51
|
Xue WF, Szczepankiewicz O, Bauer MC, Thulin E, Linse S. Intra- versus intermolecular interactions in monellin: contribution of surface charges to protein assembly. J Mol Biol 2006; 358:1244-55. [PMID: 16574151 DOI: 10.1016/j.jmb.2006.02.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/24/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
The relative significance of weak non-covalent interactions in biological context has been much debated. Here, we have addressed the contribution of Coulombic interactions to protein stability and assembly experimentally. The sweet protein monellin, a non-covalently linked heterodimeric protein, was chosen for this study because of its ability to spontaneously reconstitute from separated fragments. The reconstitution of monellin mutants containing large surface charge perturbations was compared to the thermostability of structurally equivalent single-chain monellin containing the same sets of mutations under varying salt concentrations. The affinity between monellin fragments is found to correlate with the thermostability of single chain monellin, indicating the involvement of the same underlying Coulombic interactions. This confirms that there are no principal differences in the interactions involved in folding and binding. Based on comparison with a previous mutational study involving hydrophobic core residues, the relative contribution of Coulombic interactions to stability and affinity is modest. However, the Coulombic perturbations only affect the association rates of reconstitution in contrast to perturbations involving hydrophobic residues, which affect primarily the dissociation rates. These results indicate that Coulombic interactions are likely to be of main importance for the association of protein assembly, relevant for functions of proteins.
Collapse
Affiliation(s)
- Wei-Feng Xue
- Department of Biophysical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund SE-22100, Sweden.
| | | | | | | | | |
Collapse
|
52
|
Kahsai MA, Martin E, Edmondson SP, Shriver JW. Stability and flexibility in the structure of the hyperthermophile DNA-binding protein Sac7d. Biochemistry 2006; 44:13500-9. [PMID: 16216073 DOI: 10.1021/bi051167d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sac7d is a chromatin protein from the hyperthermophile Sulfolobus acidocaldarius that severely kinks duplex DNA with negligible change in protein structure. In previous work, the overall stability of Sac7d has been well-characterized with a global analysis of the linkage of folding, protonation, and anion binding. We extend that work here with NMR measurements of global stability as well as the distribution of stability and flexibility in the solution structure. Native state amide hydrogen exchange has been used to identify the most-protected core amide protons which exchange through global unfolding. The pH and temperature dependence of stability defined by native state exchange is in excellent agreement with the free energy surface determined by a linkage analysis of the dependence of folding on pH, salt, and temperature. These results confirm that the deltaC(P) obtained from a Kirchhoff analysis of DSC data (i.e., deltaH vs Tm) is incorrect, and an accurate description of the protein stability curve for Sac7d requires a measure of the thermodynamic contributions of protonation and anion binding. Amide hydrogen exchange, along with generalized order parameters determined by 15N relaxation data, demonstrates considerable variation in stability throughout the structure with some of the least stable regions occurring at the N- and C-termini. The most stable and inflexible region of the backbone occurs primarily in the DNA-binding beta-sheet which is responsible for bending DNA.
Collapse
Affiliation(s)
- Mebrahtu A Kahsai
- Laboratory for Structural Biology, Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | | | | | | |
Collapse
|
53
|
Strickler SS, Gribenko AV, Gribenko AV, Keiffer TR, Tomlinson J, Reihle T, Loladze VV, Makhatadze GI. Protein stability and surface electrostatics: a charged relationship. Biochemistry 2006; 45:2761-6. [PMID: 16503630 DOI: 10.1021/bi0600143] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering proteins to withstand a broad range of conditions continues to be a coveted objective, holding the potential to advance biomedicine, industry, and our understanding of disease. One way of achieving this goal lies in elucidating the underlying interactions that define protein stability. It has been shown that the hydrophobic effect, hydrogen bonding, and packing interactions between residues in the protein interior are dominant factors that define protein stability. The role of surface residues in protein stability has received much less attention. It has been believed that surface residues are not important for protein stability particularly because their interactions with the solvent should be similar in the native and unfolded states. In the case of surface charged residues, it was sometimes argued that solvent exposure meant that the high dielectric of the solvent will further decrease the strength of the charge-charge interactions. In this paper, we challenge the notion that the surface charged residues are not important for protein stability. We computationally redesigned sequences of five different proteins to optimize the surface charge-charge interactions. All redesigned proteins exhibited a significant increase in stability relative to their parent proteins, as experimentally determined by circular dichroism spectroscopy and differential scanning calorimetry. These results suggest that surface charge-charge interactions are important for protein stability and that rational optimization of charge-charge interactions on the protein surface can be a viable strategy for enhancing protein stability.
