51
|
Sen M, Maillard RA, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 2013; 155:636-646. [PMID: 24243020 DOI: 10.1016/j.cell.2013.09.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
Abstract
ATP-dependent proteases are vital to maintain cellular protein homeostasis. Here, we study the mechanisms of force generation and intersubunit coordination in the ClpXP protease from E. coli to understand how these machines couple ATP hydrolysis to mechanical protein unfolding. Single-molecule analyses reveal that phosphate release is the force-generating step in the ATP-hydrolysis cycle and that ClpXP translocates substrate polypeptides in bursts resulting from highly coordinated conformational changes in two to four ATPase subunits. ClpXP must use its maximum successive firing capacity of four subunits to unfold stable substrates like GFP. The average dwell duration between individual bursts of translocation is constant, regardless of the number of translocating subunits, implying that ClpXP operates with constant "rpm" but uses different "gears."
Collapse
Affiliation(s)
- Maya Sen
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rodrigo A Maillard
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720, USA.,QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Kristofor Nyquist
- QB3 Institute, University of California, Berkeley, CA 94720, USA.,Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Piere Rodriguez-Aliaga
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720, USA.,QB3 Institute, University of California, Berkeley, CA 94720, USA.,Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Steve Pressé
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720, USA
| | - Andreas Martin
- QB3 Institute, University of California, Berkeley, CA 94720, USA.,Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720, USA.,QB3 Institute, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
52
|
Sauer RT. Mutagenic dissection of the sequence determinants of protein folding, recognition, and machine function. Protein Sci 2013; 22:1675-87. [PMID: 23963737 DOI: 10.1002/pro.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/08/2022]
Abstract
Understanding the relationship between the amino-acid sequence of a protein and its ability to fold and to function is one of the major challenges of protein science. Here, cases are reviewed in which mutagenesis, biochemistry, structure determination, protein engineering, and single-molecule biophysics have illuminated the sequence determinants of folding, binding specificity, and biological function for DNA-binding proteins and ATP-fueled machines that forcibly unfold native proteins as a prelude to degradation. In addition to structure-function relationships, these studies provide information about folding intermediates, mutations that accelerate folding, slow unfolding, and stabilize proteins against denaturation, show how new binding specificities and folds can evolve, and reveal strategies that proteolytic machines use to recognize, unfold, and degrade thousands of distinct substrates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
53
|
Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 2013; 153:628-39. [PMID: 23622246 DOI: 10.1016/j.cell.2013.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
ClpX, a AAA+ ring homohexamer, uses the energy of ATP binding and hydrolysis to power conformational changes that unfold and translocate target proteins into the ClpP peptidase for degradation. In multiple crystal structures, some ClpX subunits adopt nucleotide-loadable conformations, others adopt unloadable conformations, and each conformational class exhibits substantial variability. Using mutagenesis of individual subunits in covalently tethered hexamers together with fluorescence methods to assay the conformations and nucleotide-binding properties of these subunits, we demonstrate that dynamic interconversion between loadable and unloadable conformations is required to couple ATP hydrolysis by ClpX to mechanical work. ATP binding to different classes of subunits initially drives staged allosteric changes, which set the conformation of the ring to allow hydrolysis and linked mechanical steps. Subunit switching between loadable and unloadable conformations subsequently isomerizes or resets the configuration of the nucleotide-loaded ring and is required for mechanical function.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
54
|
Wohlever ML, Nager AR, Baker TA, Sauer RT. Engineering fluorescent protein substrates for the AAA+ Lon protease. Protein Eng Des Sel 2013; 26:299-305. [PMID: 23359718 DOI: 10.1093/protein/gzs105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monitored by loss of fluorescence, but Lon fails to degrade appropriately tagged GFP variants at a significant rate. Here, we demonstrate that Lon catalyzes robust unfolding and degradation of circularly permuted variants of GFP with a β20 degron appended to the N terminus or a sul20 degron appended to the C terminus. Lon degradation of non-permuted GFP-sul20 is very slow, in part because the enzyme cannot efficiently extract the degron-proximal C-terminal β-strand to initiate denaturation. The circularly permuted GFP substrates described here allow convenient high-throughput assays of the kinetics of Lon degradation in vitro and also permit assays of Lon proteolysis in vivo.
Collapse
Affiliation(s)
- Matthew L Wohlever
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
55
|
Andrews BT, Capraro DT, Sulkowska JI, Onuchic JN, Jennings PA. Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. J Phys Chem Lett 2013; 4:180-188. [PMID: 23525263 PMCID: PMC3601837 DOI: 10.1021/jz301893w] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Topologically complex proteins fold by multiple routes as a result of hard-to-fold regions of the proteins. Oftentimes these regions are introduced into the protein scaffold for function and increase frustration in the otherwise smooth-funneled landscape. Interestingly, while functional regions add complexity to folding landscapes, they may also contribute to a unique behavior referred to as hysteresis. While hysteresis is predicted to be rare, it is observed in various proteins, including proteins containing a unique peptide cyclization to form a fluorescent chromophore as well as proteins containing a knotted topology in their native fold. Here, hysteresis is demonstrated to be a consequence of the decoupling of unfolding events from the isomerization or hula-twist of a chromophore in one protein and the untying of the knot in a second protein system. The question now is- can hysteresis be a marker for the interplay of landscapes where complex folding and functional regions overlap?
