51
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
52
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
53
|
VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS One 2011; 6:e21738. [PMID: 21738782 PMCID: PMC3126847 DOI: 10.1371/journal.pone.0021738] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as ‘non-toxic’. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of ‘non-toxic’ VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617 – VapC proteins with similarity to Rv0549c and Rv3320c, respectively – these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.
Collapse
|
54
|
Chopra N, Agarwal S, Verma S, Bhatnagar S, Bhatnagar R. Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function. J Comput Aided Mol Des 2011; 25:275-91. [PMID: 21336656 DOI: 10.1007/s10822-011-9419-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 02/07/2011] [Indexed: 02/07/2023]
Abstract
Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254-7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein-protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX-DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.
Collapse
Affiliation(s)
- Nikita Chopra
- Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | | | | | | | | |
Collapse
|
55
|
Han KD, Matsuura A, Ahn HC, Kwon AR, Min YH, Park HJ, Won HS, Park SJ, Kim DY, Lee BJ. Functional identification of toxin-antitoxin molecules from Helicobacter pylori 26695 and structural elucidation of the molecular interactions. J Biol Chem 2011; 286:4842-53. [PMID: 21123184 PMCID: PMC3039379 DOI: 10.1074/jbc.m109.097840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 11/02/2010] [Indexed: 01/15/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are associated with many important cellular processes including antibiotic resistance and microorganism virulence. Here, we identify and structurally characterize TA molecules from the gastric pathogen, Helicobacter pylori. The HP0894 protein had been previously suggested, through our structural genomics approach, to be a putative toxin molecule. In this study, the intrinsic RNase activity and the bacterial cell growth-arresting activity of HP0894 were established. The RNA-binding surface was identified at three residue clusters: (Lys(8) and Ser(9)), (Lys(50)-Lys(54) and Glu(58)), and (Arg(80) and His(84)-Phe(88)). In particular, the -UA- and -CA- sequences in RNA were preferentially cleaved by HP0894, and residues Lys(52), Trp(53), and Ser(85)-Lys(87) were observed to be the main contributors to sequence recognition. The action of HP0894 could be inhibited by the HP0895 protein, and the HP0894-HP0895 complex formed an oligomer with a binding stoichiometry of 1:1. The N and C termini of HP0894 constituted the binding sites to HP0895. In contrast, the unstructured C-terminal region of HP0895 was responsible for binding to HP0894 and underwent a conformational change in the process. Finally, DNA binding activity was observed for both HP0895 and the HP0894-0895 complex but not for HP0894 alone. Taken together, it is concluded that the HP0894-HP0895 protein couple is a TA system in H. pylori, where HP0894 is a toxin with an RNase function, whereas HP0895 is an antitoxin functioning by binding to both the toxin and DNA.
Collapse
Affiliation(s)
- Kyung-Doo Han
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Atsushi Matsuura
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hee-Chul Ahn
- the Advanced Analysis Center, Korea Institute of Science and Technology, Seoungbuk-gu, Seoul 136-791, Korea
| | - Ae-Ran Kwon
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Yu-Hong Min
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Hyo-Ju Park
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hyung-Sik Won
- the School of Medicine, Konkuk University, Chungju, Chungcheongbuk-do 380-701, Korea
| | - Sung-Jean Park
- the Graduate School of Medicine, Gachon University School of Medicine and Science, Yeonsu-gu, Incheon 406-799, Korea, and
| | - Do-Young Kim
- Davidson College, Davidson, North Carolina 28035
| | - Bong-Jin Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| |
Collapse
|
56
|
Blower TR, Salmond GPC, Luisi BF. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin–antitoxin partners. Curr Opin Struct Biol 2011; 21:109-18. [DOI: 10.1016/j.sbi.2010.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 01/21/2023]
|
57
|
Chim N, Habel JE, Johnston JM, Krieger I, Miallau L, Sankaranarayanan R, Morse RP, Bruning J, Swanson S, Kim H, Kim CY, Li H, Bulloch EM, Payne RJ, Manos-Turvey A, Hung LW, Baker EN, Lott JS, James MNG, Terwilliger TC, Eisenberg DS, Sacchettini JC, Goulding CW. The TB Structural Genomics Consortium: a decade of progress. Tuberculosis (Edinb) 2011; 91:155-72. [PMID: 21247804 DOI: 10.1016/j.tube.2010.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 01/03/2023]
Abstract
The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately lead to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Int J Microbiol 2010; 2010:781430. [PMID: 21253538 PMCID: PMC3021852 DOI: 10.1155/2010/781430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/14/2010] [Accepted: 11/21/2010] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) systems have been extensively studied for their significant role in a variety of biological processes in eukaryotic organisms. Recently, more and more researches have revealed the existence of similar systems employed by bacteria in response to various environmental stresses. This paper summarized the recent researching advancements in toxin/antitoxin systems located on plasmids or chromosomes and their regulatory roles in bacterial PCD. The most studied yet disputed mazEF system was discussed in depth, and possible roles and status of such a special bacterial death and TA systems were also reviewed from the ecological and evolutionary perspectives.
