51
|
Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO₂ nanoparticles in cucumber (Cucumis sativus) plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7637-43. [PMID: 22715806 DOI: 10.1021/es300955b] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.
Collapse
Affiliation(s)
- Alia D Servin
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | | | | | | | | | | |
Collapse
|
52
|
Mills A, Hill C, Robertson PK. Overview of the current ISO tests for photocatalytic materials. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.02.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Tran N, Tran PA. Nanomaterial-based treatments for medical device-associated infections. Chemphyschem 2012; 13:2481-94. [PMID: 22517627 DOI: 10.1002/cphc.201200091] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Indexed: 11/07/2022]
Abstract
Bacterial infections remain one of the biggest concerns to our society. Conventional antibiotic treatments showed little effect on the increasing number of antibiotic-resistant bacteria. Advances in synthetic chemistry and nanotechnology have resulted in a new class of nanometer-scale materials with distinguished properties and great potential to be an alternative for antibiotics. In this Minireview, we address the current situation of medical-device-associated infections and the emerging opportunities for antibacterial nanomaterials in preventing these complications. Several important antimicrobial nanomaterials emergent from advances in synthesis chemistry are introduced and their bactericidal mechanisms are analyzed. In addition, concerns regarding the biocompatibility of such materials are also addressed.
Collapse
Affiliation(s)
- Nhiem Tran
- Department of Orthopaedics, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA.
| | | |
Collapse
|
54
|
Robertson PKJ, Robertson JMC, Bahnemann DW. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. JOURNAL OF HAZARDOUS MATERIALS 2012; 211-212:161-171. [PMID: 22178373 DOI: 10.1016/j.jhazmat.2011.11.058] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 05/27/2023]
Abstract
Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.
Collapse
Affiliation(s)
- Peter K J Robertson
- IDeaS, Innovation, Design and Sustainability Research Institute, Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, UK.
| | | | | |
Collapse
|
55
|
Marcone GPS, Oliveira AC, Almeida G, Umbuzeiro GA, Jardim WF. Ecotoxicity of TiO2 to Daphnia similis under irradiation. JOURNAL OF HAZARDOUS MATERIALS 2012; 211-212:436-442. [PMID: 22326243 DOI: 10.1016/j.jhazmat.2011.12.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/19/2011] [Accepted: 12/24/2011] [Indexed: 05/29/2023]
Abstract
Currently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO(2) nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO(2) in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO(2) nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO(2) toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO(2) samples at the highest concentration tested (100 mg L(-1)) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360 nm, presented photo-dependent EC50 values of 56.9-7.8 mg L(-1), which indicates a toxicity mechanism caused by ROS (reactive oxygen species) generation.
Collapse
|
56
|
|
57
|
You J, Zhang Y, Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B Biointerfaces 2011; 85:161-7. [DOI: 10.1016/j.colsurfb.2011.02.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 11/25/2022]
|
58
|
Photocatalytic coatings of silver–TiO2 nanocomposites on foamed waste-glass prepared by sonochemical process. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 2011; 90:1847-68. [PMID: 21523480 PMCID: PMC7079867 DOI: 10.1007/s00253-011-3213-7] [Citation(s) in RCA: 500] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 11/30/2022]
Abstract
The photocatalytic properties of titanium dioxide are well known and have many applications including the removal of organic contaminants and production of self-cleaning glass. There is an increasing interest in the application of the photocatalytic properties of TiO(2) for disinfection of surfaces, air and water. Reviews of the applications of photocatalysis in disinfection (Gamage and Zhang 2010; Chong et al., Wat Res 44(10):2997-3027, 2010) and of modelling of TiO(2) action have recently been published (Dalrymple et al. , Appl Catal B 98(1-2):27-38, 2010). In this review, we give an overview of the effects of photoactivated TiO(2) on microorganisms. The activity has been shown to be capable of killing a wide range of Gram-negative and Gram-positive bacteria, filamentous and unicellular fungi, algae, protozoa, mammalian viruses and bacteriophage. Resting stages, particularly bacterial endospores, fungal spores and protozoan cysts, are generally more resistant than the vegetative forms, possibly due to the increased cell wall thickness. The killing mechanism involves degradation of the cell wall and cytoplasmic membrane due to the production of reactive oxygen species such as hydroxyl radicals and hydrogen peroxide. This initially leads to leakage of cellular contents then cell lysis and may be followed by complete mineralisation of the organism. Killing is most efficient when there is close contact between the organisms and the TiO(2) catalyst. The killing activity is enhanced by the presence of other antimicrobial agents such as Cu and Ag.
