Yang DD, Hou WS, Wu XY, Zheng XL, Zheng J, Jiang YT. Changes in spatial distribution of flexor digitorum superficialis muscle activity is correlated to finger's action.
ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011;
2011:4108-4111. [PMID:
22255243 DOI:
10.1109/iembs.2011.6091020]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multitendoned extrinsic muscles of the human hand can be divided into several neuromuscular compartments (NMCs), each of which contributes to the ability of human finger to produce independent finger movements or force. The aim of this study was to investigate the changes in the spatial activation of flexor digitorum superficialis (FDS) during the fingertip force production with non-invasive multichannel surface electromyography (sEMG) technique. 7 healthy Subjects were instructed to match the target force level for 5s using individual index finger (I), individual middle finger (M) and the combination of the index and middle finger (IM) respectively. Simultaneously, a 2 × 6 electrode array was employed to record multichannel sEMG from FDS as finger force was produced. The entropy and center of gravity of the sEMG root mean square (RMS) map were computed to assess the spatial inhomogeneity in muscle activation and the change in spatial distribution of EMG amplitude related to the force generation of specific task finger. The results showed that the area and intensity of high amplitude region increased with force production, and the entropy increased with force level under the same task finger. The findings indicate that the change of spatial distribution of multitendoned extrinsic hand muscle activation is correlated to specific biomechanical functions.
Collapse