Collapse
Affiliation(s)
- Samantha S Strickler
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Granata V, Graziano G, Ruggiero A, Raimo G, Masullo M, Arcari P, Vitagliano L, Zagari A. Chemical Denaturation of the Elongation Factor 1α Isolated from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Biochemistry 2005; 45:719-26. [PMID: 16411747 DOI: 10.1021/bi050479d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability against chemical denaturants of the elongation factor EF-1alpha (SsEF-1alpha), a protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus has been characterized in detail. Indeed, the atypical shape of the protein structure and the unusual living conditions of the host organism prompted us to analyze the effect of urea and guanidine hydrochloride (GuHCl) on the GDP complex of the enzyme (SsEF-1alpha x GDP) by fluorescence and circular dichroism. These studies were also extended to the nucleotide-free form of the protein (nfSsEF-1alpha). Interestingly, the experiments show that the denaturation curves of both SsEF-1alpha forms present a single inflection point, which is indicative of a cooperative unfolding process with no intermediate species. Moreover, the chemically induced unfolding process of both SsEF-1alpha x GDP and nfSsEF-1alpha is fully reversible. Both SsEF-1alpha forms exhibit remarkable stability against urea, but they do not display a strong resistance to the denaturing action of GuHCl. These findings suggest that electrostatic interactions significantly contribute to SsEF-1alpha stability.
Collapse
Affiliation(s)
- Vincenzo Granata
- Dipartimento delle Scienze Biologiche, Sezione di Biostrutture, Università degli Studi di Napoli Federico II, I-80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Yin H, Kuret J. C-terminal truncation modulates both nucleation and extension phases of τ fibrillization. FEBS Lett 2005; 580:211-5. [PMID: 16364303 DOI: 10.1016/j.febslet.2005.11.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
Proteolytic post-translational modification has been proposed as an early stage event in the aggregation of tau protein and formation of neurofibrillary lesions in Alzheimer's disease. Caspases and other proteases cleave tau in vivo at discrete locations including Asp421 and Glu391. Both cleavage products are prone to aggregation relative to wild-type, full-length tau protein. To determine the mechanism underlying this effect, the fibrillization of tau truncated after Asp421 and Glu391 residues was characterized in a full-length four-repeat tau background using quantitative electron microscopy methods under homogeneous nucleation conditions. Both C-terminal truncations decreased critical concentration relative to full-length tau, resulting in more filament mass at reaction plateau. Moreover, truncation directly augmented the efficiency of the nucleation reaction. The results suggest the mechanism through which C-terminal proteolysis can modulate tau filament accumulation depending on whether it precedes or follows nucleation.