Collapse
Affiliation(s)
- Howard A Foster
- Centre for Parasitology and Disease Research, School of Environment and Life Sciences, University of Salford, The Crescent, Salford, Greater Manchester, UK.
| | | | | | | |
Collapse
|
60
|
Complete oxidation of egg albumin on photoirradiated TiO2: factors determining catalytic performance in solid–solid heterogeneous systems. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0295-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Mazurkova NA, Spitsyna YE, Shikina NV, Ismagilov ZR, Zagrebel’nyi SN, Ryabchikova EI. Interaction of titanium dioxide nanoparticles with influenza virus. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1995078010050174] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Kozlova EA, Safatov AS, Kiselev SA, Marchenko VY, Sergeev AA, Skarnovich MO, Emelyanova EK, Smetannikova MA, Buryak GA, Vorontsov AV. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5121-6. [PMID: 20521809 DOI: 10.1021/es100156p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Air disinfection from bacteria and viruses by means of photocatalytic oxidation is investigated with microorganisms loaded over photocatalysts' films from aerosols. Deposition method and equipment have been developed to load Mycobacterium smegmatis , Bacillus thuringiensis , vaccinia virus, and influenza A (H3N2) virus on slides with undoped TiO(2) and platinized sulfated TiO(2) (Pt/TiO(2)). Inactivation dynamics was measured under UVA irradiation and in the dark. About 90% inactivation is reached in 30 min irradiation on TiO(2) and from 90 to 99.8% on Pt/TiO(2). The first-order inactivation rate coefficient ranged from 0.18 to 0.03 min(-1), over Pt/TiO(2) being higher than on TiO(2) for all microorganisms except Bacillus thuringiensis. The photocatalytic mineralization of Bacillus thuringiensis was performed on TiO(2) and Pt/TiO(2) with different photocatalyst and microorganism loadings. Completeness of mineralization depended on the TiO(2) to bacteria mass ratio. The rate of the photocatalytic carbon dioxide production grows with both the cell mass increase and the photocatalyst mass increase. Pt/TiO(2) showed increased rate of mineralization as well as of the inactivation likely due to a better charge carrier separation in the doped semiconductor photocatalyst. The results demonstrate that photocatalytic filters with deposited TiO(2) or Pt/TiO(2) are able to inactivate aerosol microorganisms and completely decompose them into inorganic products and Pt/TiO(2) provides higher disinfection and mineralization rates.
Collapse
Affiliation(s)
- E A Kozlova
- Boreskov Institute of Catalysis, Novosibirsk 630090, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Botes M, Eugene Cloete T. The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 2010; 36:68-81. [DOI: 10.3109/10408410903397332] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
64
|
Kau JH, Sun DS, Huang HH, Wong MS, Lin HC, Chang HH. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PLoS One 2009; 4:e4167. [PMID: 19132100 PMCID: PMC2613519 DOI: 10.1371/journal.pone.0004167] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/07/2008] [Indexed: 11/28/2022] Open
Abstract
Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.
Collapse
Affiliation(s)
- Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Shan Sun
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Show Wong
- Department of Materials Science and Engineering, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Hung-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hou Chang
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
65
|
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. WATER RESEARCH 2008; 42:4591-4602. [PMID: 18804836 DOI: 10.1016/j.watres.2008.08.015] [Citation(s) in RCA: 1033] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 05/26/2023]
Abstract
The challenge to achieve appropriate disinfection without forming harmful disinfection byproducts by conventional chemical disinfectants, as well as the growing demand for decentralized or point-of-use water treatment and recycling systems calls for new technologies for efficient disinfection and microbial control. Several natural and engineered nanomaterials have demonstrated strong antimicrobial properties through diverse mechanisms including photocatalytic production of reactive oxygen species that damage cell components and viruses (e.g. TiO2, ZnO and fullerol), compromising the bacterial cell envelope (e.g. peptides, chitosan, carboxyfullerene, carbon nanotubes, ZnO and silver nanoparticles (nAg)), interruption of energy transduction (e.g. nAg and aqueous fullerene nanoparticles (nC(60))), and inhibition of enzyme activity and DNA synthesis (e.g. chitosan). Although some nanomaterials have been used as antimicrobial agents in consumer products including home purification systems as antimicrobial agents, their potential for disinfection or microbial control in system level water treatment has not been carefully evaluated. This paper reviews the antimicrobial mechanisms of several nanoparticles, discusses their merits, limitations and applicability for water disinfection and biofouling control, and highlights research needs to utilize novel nanomaterials for water treatment applications.
Collapse
Affiliation(s)
- Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | | | | | | | | | | | |
Collapse
|