Collapse
Affiliation(s)
| | - Dominique T. Capraro
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| | | | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston TX 77005
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| |
Collapse
|
56
|
Abstract
ClpL, a member of the HSP100 family, is widely distributed in Gram-positive bacteria but is absent in Gram-negative bacteria. Although ClpL is involved in various cellular processes, such as the stress tolerance response, long-term survival, virulence, and antibiotic resistance, the detailed molecular mechanisms are largely unclear. Here we report that ClpL acts as a chaperone to properly fold CtsR, a stress response repressor, and prevents it from forming protein aggregates in Streptococcus mutans. In vitro, ClpL was able to successfully refold urea-denatured CtsR but not aggregated proteins. We suggest that ClpL recognizes primarily soluble but denatured substrates and prevents the formation of large protein aggregates. We also found that in vivo, the C-terminal D2-small domain of ClpL is essential for the observed chaperone activity. Since ClpL widely contributes to various cellular functions, we speculate that ClpL chaperone activity is necessary to maintain cellular homeostasis.
Collapse
|
57
|
Peterson CN, Levchenko I, Rabinowitz JD, Baker TA, Silhavy TJ. RpoS proteolysis is controlled directly by ATP levels in Escherichia coli. Genes Dev 2012; 26:548-53. [PMID: 22426532 DOI: 10.1101/gad.183517.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The master regulator of stationary phase in Escherichia coli, RpoS, responds to carbon availability through changes in stability, but the individual steps in the pathway are unknown. Here we systematically block key steps of glycolysis and the citric acid cycle and monitor the effect on RpoS degradation in vivo. Nutrient upshifts trigger RpoS degradation independently of protein synthesis by activating metabolic pathways that generate small energy molecules. Using metabolic mutants and inhibitors, we show that ATP, but not GTP or NADH, is necessary for RpoS degradation. In vitro reconstitution assays directly demonstrate that ClpXP fails to degrade RpoS, but not other proteins, at low ATP hydrolysis rates. These data suggest that cellular ATP levels directly control RpoS stability.
Collapse
Affiliation(s)
- Celeste N Peterson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
58
|
Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat Struct Mol Biol 2012; 19:616-22. [PMID: 22562135 PMCID: PMC3372766 DOI: 10.1038/nsmb.2288] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/02/2012] [Indexed: 11/17/2022]
Abstract
In the E. coli ClpXP protease, a hexameric ClpX ring couples ATP binding and hydrolysis to mechanical protein unfolding and translocation into the ClpP degradation chamber. Rigid-body packing between the small AAA+ domain of each ClpX subunit and the large AAA+ domain of its neighbor stabilizes the hexamer. By connecting the parts of each rigid-body unit with disulfide bonds or linkers, we created covalently closed rings that retained robust activity. A single-residue insertion in the hinge that connects the large and small AAA+ domains and forms part of the nucleotide-binding site uncoupled ATP hydrolysis from productive unfolding. We propose that ATP hydrolysis drives changes in the conformation of one hinge and its flanking domains, which are propagated around the AAA+ ring via the topologically constrained set of rigid-body units and hinges to produce coupled ring motions that power substrate unfolding.
Collapse
|
59
|
Gur E, Vishkautzan M, Sauer RT. Protein unfolding and degradation by the AAA+ Lon protease. Protein Sci 2012; 21:268-78. [PMID: 22162032 DOI: 10.1002/pro.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/07/2011] [Indexed: 11/11/2022]
Abstract
AAA+ proteases employ a hexameric ring that harnesses the energy of ATP binding and hydrolysis to unfold native substrates and translocate the unfolded polypeptide into an interior compartment for degradation. What determines the ability of different AAA+ enzymes to unfold and thus degrade different native protein substrates is currently uncertain. Here, we explore the ability of the E. coli Lon protease to unfold and degrade model protein substrates beginning at N-terminal, C-terminal, or internal degrons. Lon has historically been viewed as a weak unfoldase, but we demonstrate robust and processive unfolding/degradation of some substrates with very stable protein domains, including mDHFR and titin(I27) . For some native substrates, Lon is a more active unfoldase than related AAA+ proteases, including ClpXP and ClpAP. For other substrates, this relationship is reversed. Thus, unfolding activity does not appear to be an intrinsic enzymatic property. Instead, it depends on the specific protease and substrate, suggesting that evolution has diversified rather than optimized the protein unfolding activities of different AAA+ proteases.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|