Collapse
Affiliation(s)
- Haishan Yin
- Ohio State Biochemistry Program, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | |
Collapse
|
56
|
Lee CF, Makhatadze GI, Wong KB. Effects of Charge-to-Alanine Substitutions on the Stability of Ribosomal Protein L30e from Thermococcus celer. Biochemistry 2005; 44:16817-25. [PMID: 16363795 DOI: 10.1021/bi0519654] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to rationally engineer a protein with altered stability depends upon the detailed understanding of the role of noncovalent interactions in defining thermodynamic properties of proteins. In this paper, we used T. celer L30e as a model to address the question of the role of charge-charge interactions in defining the stability of this protein. A total of 26 single-site charge-to-alanine variants of this protein were generated, and the stability of these proteins was determined using thermal- and denaturant-induced unfolding. It was found that, although L30e is isolated from a thermophilic organism and is highly thermostable, some of the substitutions lead to a further increase in the transition temperature. Analysis of the effects of high ionic strength on the stabilities of L30e variants shows that the long-range charge-charge interactions are as important as the short-range (salt bridge) interactions. The changes in stabilities of the T. celer L30e protein variants were compared with the changes in the energy of charge-charge interactions calculated using different computational models. It was found that there is a good qualitative agreement between experimental and calculated data: for 70-80% (19-21 of 26, confidence p < 0.003) of the variants, computational models predict correctly the sign of the stability changes. In particular, computational models identify correctly those charged amino acid residue substitutions of which led to enhancement in thermostability. Thus, optimization of the charge-charge interactions might be a useful approach for the rational increase in protein stability.
Collapse
Affiliation(s)
- Chi-Fung Lee
- Department of Biochemistry and Molecular Biotechnology Programme, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
57
|
Trevino SR, Gokulan K, Newsom S, Thurlkill RL, Shaw KL, Mitkevich VA, Makarov AA, Sacchettini JC, Scholtz JM, Pace CN. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa. J Mol Biol 2005; 354:967-78. [PMID: 16288913 DOI: 10.1016/j.jmb.2005.09.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/28/2005] [Accepted: 09/29/2005] [Indexed: 11/17/2022]
Abstract
The two most buried carboxyl groups in ribonuclease Sa (RNase Sa) are Asp33 (99% buried; pK 2.4) and Asp79 (85% buried; pK 7.4). Above these pK values, the stability of the D33A variant is 6kcal/mol less than wild-type RNase Sa, and the stability of the D79A variant is 3.3kcal/mol greater than wild-type RNase Sa. The key structural difference between the carboxyl groups is that Asp33 forms three intramolecular hydrogen bonds, and Asp79 forms no intramolecular hydrogen bond. Here, we focus on Asp79 and describe studies of 11 Asp79 variants. Most of the variants were at least 2kcal/mol more stable than wild-type RNase Sa, and the most interesting was D79F. At pH 3, below the pK of Asp79, RNase Sa is 0.3kcal/mol more stable than the D79F variant. At pH 8.5, above the pK of Asp79, RNase Sa is 3.7kcal/mol less stable than the D79F variant. The unfavorable contribution of Asp79 to the stability appears to result from the Born self-energy of burying the charge and, more importantly, from unfavorable charge-charge interactions. To counteract the effect of the negative charge on Asp79, we prepared the Q94K variant and the crystal structure showed that the amino group of the Lys formed a hydrogen-bonded ion pair (distance, 2.71A; angle, 100 degrees ) with the carboxyl group of Asp79. The stability of the Q94K variant was about the same as the wild-type at pH 3, where Asp79 is uncharged, but 1kcal/mol greater than that of wild-type RNase Sa at pH 8.5, where Asp79 is charged. Differences in hydrophobicity, steric strain, Born self-energy, and electrostatic interactions all appear to contribute to the range of stabilities observed in the variants. When it is possible, replacing buried, non-hydrogen bonded, ionizable side-chains with non-polar side-chains is an excellent means of increasing protein stability.
