52
|
Li X, Pedano MS, Camargo B, Hauben E, De Vleeschauwer S, Chen Z, De Munck J, Vandamme K, Van Landuyt K, Van Meerbeek B. Experimental tricalcium silicate cement induces reparative dentinogenesis. Dent Mater 2018; 34:1410-1423. [PMID: 29941352 DOI: 10.1016/j.dental.2018.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To overcome shortcomings of hydraulic calcium-silicate cements (hCSCs), an experimental tricalcium silicate (TCS) cement, named 'TCS 50', was developed. In vitro research showed that TCS 50 played no negative effect on the viability and proliferation of human dental pulp cells, and it induced cell odontogenic differentiation. The objective was to evaluate the pulpal repair potential of TCS 50 applied onto exposed minipig pulps. METHODS Twenty permanent teeth from three minipigs were mechanically exposed and capped using TCS 50; half of the teeth were scheduled for 7-day and the other half for 70-day examination (n=10). Commercial hCSCs ProRoot MTA and TheraCal LC were tested as references (n=8). Tooth discoloration was examined visually. After animal sacrifice, the teeth were scanned using micro-computed tomography; inflammatory response at day 7 and day 70, mineralized tissue formation at day 70 were assessed histologically. RESULTS Up to 70 days, TCS 50 induced no discoloration, ProRoot MTA generated gray/black discoloration in all teeth. For TCS 50, 40.0% pulps exhibited a mild/moderate inflammation at day 7. No inflammation was detected and complete reparative dentin with tubular structures was formed in all pulps after 70 days. ProRoot MTA induced a similar response, TheraCal LC generated a less favorable response in terms of initial inflammation and reparative dentin formation; however, these differences were not significant (Chi-square test of independence: p>0.05). SIGNIFICANCE TCS 50 induced reparative dentinogenesis in minipig pulps. It can be considered as a promising pulp-capping agent, also for aesthetic areas.
Collapse
Affiliation(s)
- Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Wuhan University, School and Hospital of Stomatology, Ministry of Education, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Wuhan, PR China
| | - Mariano Simón Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bernardo Camargo
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Federal University of Rio de Janeiro, Nuclear Engineering Program, Rio de Janeiro, Brazil
| | - Esther Hauben
- Laboratory for Pathology, UZ Leuven & Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | | | - Zhi Chen
- Wuhan University, School and Hospital of Stomatology, Ministry of Education, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Wuhan, PR China
| | - Jan De Munck
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Katleen Vandamme
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|
53
|
The Relationship of Surface Characteristics and Antimicrobial Performance of Pulp Capping Materials. J Endod 2018; 44:1115-1120. [PMID: 29861063 DOI: 10.1016/j.joen.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Pulp capping materials need to be able to protect the pulp but also bond to the overlying restorative materials. Light-curable pulp capping materials bond better to restorative materials and are easier to place than most water-based cements. The aim of this study was to characterize new light-curable tricalcium silicate-based pulp capping materials and compare their surface and antimicrobial properties with clinically available Theracal (Bisco, Schaumburg, IL) and Biodentine (Septodont, Saint-Maur-des-Fossés, France). METHODS The surface characteristics of 3 light-curable pulp capping materials based on a resin and filled with tricalcium silicate and tantalum oxide radiopacifier and Theracal and Biodentine were assessed by scanning electron microscopy, X-ray diffraction, and contact angle measurement. The radiopacity was measured following ISO 6876 standards. The antimicrobial activity was determined by the direct contact test and the antibiofilm activity by the adenosine triphosphate assay and the confocal laser scanning Live/Dead assay (Invitrogen, Eugene, OR) using a polymicrobial culture. RESULTS The surface characteristics of the materials varied with the unfilled resin and Biodentine exhibiting a hydrophobic surface. Biodentine showed significantly higher antimicrobial properties in the direct contact test, but this property was absent in the antibiofilm activity tests. The resins filled with tricalcium silicate and Theracal showed higher antimicrobial activity than Biodentine in the adenosine triphosphate and live/dead assays. CONCLUSIONS The surface characteristics of a material affect its antimicrobial properties. The experimental resin-modified materials exhibited comparable antimicrobial properties with other light-curable pulp capping agents. Further long-term studies on the materials' antimicrobial activity are required to assess whether they can result in better clinical outcomes.
Collapse
|
54
|
TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications. Int J Dent 2018; 2018:3484653. [PMID: 29785184 PMCID: PMC5892295 DOI: 10.1155/2018/3484653] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background Direct pulp capping is a popular treatment modality among dentists. TheraCal LC is a calcium silicate-based material that is designed as a direct/indirect pulp capping material. The material might be very attractive for clinicians because of its ease of handling. Unlike other calcium silicate-based materials, TheraCal LC is resin-based and does not require any conditioning of the dentine surface. The material can be bonded with different types of adhesives directly after application. There has been considerable research performed on this material since its launching; however, there are no review articles that collates information and data obtained from these studies. This review discusses the various characteristics of the material with the aim of establishing a better understanding for its clinical use. Methods A search was conducted using search engines (PubMed and Cochrane databases) in addition to reference mining of the articles that was used to locate other papers. The process of searching for the relevant studies was performed using the keywords pulp protection, pulp capping, TheraCal, and calcium silicates. Only articles in English published in peer-reviewed journals were included in the review. Conclusion This review underlines the fact that further in vitro and in vivo studies are required before TheraCal LC can be used as a direct pulp capping material.
Collapse
|