GA = 95 and RSA(%) PVA/10QC = 91) and different coloring attitude of the polymeric films. It was proved that GA, even if it represents the best antioxidant ingredient to be used with PVA and can be easily dispersed in water, it gives more rigid films in comparison to QC, that indeed was more efficient in tuning the deformability of the PVA films, due the presence of sole hydroxyl groups carrying agent. The deviation of the film coloring towards greenish tones for GA films and redness for QC films after 7 and within 21 days in the simulated conditions confirmed the possibility of using easy processable PVA films as active and intelligent films in food packaging.
Collapse
Affiliation(s)
- Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - José Maria Kenny
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Luigi Torre
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.S.); (R.B.)
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (J.M.K.); (L.T.); (D.P.)
| |
Collapse
|
84
|
Nkurunziza D, Pendleton P, Chun BS. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chem 2019; 295:613-621. [PMID: 31174803 DOI: 10.1016/j.foodchem.2019.05.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 01/27/2023]
Abstract
In this study, the soybean milk and tofu byproduct okara was subjected to subcritical water extraction with the intention of recovering isoflavones with minimal degradation. Response Surface Methodology (RSM) of the extraction variables indicated that optimized conditions would be T = 146.23 °C, P = 3.98 MPa, and α = 20 mg (solid)/mL (extractant). Mathematical models for the conversion and degradation of isoflavones were solved as a set of simultaneous equations leading to rate constants and time-dependent concentration profiles for each genistein- and daidzein-based compound. These kinetic analyses suggested that an optimum extraction time, under RSM-optimized conditions, would be 213.5 ± 8.7 min. The results of our study suggest that okara byproducts could be valorized efficiently, as a source of bioactive isoflavone aglycones, using subcritical water. The mathematical models and optimized extraction conditions that we established in this study could be employed, as process control-optimized variables, in the exploitation of okara, specifically in the isolation of genistein and daidzein.
Collapse
Affiliation(s)
- David Nkurunziza
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Phillip Pendleton
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Byung Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
85
|
López N, Delso I, Matute D, Lafuente C, Artal M. Characterization of xylitol or citric acid:choline chloride:water mixtures: Structure, thermophysical properties, and quercetin solubility. Food Chem 2019; 306:125610. [PMID: 31586816 DOI: 10.1016/j.foodchem.2019.125610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023]
Abstract
The industrial implementation of new eco-friendly solvents has highlighted the need to analyse both the structures and thermophysical properties of these solvents. Here, two deep eutectic solvents (DESs) used in the agro-food field were studied: xylitol:choline chloride:water (1:2:3 M ratio), XoCH, and citric acid:choline chloride:water (1:1:6 M ratio), CiCH. The H-bond network between the components of each DES was evaluated and the diffusion coefficients at 298.15 K were calculated using NMR spectroscopy. In addition, seven thermophysical properties were determined from 278.15 to 338.15 K. Also, the solubility of quercetin in water and in the two eutectic mixtures was measured and the interactions between components were studied. NMR experiments revealed the presence of water within the supramolecular structure of XoCH, but CiCH is a "DES-in-water" solution. Based on the results, XoCH is the most compact mixture. Finally, quercetin was remarkably more soluble in the studied DESs than in pure water.
Collapse
Affiliation(s)
- Noelia López
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Delso
- Departamento de Síntesis y Estructura de Biomoléculas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, Spain
| | - David Matute
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Lafuente
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Manuela Artal
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
86
|
Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci 2019; 30:555-572. [DOI: 10.1515/revneuro-2018-0080] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Quercetin is a polyphenolic flavonoid, which is frequently found in fruits and vegetables. The antioxidant potential of quercetin has been studied from subcellular compartments, that is, mitochondria to tissue levels in the brain. The neurodegeneration process initiates alongside aging of the neurons. It appears in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and others, which leads to Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and other diseases. So far, no specific treatment has been identified for these diseases. Despite common treatments that help to prevent the development of disease, the condition of patients with progressive neurodegenerative diseases usually do not completely improve. Currently, the use of flavonoids, especially quercetin for the treatment of neurodegenerative diseases, has been expanded in animal models. It has also been used to treat animal models of neurodegenerative diseases. In addition, improvements in behavioral levels, as well as in cellular and molecular levels, decreased activity of antioxidant and apoptotic proteins, and increased levels of antiapoptotic proteins have been observed. Low bioavailability of quercetin has also led researchers to construct various quercetin-involved nanoparticles. The treatment of animal models of neurodegeneration using quercetin-involved nanoparticles has shown that improvements are observed in shorter periods and with use of lower concentrations. Indeed, intranasal administration of quercetin-involved nanoparticles, constructing superparamagnetic nanoparticles, and combinational treatment using nanoparticles such as quercetin and other drugs are suggested for future studies.
