51
|
Inactivation of a New Potassium Channel Increases Rifampicin Resistance and Induces Collateral Sensitivity to Hydrophilic Antibiotics in Mycobacterium smegmatis. Antibiotics (Basel) 2022; 11:antibiotics11040509. [PMID: 35453260 PMCID: PMC9025972 DOI: 10.3390/antibiotics11040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
Rifampicin is a critical first-line antibiotic for treating mycobacterial infections such as tuberculosis, one of the most serious infectious diseases worldwide. Rifampicin resistance in mycobacteria is mainly caused by mutations in the rpoB gene; however, some rifampicin-resistant strains showed no rpoB mutations. Therefore, alternative mechanisms must explain this resistance in mycobacteria. In this work, a library of 11,000 Mycobacterium smegmatis mc2 155 insertion mutants was explored to search and characterize new rifampicin-resistance determinants. A transposon insertion in the MSMEG_1945 gene modified the growth rate, pH homeostasis and membrane potential in M. smegmatis, producing rifampicin resistance and collateral susceptibility to other antitubercular drugs such as isoniazid, ethionamide and aminoglycosides. Our data suggest that the M. smegmatis MSMEG_1945 protein is an ion channel, dubbed MchK, essential for maintaining the cellular ionic balance and membrane potential, modulating susceptibility to antimycobacterial agents. The functions of this new gene point once again to potassium homeostasis impairment as a proxy to resistance to rifampicin. This study increases the known repertoire of mycobacterial ion channels involved in drug susceptibility/resistance to antimycobacterial drugs and suggests novel intervention opportunities, highlighting ion channels as druggable pathways.
Collapse
|
52
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|
53
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
54
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
55
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
56
|
Liu GH, Zhang Q, Narsing Rao MP, Yang S, Tang R, Shi H, Wang JP, Huang GM, Liu B, Zhou SG, Li WJ. Stress response mechanisms and description of three novel species Shewanella avicenniae sp. nov., Shewanella sedimentimangrovi sp. nov. and Shewanella yunxiaonensis sp. nov., isolated from mangrove ecosystem. Antonie van Leeuwenhoek 2021; 114:2123-2131. [PMID: 34623539 DOI: 10.1007/s10482-021-01666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Three Gram-staining negative, facultatively anaerobic, rod-shaped and motile strains, FJAT-51800T, FJAT-52962T and FJAT-54481T were isolated from the sediment samples of Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. The 16S rRNA gene sequencing results indicated they could be novel members of the genus Shewanella. The optimum temperature for growth was 30 °C. The respiratory quinones of the strains were ubiquinone Q-7 or Q-8, and menaquinone MK-7. Polar lipids of the strains FJAT-52962T and FJAT-51800T were phosphatidyl glycerol, phosphatidyl ethanolamine, and unidentified aminophospholipids while strain FJAT-54481 consist of phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipids, two unidentified aminolipids and four unidentified lipids. The major fatty acid of the three strains was iso-C15:0. The genomic DNA G + C contents of strains FJAT-51800T, FJAT-52962T and FJAT-54481T were 48.2, 55.3 and 48.1%, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strains FJAT-51800T, FJAT-52962T and FJAT-54481T and other closely related Shewanella members were below the cut-off level (95-96%) for species identification. Genome analysis showed that these strains encode genes for osmo-regulation. Based on the results of phenotypic, chemotaxonomic and genome analyses, strains FJAT-51800T, FJAT-52962T and FJAT-54481T represent three novel species of the genus Shewanella, for which the names Shewanella avicenniae sp. nov., Shewanella sedimentimangrovi sp. nov., and Shewanella yunxiaonensis sp. nov., are proposed. The type strains are FJAT-51800T (= GDMCC 1.2204T = KCTC 82448T), FJAT-52962T (= MCCC 1K05496T = KCTC 82445T) and FJAT-54481T (= GDMCC 1.2348T = KCTC 82646T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Qi Zhang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shang Yang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Rong Tang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China
| | - Huai Shi
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Guan-Min Huang
- Administrative Bureau of Zhangjiang Estuary Mangrove National Nature Reserve Yunxiao Town, Yunxiao, Fujian, 363300, People's Republic of China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, People's Republic of China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
57
|
Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nat Commun 2021; 12:5098. [PMID: 34429416 PMCID: PMC8385062 DOI: 10.1038/s41467-021-25242-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
KdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase KdpB to secure survival at K+ limitation. Here, we apply a combination of cryo-EM, biochemical assays, and MD simulations to illuminate the mechanisms underlying transport and the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylalanine, which, by polarized cation-π stacking, controls K+ entry into the canonical substrate binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge distribution between an aspartate and a lysine. Interestingly, individual elements of the ion translocation mechanism of KdpFABC identified here are conserved among a wide variety of P-type ATPases from different families. This leads us to the hypothesis that KdpB might represent an early descendant of a common ancestor of cation pumps.
Collapse
|
58
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
59
|
Stockbridge RB, Gaudet R, Grabe M, Minor DL. Inroads into Membrane Physiology through Transport Nanomachines. J Mol Biol 2021; 433:167101. [PMID: 34119492 DOI: 10.1016/j.jmb.2021.167101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology and Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemsitry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantiative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|