51
|
Savitsky A, Grishin Y, Rakhmatullin R, Reijerse E, Lubitz W. An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:014704. [PMID: 23387676 DOI: 10.1063/1.4788735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In high-frequency electron paramagnetic resonance (EPR) spectroscopy the sample is usually accommodated in a single-mode cylindrical TE(011) microwave cavity. This cavity stands out in terms of flexibility for various types of EPR experiments due to convenient control of its resonance frequency and easy waveguide-to-cavity microwave coupling. In continuous wave and in pulsed EPR it is, however, essential to be able to vary the coupling efficiency over a large range. We present a new mechanical design to vary the microwave coupling to the cavity using a movable metal sphere. This coupling sphere is shifted in the plane of the iris wall inside the coupling waveguide. The design allows for a compact and robust construction of the EPR probehead that can be easily accommodated inside a limited space of helium flow cryostat. The construction details and characterization of the coupling element for 95 GHz (W-band) EPR as well as for 34 GHz (Q-band) are presented.
Collapse
Affiliation(s)
- A Savitsky
- Max-Planck-Institut für chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
52
|
Adamska A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W. Identification and characterization of the "super-reduced" state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed Engl 2012; 51:11458-62. [PMID: 23109267 DOI: 10.1002/anie.201204800] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/06/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Agnieszka Adamska
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W. Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy. J Am Chem Soc 2012; 134:16619-34. [DOI: 10.1021/ja3053267] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Leonid Rapatskiy
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Nicholas Cox
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Anton Savitsky
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - William M. Ames
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Julia Sander
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Marc. M. Nowaczyk
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Matthias Rögner
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Alain Boussac
- iBiTec-S, URA UMR 8221, CEA Saclay,
91191 Gif-sur-Yvette, France
| | - Frank Neese
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Johannes Messinger
- Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå, Sweden
| | - Wolfgang Lubitz
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
54
|
Silakov A, Olsen MT, Sproules S, Reijerse EJ, Rauchfuss TB, Lubitz W. EPR/ENDOR, Mössbauer, and quantum-chemical investigations of diiron complexes mimicking the active oxidized state of [FeFe]hydrogenase. Inorg Chem 2012; 51:8617-28. [PMID: 22800196 PMCID: PMC3420818 DOI: 10.1021/ic3013766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the catalytic process of the heterolytic splitting and formation of molecular hydrogen is one of the key topics for the development of a future hydrogen economy. With an interest in elucidating the enzymatic mechanism of the [Fe(2)(S(2)C(2)H(4)NH)(CN)(2)(CO)(2)(μ-CO)] active center uniquely found in [FeFe]hydrogenases, we present a detailed spectroscopic and theoretical analysis of its inorganic model [Fe(2)(S(2)X)(CO)(3)(dppv)(PMe(3))](+) [dppv = cis-1,2-bis(diphenylphosphino)ethylene] in two forms with S(2)X = ethanedithiolate (1edt) and azadithiolate (1adt). These complexes represent models for the oxidized mixed-valent Fe(I)Fe(II) state analogous to the active oxidized "H(ox)" state of the native H-cluster. For both complexes, the (31)P hyperfine interactions were determined by pulse electron paramagnetic resonance and electron nuclear double resonance (ENDOR) methods. For 1edt, the (57)Fe parameters were measured by electron spin-echo envelope modulation and Mössbauer spectroscopy, while for 1adt, (14)N and selected (1)H couplings could be obtained by ENDOR and hyperfine sublevel correlation spectroscopy. The spin density was found to be predominantly localized on the Fe(dppv) site. This spin distribution is different from that of the H-cluster, where both the spin and charge densities are delocalized over the two Fe centers. This difference is attributed to the influence of the "native" cubane subcluster that is lacking in the inorganic models. The degree and character of the unpaired spin delocalization was found to vary from 1edt, with an abiological dithiolate, to 1adt, which features the authentic cofactor. For 1adt, we find two (14)N signals, which are indicative for two possible isomers of the azadithiolate, demonstrating its high flexibility. All interaction parameters were also evaluated through density functional theory calculations at various levels.
Collapse
Affiliation(s)
- Alexey Silakov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| | - Matthew T. Olsen
- Department of Chemistry, University of Illinois, A328 Chemical & Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Stephen Sproules
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Eduard J. Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, A328 Chemical & Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| |
Collapse
|
55
|
Flores M, Okamura MY, Niklas J, Pandelia ME, Lubitz W. Pulse Q-band EPR and ENDOR spectroscopies of the photochemically generated monoprotonated benzosemiquinone radical in frozen alcoholic solution. J Phys Chem B 2012; 116:8890-900. [PMID: 22731760 DOI: 10.1021/jp304555u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinones are essential cofactors in many physiological processes, among them proton-coupled electron transfer (PCET) in photosynthesis and respiration. A key intermediate in PCET is the monoprotonated semiquinone radical. In this work we produced the monoprotonated benzosemiquinone (BQH(•)) by UV illumination of BQ dissolved in 2-propanol at cryogenic temperatures and investigated the electronic and geometric structures of BQH(•) in the solid state (80 K) using EPR and ENDOR techniques at 34 GHz. The g-tensor of BQH(•) was found to be similar to that of the anionic semiquinone species (BQ(•-)) in frozen solution. The peaks present in the ENDOR spectrum of BQH(•) were identified and assigned by (1)H/(2)H substitutions. The experiments reconfirmed that the hydroxyl proton (O-H) on BQH(•), which is abstracted from a solvent molecule, mainly originates from the central CH group of 2-propanol. They also showed that the protonation has a strong impact on the electron spin distribution over the quinone. This is reflected in the hyperfine couplings (hfc's) of the ring protons, which dramatically changed with respect to those typically observed for BQ(•-). The hfc tensor of the O-H proton was determined by a detailed orientation-selection ENDOR study and found to be rhombic, resembling those of protons covalently bound to carbon atoms in a π-system (i.e., α-protons). It was found that the O-H bond lies in the quinone plane and is oriented along the direction of the quinone oxygen lone pair orbital. DFT calculations were performed on different structures of BQH(•) coordinated by four, three, or zero 2-propanol molecules. The O-H bond length was found to be around 1.0 Å, typical for a single covalent O-H bond. Good agreement between experimental and DFT results were found. This study provides a detailed picture of the electronic and geometric structures of BQH(•) and should be applicable to other naturally occurring quinones.
Collapse
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, D-45470, Germany.
| | | | | | | | | |
Collapse
|
56
|
Hsieh CH, Erdem ÖF, Harman SD, Singleton ML, Reijerse E, Lubitz W, Popescu CV, Reibenspies JH, Brothers SM, Hall MB, Darensbourg MY. Structural and Spectroscopic Features of Mixed Valent FeIIFeI Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase. J Am Chem Soc 2012; 134:13089-102. [DOI: 10.1021/ja304866r] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chung-Hung Hsieh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Scott D. Harman
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L. Singleton
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426,
United States
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Scott M. Brothers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
57
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|