Collapse
|
87
|
A spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
88
|
Horincar G, Aprodu I, Barbu V, Râpeanu G, Bahrim GE, Stănciuc N. Interactions of flavonoids from yellow onion skins with whey proteins: Mechanisms of binding and microencapsulation with different combinations of polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:158-167. [PMID: 30831393 DOI: 10.1016/j.saa.2019.02.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The interaction of flavonoids extracted from yellow onion skins with whey proteins isolate was studied using fluorescence spectroscopy and simulation methods from the perspectives of microencapsulation. The fluorescence spectroscopy revealed a static quenching mechanism and the involvement of van der Waals and H bonding in complexes formation. The in silico methods suggested that the heat treatment of the major whey proteins affected the binding pockets and therefore the affinity for the main flavonoids. The interaction surface decreased and the interaction energy increased, suggesting lower binding strength. Further, the yellow onion skins extract was successfully encapsulated in whey proteins isolate and different combinations of polymers, including chitosan, maltodextrin and pectin by freeze drying. The resulted powder showed a total flavonoid content of 5.84 ± 0.23 mg quercetin equivalents/g DW in whey protein-chitosan combination and 104.97 ± 5.02 mg quercetin equivalents/g DW in whey protein-maltodextrin-pectin combinations, with antioxidant activity of 175.93 ± 1.50 mM mM Trolox/g DW and 269.20 ± 3.59 mM Trolox/g DW, respectively. The confocal microscopy indicated that the flavonoids aggregated inside the matrix formed between the whey proteins and various polymers and irregular and compact clusters. Therefore, a comprehensive approach involving the extraction of flavonoids from underutilized food by-products, such as yellow onion skins, evaluation of binding mechanisms with whey proteins, whereas tailoring their functional benefit through microencapsulation in order to obtain active ingredients are reported.
Collapse
Affiliation(s)
- Georgiana Horincar
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania.
| |
Collapse
|
89
|
Sayyar Z, Jafarizadeh-Malmiri H. Temperature Effects on Thermodynamic Parameters and Solubility of Curcumin O/W Nanodispersions Using Different Thermodynamic Models. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSolubility of curcumin at different temperatures is of great importance in subcritical water extraction systems. We newly developed an approach for the solid–liquid equilibrium under subcritical condition to determine the solubility of curcumin. The experimental results were correlated successfully with thermodynamics models such as Van’t Hoff, modified Apelblat equation, Wilson, non-random two-liquid (NRTL) and λh equation and the interaction parameters’ values of curcumin-water were acquired. Good agreement between the experimental and calculated values with λh equation was observed at different temperatures (373.15–433.15 °K) at 1.5 bar. The obtained value of the relative average deviation was 2.29 × 10–5. The molar enthalpy (ΔH0), entropy (ΔS0), Gibbs energy (ΔG0) and their relative fraction of the total process were calculated. The calculated enthalpy with the Van’t Hoff equation (25.32 kJ/mol) agreed well with the differential scanning calorimetry analysis data (26.15 kJ/mol).