Collapse
Affiliation(s)
- Saul R Trevino
- Department of Medical Biochemistry and Genetics, Texas A and M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Permyakov SE, Makhatadze GI, Owenius R, Uversky VN, Brooks CL, Permyakov EA, Berliner LJ. How to improve nature: study of the electrostatic properties of the surface of alpha-lactalbumin. Protein Eng Des Sel 2005; 18:425-33. [PMID: 16093284 DOI: 10.1093/protein/gzi051] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It was recently shown that alpha-lactalbumin interacts with histones and simple models of histone proteins such as positively charged polyamino acids, suggesting that some fundamental aspects of the protein surface electrostatics may come into play. In the present work, the energies of charge-charge interaction in apo- and Ca(2+)-loaded alpha-lactalbumin were calculated using a Tanford-Kirkwood algorithm with either solvent accessibility correction or using a finite difference Poisson-Boltzmann method. The analysis revealed two major regions of alpha-lactalbumin that possessed highly unfavorable electrostatic potentials: (a) the Ca(2+)-binding loop and its neighboring residues and (b) the N-terminal region of the protein. Several individual mutants were prepared to neutralize specific individual surface acidic amino acids at both the N-terminus and Ca(2+)-binding loop of bovine alpha-lactalbumin. These mutants were characterized by intrinsic fluorescence, differential scanning microcalorimetry and circular dichroism. The structural and thermodynamic data agree in every case with the theoretical predictions, confirming that the N-terminal region is very sensitive to changes in charge. For example, desMet D14N mutation destabilizes protein and decreases its calcium affinity. On the other hand, desMet E1M and desMet D37N substitutions increase the thermal stability and calcium affinity. The Met E1Q is characterized by a marked increase in protein stability, whereas desMet E7Q and desMet E11L display a slight increase in calcium affinity and thermal stability. Examination of the unfavorable energy contributed by Glu1 and the energetically favorable consequences of neutralizing this residue suggests that nature may have made an error with bovine alpha-lactalbumin from the viewpoint of stabilizing structure and conformation.
Collapse
Affiliation(s)
- Serge E Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | |
Collapse
|
59
|
Bae E, Phillips GN. Identifying and engineering ion pairs in adenylate kinases. Insights from molecular dynamics simulations of thermophilic and mesophilic homologues. J Biol Chem 2005; 280:30943-8. [PMID: 15995248 DOI: 10.1074/jbc.m504216200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular dynamics simulations were performed to study thermal stabilization of proteins via electrostatic interactions of ion pairs. Dynamic motions of four ion pairs previously proposed to be important in thermal stability of adenylate kinase from the thermophile Bacillus stearothermophilus were monitored during the simulation. One of the four ion pairs identified in the crystal structure, Lys180-Asp114, was not maintained in close contact suggesting that the ion pair does not contribute to thermal stability. Among the other three ion pairs, the ion pair Arg116-Glu198 was proposed to be the most important for stability. To predict behaviors of the ion pairs when engineered into a mesophilic homologue to increase stability, in silico mutants of adenylate kinase from the mesophile Bacillus subtilis were generated, and their molecular dynamics simulations were carried out. The ion pairs in the mutant simulations displayed similar behaviors to those in the simulation of the thermophilic protein. To validate the results of the simulations experimentally, the same mutants were produced in vitro and their thermal stabilities were measured using differential scanning calorimetry. In agreement with the simulations, the Lys180-Asp114 did not result in any increase in stability by itself or additive effect with other ion pairs, whereas a mutant with the Arg116-Glu198 exhibited the highest stability among the mutants having one of the four ion pairs. These results provide specific knowledge about stability in adenylate kinases and more generally suggest that molecular dynamics simulations can provide valuable information for identifying and engineering ion pairs.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
60
|
