51
|
Zhang ZS, Jin LQ, Li YT, Tikkanen M, Li QM, Ai XZ, Gao HY. Ultraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition And Accelerates The Recovery Of CO 2 Assimilation In Cucumber (Cucumis sativus L.) Leaves. Sci Rep 2016; 6:34455. [PMID: 27686324 PMCID: PMC5043378 DOI: 10.1038/srep34455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable. So we speculated that UV-B could indirectly affect PSI under chilling-light conditions. To test this hypothesis, the cucumber leaves were illuminated by UV-B prior or during the chilling-light treatment, and the leaves were then transferred to 25 °C and low-light conditions for recovery. The results showed that UV-B decreased the electron transfer to PSI by inactivating the oxygen-evolving complex (OEC), thereby protecting PSI from chilling-light-induced photoinhibition. This effect advantages the recoveries of PSI and CO2 assimilation after chilling-light stress, therefore should minimize the yield loss caused by chilling-light stress. Because sunlight consists of both UV-B and visible light, we suggest that UV-B-induced OEC inactivation is critical for chilling-light-induced PSI photoinhibition in field. Moreover, additional UV-B irradiation is an effective strategy to relieve PSI photoinhibition and yield loss in protected cultivation during winter. This study also demonstrates that minimizing the photoinhibition of PSI rather than that of PSII is essential for the chilling-light tolerance of the plant photosynthetic apparatus.
Collapse
Affiliation(s)
- Zi-Shan Zhang
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Qiao Jin
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu-Ting Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mikko Tikkanen
- Plant Physiology and Molecular Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Qing-Ming Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xi-Zhen Ai
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
52
|
Takagi D, Hashiguchi M, Sejima T, Makino A, Miyake C. Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves. PHOTOSYNTHESIS RESEARCH 2016; 129:279-90. [PMID: 27116126 DOI: 10.1007/s11120-016-0267-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 05/24/2023]
Abstract
To elucidate the molecular mechanism to oxidize the reaction center chlorophyll, P700, in PSI, we researched the effects of partial pressure of O2 (pO2) on photosynthetic characteristic parameters in sunflower (Helianthus annuus L.) leaves. Under low CO2 conditions, the oxidation of P700 was stimulated; however the decrease in pO2 suppressed its oxidation. Electron fluxes in PSII [Y(II)] and PSI [Y(I)] showed pO2-dependence at low CO2 conditions. H(+)-consumption rate, estimated from Y(II) and CO2-fixation/photorespiration rates (JgH(+)), showed the positive curvature relationship with the dissipation rate of electrochromic shift signal (V H (+) ), which indicates H(+)-efflux rate from lumen to stroma in chloroplasts. Therefore, these electron fluxes contained, besides CO2-fixation/photorespiration-dependent electron fluxes, non-H(+)-consumption electron fluxes including Mehler-ascorbate peroxidase (MAP)-pathway. Y(I) that was larger than Y(II) surely implies the functioning of cyclic electron flow (CEF). Both MAP-pathway and CEF were suppressed at lower pO2, with plastoquinone-pool reduced. That is, photorespiration prepares the redox-poise of photosynthetic electron transport system for CEF activity as an electron sink. Excess Y(II), [ΔY(II)] giving the curvature relationship with V H (+) , and excess Y(I) [ΔCEF] giving the difference between Y(I) and Y(II) were used as an indicator of MAP-pathway and CEF activity, respectively. Although ΔY(II) was negligible and did not show positive relationship to the oxidation-state of P700, ΔCEF showed positive linear relationship to the oxidation-state of P700. These facts indicate that CEF cooperatively with photorespiration regulates the redox-state of P700 to suppress the over-reduction in PSI under environmental stress conditions.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Masaki Hashiguchi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takehiro Sejima
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Amane Makino
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
53
|
Ripoll J, Bertin N, Bidel LPR, Urban L. A User's View of the Parameters Derived from the Induction Curves of Maximal Chlorophyll a Fluorescence: Perspectives for Analyzing Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1679. [PMID: 27891137 PMCID: PMC5104755 DOI: 10.3389/fpls.2016.01679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 05/15/2023]
Abstract
Analysis of the fast kinetics of the induction curve of maximal fluorescence represents a relatively recent development for chlorophyll a fluorescence measurements. The parameters of the so-called JIP-test are exploited by an increasingly large community of users to assess plant stress and its consequences. We provide here evidence that these parameters are capable to distinguish between stresses of different natures or intensities, and between stressed plants of different genetic background or at different developmental stages at the time of stress. It is, however, important to keep in mind that the JIP-test is inherently limited in scope, that it is based on assumptions which are not fully validated and that precautions must be taken to ensure that measurements are meaningful. Recent advances suggest that some improvements could be implemented to increase the reliability of measurements and the pertinence of the parameters calculated. We moreover advocate for using the JIP-test in combination with other techniques to build comprehensive pictures of plant responses to stress.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA – Centre d’Avignon, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
- UMR QualiSud, Université d’Avignon et des Pays du VaucluseAvignon, France
| | - Nadia Bertin
- INRA – Centre d’Avignon, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| | | | - Laurent Urban
- UMR QualiSud, Université d’Avignon et des Pays du VaucluseAvignon, France
- *Correspondence: Laurent Urban,
| |
Collapse
|