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | | |
Collapse
|
90
|
Development and characterization of antioxidant active packaging and intelligent Al 3+-sensing films based on carboxymethyl chitosan and quercetin. Int J Biol Macromol 2019; 126:1074-1084. [PMID: 30625350 DOI: 10.1016/j.ijbiomac.2018.12.264] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 11/20/2022]
Abstract
Different amounts of quercetin were mixed with carboxymethyl chitosan (CMCS) to develop novel antioxidant active packaging and intelligent Al3+-sensing films. The physical properties, structure, antioxidant and Al3+-sensing abilities of CMCS-quercetin composite films were investigated. Results showed CMCS-quercetin composite films presented a dark yellowish color. When compared with CMCS film, CMCS-quercetin composite films containing 5 and 7.5 wt% of quercetin on CMCS basis exhibited higher thicknesses, opacity and thermal stability; however, presented lower moisture contents, UV-vis light transmittance and elongation at break. Besides, the incorporation of quercetin could not significantly change the water solubility and water vapor barrier property of CMCS film. Morphological observation showed the surface of CMCS-quercetin composite film became coarse when 7.5 wt% of quercetin was incorporated. Infrared spectra and X-ray diffraction patterns of CMCS-quercetin composite films further indicated quercetin was compatible with CMCS. Importantly, CMCS-quercetin composite films could sustainably release antioxidant ability into aqueous and fatty food stimulants. Moreover, CMCS-quercetin composite films were sensitive to Al3+. The color and UV-vis absorption patterns of CMCS-quercetin composite films were changed by the addition of Al3+. Results suggested that CMCS-quercetin composite films could be used as novel antioxidant and intelligent Al3+-sensing materials in food packaging.
Collapse
|
91
|
Lachos-Perez D, Baseggio AM, Mayanga-Torres P, Maróstica MR, Rostagno M, Martínez J, Forster-Carneiro T. Subcritical water extraction of flavanones from defatted orange peel. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.03.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
92
|
Abdullah AA, Yardım Y, Şentürk Z. The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice. Talanta 2018; 187:156-164. [PMID: 29853029 DOI: 10.1016/j.talanta.2018.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 11/15/2022]
Abstract
In the present paper, an electroanalytical methodology was developed for the determination of an important catechol-containing flavonoid derivative, quercetin using adsorptive stripping voltammetry at a cathodically pretreated boron-doped diamond electrode. In cyclic voltammetry, the compound showed a couple of oxidation/reduction peak at low positive potentials, and additional two oxidation peaks at more positive potentials. The sensitivity of the stripping voltammetric measurements was significantly improved when the cationic surfactant, cetyltrimethylammonium bromide (CTAB) was present in the electrolyte solution. Using square-wave stripping mode, a highly linear analytical curve was obtained for quercetin determination in 0.1 M acetate buffer solution (pH 4.7) containing 3 × 10-4 M CTAB at + 0.37 V (vs. Ag/AgCl) (after 30 s accumulation at open-circuit condition) in the range of 0.5-200 ng mL-1 (1.7 × 10-9-3.3 × 10-7 M), with a detection limit of 0.132 ng mL-1 (4.4 × 10-10 M). As an example, the practical applicability of proposed method was successfully tested with the measurement of quercetin concentration in commercial apple juice samples.
Collapse
Affiliation(s)
- Abdullah A Abdullah
- Van Yüzüncü Yıl University, Faculty of Science, Department of Analytical Chemistry, 65080 Van, Turkey
| | - Yavuz Yardım
- Van Yüzüncü Yıl University, Faculty of Pharmacy, Department of Analytical Chemistry, 65080 Van, Turkey
| | - Zühre Şentürk
- Van Yüzüncü Yıl University, Faculty of Science, Department of Analytical Chemistry, 65080 Van, Turkey.
| |
Collapse
|
93
|
Aizawa Y, Sunada S, Hirakawa H, Fujimori A, Kato TA, Uesaka M. Design and evaluation of a novel flavonoid-based radioprotective agent utilizing monoglucosyl rutin. JOURNAL OF RADIATION RESEARCH 2018; 59:272-281. [PMID: 29373678 PMCID: PMC5967546 DOI: 10.1093/jrr/rrx090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, three novel flavonoid composite materials, created by combining an aglycone [quercetin (QUE), hesperetin (HES) or naringenin (NAR)] with monoglucosyl rutin (MGR), were designed to test for improved radioprotectivity compared with that provided by administration of MGR alone. Aglycone in the MGR-composite state was highly soluble in water, compared with aglycone alone dissolved in dimethyl sulfoxide or distilled water. The antioxidant activity of the three flavonoid composites was as high as that of MGR only. Next, the cytotoxicity test after 30 min treatment of an MGR composite showed a clear reduction in cell viability and suggested that a rapid introduction of aglycone into cells had taken place. In addition, QUE/MGR and HES/MGR composites strongly scavenged intracellular reactive oxygen species (ROS) induced by X-ray irradiation as well as MGR alone did. However, in the colony-formation assay using irradiated Chinese hamster ovary (CHO) cells, the HES/MGR composite showed a stronger radioprotective effect than MGR alone did, but the QUE/MGR composite showed no additional protective effect compared with the control. Furthermore, it was revealed that QUE and QUE/MGR composite treatment had the effect of reducing the glutathione (GSH) content in cells, and that QUE showed a stronger inhibition of PARP activity compared that of HES and NAR. Our data demonstrated that when designing a flavonoid composite as a radioprotective agent, it was necessary to select an appropriate aglycone, considering not only its antioxidant ability but also its inhibitory effect on cell recovery or DNA repair after radiation injury.