Lee CF, Allen MD, Bycroft M, Wong KB. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e. J Mol Biol 2005; 348:419-31. [PMID: 15811378 DOI: 10.1016/j.jmb.2005.02.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The origin of reduced heat capacity change of unfolding (DeltaC(p)) commonly observed in thermophilic proteins is controversial. The established theory that DeltaC(p) is correlated with change of solvent-accessible surface area cannot account for the large differences in DeltaC(p) observed for thermophilic and mesophilic homologous proteins, which are very similar in structures. We have determined the protein stability curves, which describe the temperature dependency of the free energy change of unfolding, for a thermophilic ribosomal protein L30e from Thermococcus celer, and its mesophilic homologue from yeast. Values of DeltaC(p), obtained by fitting the free energy change of unfolding to the Gibbs-Helmholtz equation, were 5.3 kJ mol(-1) K(-1) and 10.5 kJ mol(-1) K(-1) for T.celer and yeast L30e, respectively. We have created six charge-to-neutral mutants of T.celer L30e. Removal of charges at Glu6, Lys9, and Arg92 decreased the melting temperatures of T.celer L30e by approximately 3-9 degrees C, and the differences in melting temperatures were smaller with increasing concentration of salt. These results suggest that these mutations destabilize T.celer L30e by disrupting favorable electrostatic interactions. To determine whether electrostatic interactions contribute to the reduced DeltaC(p) of the thermophilic protein, we have determined DeltaC(p) for wild-type and mutant T.celer L30e by Gibbs-Helmholtz and by van't Hoff analyses. A concomitant increase in DeltaC(p) was observed for those charge-to-neutral mutants that destabilize T.celer L30e by removing favorable electrostatic interactions. The crystal structures of K9A, E90A, and R92A, were determined, and no structural change was observed. Taken together, our results support the conclusion that electrostatic interactions contribute to the reduced DeltaC(p) of T.celer L30e.
Collapse
Affiliation(s)
- Chi-Fung Lee
- Molecular Biotechnology Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
61
|
Wunderlich M, Martin A, Schmid FX. Stabilization of the Cold Shock Protein CspB from Bacillus subtilis by Evolutionary Optimization of Coulombic Interactions. J Mol Biol 2005; 347:1063-76. [PMID: 15784264 DOI: 10.1016/j.jmb.2005.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 11/28/2022]
Abstract
The bacterial cold shock proteins (Csp) are used by both experimentalists and theoreticians as model systems for analyzing the Coulombic contributions to protein stability. We employ Proside, a method of directed evolution, to identify stabilized variants of Bs-CspB from Bacillus subtilis. Proside links the increased protease resistance of stabilized protein variants to the infectivity of a filamentous phage. Here, three cspB libraries were used for in vitro selections to explore the stabilizing potential of charged amino acids in Bs-CspB. In the first library codons for nine selected surface residues were partially randomized, in the second one random mutations were introduced non-specifically by error-prone PCR, and in the third one the spontaneous mutation rate of the phage in Escherichia coli was used. Stabilizing mutations were found at the surface positions 1, 3, 46, 48, 65, and 66. The contributions of these mutations to stability were characterized by analyzing them individually and in combination. The best combination (M1R, E3K, K65I, and E66L) increased the midpoint of thermal unfolding of Bs-CspB from 53.8 to 85.0 degrees C. The effects of most mutations are strongly context dependent. A good example is provided by the E3R mutation. It is strongly stabilizing (DeltaDeltaGD=11.1kJ mol(-1)) in the wild-type protein, but destabilizing (DeltaDeltaGD=-4.0kJ mol(-1)) in the A46K/S48R/E66L variant. The stabilizations by charge mutations did not correlate well with the corresponding changes in the protein net charge, and they could not be ascribed to the formation of ion pairs. Previous theoretical analyses did not identify the stabilization caused by the mutations at positions 1, 46, and 48. Also, electrostatics calculations based on protein net charge or charge asymmetry did not predict well the stability changes that occur when charged residues in Bs-CspB are mutated. It remains a challenge to model the Coulombic interactions of charged residues in a protein and to determine their contributions to the Gibbs free energy of protein folding.