Collapse
|
59
|
Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 2010; 18:996-1010. [PMID: 20696400 DOI: 10.1016/j.str.2010.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/22/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phd antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.
Collapse
Affiliation(s)
- Mark A Arbing
- Department of Biological Sciences, Columbia University, 702 Fairchild Center, MC2434, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. Solution structure and membrane binding of the toxin fst of the par addiction module. Biochemistry 2010; 49:6567-75. [PMID: 20677831 PMCID: PMC2914490 DOI: 10.1021/bi1005128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The par toxin−antitoxin system is required for the stable inheritance of the plasmid pAD1 in its native host Enterococcus faecalis. It codes for the toxin Fst and a small antisense RNA which inhibits translation of toxin mRNA, and it is the only known antisense regulated toxin−antitoxin system in Gram-positive bacteria. This study presents the structure of the par toxin Fst, the first atomic resolution structure of a component of an antisense regulated toxin−antitoxin system. The mode of membrane binding was determined by relaxation enhancements in a paramagnetic environment and molecular dynamics simulation. Fst forms a membrane-binding α-helix in the N-terminal part and contains an intrinsically disordered region near the C-terminus. It binds in a transmembrane orientation with the C-terminus likely pointing toward the cytosol. Membrane-bound, α-helical peptides are frequently found in higher organisms as components of the innate immune system. Despite similarities to these antimicrobial peptides, Fst shows neither hemolytic nor antimicrobial activity when applied externally to a series of bacteria, fungal cells, and erythrocytes. Moreover, its charge distribution, orientation in the membrane, and structure distinguish it from antimicrobial peptides.
Collapse
Affiliation(s)
- Christoph Göbl
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
61
|
|
62
|
Yang M, Gao C, Wang Y, Zhang H, He ZG. Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS One 2010; 5:e10672. [PMID: 20498855 PMCID: PMC2871789 DOI: 10.1371/journal.pone.0010672] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/24/2010] [Indexed: 01/15/2023] Open
Abstract
RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis.
Collapse
Affiliation(s)
- Min Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Gao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
63
|
A new member of the ribbon-helix-helix transcription factor superfamily from the plant pathogen Xanthomonas axonopodis pv. citri. J Struct Biol 2010; 170:21-31. [DOI: 10.1016/j.jsb.2009.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/11/2009] [Accepted: 12/22/2009] [Indexed: 11/19/2022]
|
64
|
Dalton KM, Crosson S. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Biochemistry 2010; 49:2205-15. [PMID: 20143871 DOI: 10.1021/bi902133s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 A resolution. This TA system forms an alpha(2)beta(2) heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.