Collapse
Affiliation(s)
- Yasushi Aizawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigeaki Sunada
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirokazu Hirakawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-855, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-855, Japan
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Mitsuru Uesaka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
94
|
Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem 2018; 262:14-20. [PMID: 29751901 DOI: 10.1016/j.foodchem.2018.04.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Subcritical water extraction (SWE), an environment-friendly technique, was applied to extract polyphenolics from sorghum bran. Extraction temperatures (°C), time (min), and solid-liquid ratio (mL/g) were investigated and optimized by Box-Behnken design. The optimized conditions for SWE was 144.5 °C of temperature, 21 min of time, and 35 mL/g of solid-liquid ratio, with a polyphenolics yield of 47.253 ± 0.375 mg GAE/g dw, which was in good agree with the predicted value. Comparing with hot water extraction (HWE), SWE resulted in a higher yield of polyphenolics, higher radical scavenging activities, and more efficient antiproliferative activity. Furthermore, major polyphenolic compositions of the extracts were identified and quantified by HPLC-ESI-MS/MS. Taxifolin, taxifolin hexoside, oligomeric procyanidins, and epicatechin were the most abundant polyphenolic compounds in the extracts. Taken together, SWE can be used as a effective extraction method for polyphenolics from sorghum bran, which could be used as a potential source of natural antioxidants.
Collapse
|
95
|
|
96
|
Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541:224-233. [DOI: 10.1016/j.ijpharm.2018.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
97
|
Oliver S, Yee E, Kavallaris M, Vittorio O, Boyer C. Water Soluble Antioxidant Dextran–Quercetin Conjugate with Potential Anticancer Properties. Macromol Biosci 2018; 18:e1700239. [DOI: 10.1002/mabi.201700239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
| | - Eugene Yee
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Maria Kavallaris
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Orazio Vittorio
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
| |
Collapse
|
98
|
Huang J, Wang Q, Sun R, Li T, Xia N, Xia Q. Antioxidant Activity, In Vitro Digestibility and Stability of Flaxseed Oil and Quercetin Co-Loaded Submicron Emulsions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan Huang
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Qiang Wang
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Rui Sun
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Tong Li
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Nan Xia
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| | - Qiang Xia
- School of Biological Science and Medical Engineering; State Key Laboratory of Bioelectronics; Southeast University; Nanjing P.R. China
- National Demonstration Center for Experimental Biomedical Engineering Education; Southeast University; Nanjing P.R. China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou P.R. China
| |
Collapse
|
99
|
Sukul D, Pal A, Saha SK, Satpati S, Adhikari U, Banerjee P. Newly synthesized quercetin derivatives as corrosion inhibitors for mild steel in 1 M HCl: combined experimental and theoretical investigation. Phys Chem Chem Phys 2018; 20:6562-6574. [DOI: 10.1039/c7cp06848d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To evaluate the corrosion inhibition efficacy of the derivatives of naturally available organics, mono and di-4-((2-hydroxyethyl)piperazin-1-yl)methyl derivatives of quercetin, a flavonoid, have been synthesized.
Collapse
Affiliation(s)
- Dipankar Sukul
- Department of Chemistry
- National Institute of Technology
- Durgapur 713 209
- India
| | - Aparesh Pal
- Department of Chemistry
- National Institute of Technology
- Durgapur 713 209
- India
| | - Sourav Kr. Saha
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| | - Sanjoy Satpati
- Department of Chemistry
- National Institute of Technology
- Durgapur 713 209
- India
| | - Utpal Adhikari
- Department of Chemistry
- National Institute of Technology
- Durgapur 713 209
- India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
100
|
Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|