Collapse
Affiliation(s)
- Michael Wunderlich
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
62
|
Cheung YY, Lam SY, Chu WK, Allen MD, Bycroft M, Wong KB. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization. Biochemistry 2005; 44:4601-11. [PMID: 15779887 DOI: 10.1021/bi047832k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acylphosphatases catalyze the hydrolysis of the carboxyl-phosphate bond in acyl phosphates. Although acylphosphatase-like sequences are found in all three domains of life, no structure of acylphosphatase has been reported for bacteria and archaea so far. Here, we report the characterization of enzymatic activities and crystal structure of an archaeal acylphosphatase. A putative acylphosphatase gene (PhAcP) was cloned from the genomic DNA of Pyrococcus horikoshii and was expressed in Escherichia coli. Enzymatic parameters of the recombinant PhAcP were measured using benzoyl phosphate as the substrate. Our data suggest that, while PhAcP is less efficient than other mammalian homologues at 25 degrees C, the thermophilic enzyme is fully active at the optimal growth temperature (98 degrees C) of P. horikoshii. PhAcP is extremely stable; its apparent melting temperature was 111.5 degrees C and free energy of unfolding at 25 degrees C was 54 kJ mol(-)(1). The 1.5 A crystal structure of PhAcP adopts an alpha/beta sandwich fold that is common to other acylphosphatases. PhAcP forms a dimer in the crystal structure via antiparallel association of strand 4. Structural comparison to mesophilic acylphosphatases reveals significant differences in the conformation of the L5 loop connecting strands 4 and 5. The extreme thermostability of PhAcP can be attributed to an extensive ion-pair network consisting of 13 charge residues on the beta sheet of the protein. The reduced catalytic efficiency of PhAcP at 25 degrees C may be due to a less flexible active-site residue, Arg20, which forms a salt bridge to the C-terminal carboxyl group. New insights into catalysis were gained by docking acetyl phosphate to the active site of PhAcP.
Collapse
Affiliation(s)
- Yuk-Yin Cheung
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
63
|
Dell'Orco D, Xue WF, Thulin E, Linse S. Electrostatic contributions to the kinetics and thermodynamics of protein assembly. Biophys J 2004; 88:1991-2002. [PMID: 15596501 PMCID: PMC1305251 DOI: 10.1529/biophysj.104.049189] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Biophysical Chemistry, Lund University, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
64
|
Campos LA, Garcia-Mira MM, Godoy-Ruiz R, Sanchez-Ruiz JM, Sancho J. Do Proteins Always Benefit from a Stability Increase? Relevant and Residual Stabilisation in a Three-state Protein by Charge Optimisation. J Mol Biol 2004; 344:223-37. [PMID: 15504413 DOI: 10.1016/j.jmb.2004.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/31/2004] [Accepted: 09/20/2004] [Indexed: 11/28/2022]
Abstract
The vast majority of our knowledge on protein stability arises from the study of simple two-state models. However, proteins displaying equilibrium intermediates under certain conditions abound and it is unclear whether the energetics of native/intermediate equilibria is well represented in current knowledge. We consider here that the overall conformational stability of three-state proteins is made of a "relevant" term and a "residual" one, corresponding to the free energy differences of the native to intermediate (N-to-I) and intermediate to denatured (I-to-D) equilibria, respectively. The N-to-I free energy difference is considered to be the relevant stability because protein-unfolding intermediates are likely devoid of biological activity. We use surface charge optimisation to first increase the overall (N-to-D) stability of a model three-state protein (apoflavodoxin) and then investigate whether the stabilisation obtained is realised into relevant or into residual stability. Most of the mutations designed from electrostatic calculations or from simple sequence conservation analysis produce large increases in the overall stability of the protein. However, in most cases, this simply leads to similarly large increases of the residual stability. Two mutations, nevertheless, show a different trend and increase the relevant stability of the protein substantially. When all the mutations are mapped onto the structure of the apoflavodoxin thermal-unfolding intermediate (obtained independently by equilibrium phi-analysis and NMR) they cluster perfectly so that the mutations increasing the relevant stability appear in the small unstructured region of the intermediate and the others in the native-like region. This illustrates the need for specific investigation of N-to-I equilibria and the structure of protein intermediates, and indicates that it is possible to rationally stabilise a protein against partial unfolding once the structure of the intermediate conformation is known, even if at low resolution.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|