Collapse
Affiliation(s)
- Kevin M Dalton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
65
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
66
|
Crystal Structure of the Antitoxin–Toxin Protein Complex RelB–RelE from Methanococcus jannaschii. J Mol Biol 2009; 393:898-908. [DOI: 10.1016/j.jmb.2009.08.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 08/04/2009] [Accepted: 08/18/2009] [Indexed: 12/15/2022]
|
67
|
Overgaard M, Borch J, Gerdes K. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 2009; 394:183-96. [PMID: 19747491 PMCID: PMC2812701 DOI: 10.1016/j.jmb.2009.09.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
RelB, the ribbon–helix–helix (RHH) repressor encoded by the relBE toxin–antitoxin locus of Escherichia coli, interacts with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced by RelE; that is, RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate, and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional control of the relBE model operon. Using an in vivo screen for relB mutants, we identified multiple nucleotide changes that map to important amino acid positions within the DNA-binding domain formed by the N-terminal RHH motif of RelB. Analysis of DNA binding of a subset of these mutant RHH proteins by gel-shift assays, transcriptional fusion assays and a structure model of RelB–DNA revealed amino acid residues making crucial DNA–backbone contacts within the operator (relO) DNA. Mutational and footprinting analyses of relO showed that RelB dimers bind on the same face of the DNA helix and that the RHH motif recognizes four 6-bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between RelB and RelE confirmed that the proteins form a high-affinity complex with a 2:1 stoichiometry. Lon degraded RelB in vitro and degradation was inhibited by RelE, consistent with the proposal that RelE protects RelB from proteolysis by Lon in vivo.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
68
|
Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 2009; 284:28746-53. [PMID: 19690171 DOI: 10.1074/jbc.m109.032904] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mqsR gene has been shown to be positively regulated by the quorum-sensing autoinducer AI-2, which in turn activates a two-component system, the qseB-qseC operon. This operon plays an important role in biofilm formation in Escherichia coli. However, its cellular function has remained unknown. Here, we found that 1 base downstream of mqsR there is a gene, ygiT, that is co-transcribed with mqsR. Induction of mqsR caused cell growth arrest, whereas ygiT co-induction recovered cell growth. We demonstrate that MqsR (98 amino acid residues), which has no homology to the well characterized mRNA interferase MazF, is a potent inhibitor of protein synthesis that functions by degrading cellular mRNAs. In vivo and in vitro primer extension experiments showed that MqsR is an mRNA interferase specifically cleaving mRNAs at GCU. The mRNA interferase activity of purified MqsR was inhibited by purified YgiT (131 residues). MqsR forms a stable 2:1 complex with YgiT, and the complex likely functions as a repressor for the mqsR-ygiT operon by specifically binding to two different palindromic sequences present in the 5'-untranslated region of this operon.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
69
|
Li GY, Zhang Y, Inouye M, Ikura M. Inhibitory mechanism of Escherichia coli RelE-RelB toxin-antitoxin module involves a helix displacement near an mRNA interferase active site. J Biol Chem 2009; 284:14628-36. [PMID: 19297318 DOI: 10.1074/jbc.m809656200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, RelE toxin participates in growth arrest and cell death by inducing mRNA degradation at the ribosomal A-site under stress conditions. The NMR structures of a mutant of E. coli RelE toxin, RelE(R81A/R83A), with reduced toxicity and its complex with an inhibitory peptide from RelB antitoxin, RelB(C) (Lys(47)-Leu(79)), have been determined. In the free RelE(R81A/R83A) structure, helix alpha4 at the C terminus adopts a closed conformation contacting with the beta-sheet core and adjacent loops. In the RelE(R81A/R83A)-RelB(C) complex, helix alpha3(*) of RelB(C) displaces alpha4 of RelE(R81A/R83A) from the binding site on the beta-sheet core. This helix replacement results in neutralization of a conserved positively charged cluster of RelE by acidic residues from alpha3(*) of RelB. The released helix alpha4 becomes unfolded, adopting an open conformation with increased mobility. The displacement of alpha4 disrupts the geometry of critical residues, including Arg(81) and Tyr(87), in a putative active site of RelE toxin. Our structures indicate that RelB counteracts the toxic activity of RelE by displacing alpha4 helix from the catalytically competent position found in the free RelE structure.
Collapse
Affiliation(s)
- Guang-Yao Li
- Division of Signaling Biology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
70
|
Yamaguchi Y, Inouye M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:467-500. [PMID: 19215780 DOI: 10.1016/s0079-6603(08)00812-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. One such toxin, MazF, is an ACA-specific endoribonuclease, termed "mRNA interferase."E. coli contains other mRNA interferases with different sequence specificities, which are considered to play important roles in growth regulation under stress conditions, and also in eliminating stress-damaged cells from a population. Recently, MazF homologues with 5-base recognition sequences have been identified, for example, those from Mycobacterium tuberculosis. These sequences are significantly underrepresented in the genes for protein families playing a role in the immunity and pathogenesis of M. tuberculosis. An mRNA interferase in Myxococcus xanthus is essential for programmed cell death during fruiting body formation. We propose that mRNA interferases play roles not only in cell growth regulation and programmed cell death, but also in regulation of specific gene expression (either positively or negatively) in bacteria.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
71
|
Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 2008; 191:762-72. [PMID: 19028895 DOI: 10.1128/jb.01331-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YefM-YoeB is among the most prevalent and well-characterized toxin-antitoxin complexes. YoeB toxin is an endoribonuclease whose activity is inhibited by YefM antitoxin. The regions 5' of yefM-yoeB in diverse bacteria possess conserved sequence motifs that mediate transcriptional autorepression. The yefM-yoeB operator site arrangement is exemplified in Escherichia coli: a pair of palindromes with core hexamer motifs and a center-to-center distance of 12 bp overlap the yefM-yoeB promoter. YefM is an autorepressor that initially recognizes a long palindrome containing the core hexamer, followed by binding to a short repeat. YoeB corepressor greatly enhances the YefM-operator interaction. Scanning mutagenesis demonstrated that the short repeat is crucial for correct interaction of YefM-YoeB with the operator site in vivo and in vitro. Moreover, altering the relative positions of the two palindromes on the DNA helix abrogated YefM-YoeB cooperative interactions with the repeats: complex binding to the long repeat was maintained but was perturbed to the short repeat. Although YefM lacks a canonical DNA binding motif, dual conserved arginine residues embedded in a basic patch of the protein are crucial for operator recognition. Deciphering the molecular basis of toxin-antitoxin transcriptional control will provide key insights into toxin-antitoxin activation and function.
Collapse
|
72
|
Garcia-Pino A, Dao-Thi MH, Gazit E, Magnuson RD, Wyns L, Loris R. Crystallization of Doc and the Phd-Doc toxin-antitoxin complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1034-8. [PMID: 18997335 PMCID: PMC2581698 DOI: 10.1107/s1744309108031722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/01/2008] [Indexed: 02/05/2023]
Abstract
The phd/doc addiction system is responsible for the stable inheritance of lysogenic bacteriophage P1 in its plasmidic form in Escherichia coli and is the archetype of a family of bacterial toxin-antitoxin modules. The His66Tyr mutant of Doc (Doc(H66Y)) was crystallized in space group P2(1), with unit-cell parameters a = 53.1, b = 198.0, c = 54.1 A, beta = 93.0 degrees . These crystals diffracted to 2.5 A resolution and probably contained four dimers of Doc in the asymmetric unit. Doc(H66Y) in complex with a 22-amino-acid C-terminal peptide of Phd (Phd(52-73Se)) was crystallized in space group C2, with unit-cell parameters a = 111.1, b = 38.6, c = 63.3 A, beta = 99.3 degrees , and diffracted to 1.9 A resolution. Crystals of the complete wild-type Phd-Doc complex belonged to space group P3(1)21 or P3(2)21, had an elongated unit cell with dimensions a = b = 48.9, c = 354.9 A and diffracted to 2.4 A resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | | | | | | | |
Collapse
|