51
|
Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel) 2017; 9:toxins9050163. [PMID: 28505100 PMCID: PMC5450711 DOI: 10.3390/toxins9050163] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| |
Collapse
|
52
|
Claunch NM, Holding ML, Escallón C, Vernasco B, Moore IT, Taylor EN. Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory. Toxicon 2017; 133:127-135. [PMID: 28487160 DOI: 10.1016/j.toxicon.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/13/2023]
Abstract
Phenotypic plasticity contributes to intraspecific variation in traits of many animal species. Venom is an integral trait to the success and survival of many snake species, and potential plasticity in venom composition is important to account for in the context of basic research as well as in human medicine for treating the various symptoms of snakebite and producing effective anti-venoms. Researchers may unknowingly induce changes in venom variation by subjecting snakes to novel disturbances and potential stressors. We explored phenotypic plasticity in snake venom composition over time in captive Pacific rattlesnakes (Crotalus oreganus) exposed to vibration treatment, compared to an undisturbed control group. Venom composition did not change significantly in response to vibration, nor was there a detectable effect of overall time in captivity, even though snakes re-synthesized venom stores while subjected to novel disturbance in the laboratory. This result indicates that venom composition is a highly repeatable phenotype over short time spans and that the composition of venom within adult individuals may be resistant to or unaffected by researcher-induced disturbance. On the other hand, the change in venom composition, measured as movement along the first principle component of venom phenotype space, was associated with baseline corticosterone (CORT) levels in the snakes. While differential forms of researcher-induced disturbance may not affect venom composition, significant changes in baseline CORT, or chronic stress, may affect the venom phenotype, and further investigations will be necessary to assess the nature of the relationship between CORT and venom protein expression.
Collapse
Affiliation(s)
- Natalie M Claunch
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Matthew L Holding
- Department of Evolution, Ecology, and Evolutionary Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Camilo Escallón
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ben Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Emily N Taylor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
53
|
Lomonte B, Calvete JJ. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 2017; 23:26. [PMID: 28465677 PMCID: PMC5408369 DOI: 10.1186/s40409-017-0117-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
54
|
Xu N, Zhao HY, Yin Y, Shen SS, Shan LL, Chen CX, Zhang YX, Gao JF, Ji X. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra ( Naja kaouthia ) from China. J Proteomics 2017; 159:19-31. [DOI: 10.1016/j.jprot.2017.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
|
55
|
Segura Á, Herrera M, Reta Mares F, Jaime C, Sánchez A, Vargas M, Villalta M, Gómez A, Gutiérrez JM, León G. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake ( Crotalus basiliscus ) venom and its immunological relatedness with the venom of Central American rattlesnake ( Crotalus simus ). J Proteomics 2017; 158:62-72. [DOI: 10.1016/j.jprot.2017.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022]
|
56
|
Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: Unveiling a deeply conserved atypical toxin arsenal. Sci Rep 2017; 7:43237. [PMID: 28240232 PMCID: PMC5327433 DOI: 10.1038/srep43237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/20/2017] [Indexed: 11/08/2022] Open
Abstract
Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56-0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3-5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
Collapse
|
57
|
Venomics: integrative venom proteomics and beyond*. Biochem J 2017; 474:611-634. [DOI: 10.1042/bcj20160577] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023]
Abstract
Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.
Collapse
|
58
|
Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon 2017; 125:1-12. [DOI: 10.1016/j.toxicon.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
59
|
Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, Pérez A, Rodriguez Y, Lomonte B, Calvete JJ. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics 2016; 152:1-12. [PMID: 27777178 DOI: 10.1016/j.jprot.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 01/17/2023]
Abstract
Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP-rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA2-rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. SIGNIFICANCE Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus.
Collapse
Affiliation(s)
- Davinia Pla
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel E Acevedo
- Centro de Estudios Conservacionistas, Centro de Datos para la Conservacion, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Quetzal Dwyer
- Parque Reptilandia, Platanillo between Dominical & San Isidro, 8000 Dominical, Puntarenas, Costa Rica
| | - Jordi Durban
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Alicia Pérez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Yania Rodriguez
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
60
|
Mackessy SP, Saviola AJ. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes. Integr Comp Biol 2016; 56:1004-1021. [PMID: 27639275 DOI: 10.1093/icb/icw110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear-fanged, and many possess a Duvernoy's venom gland, understanding the nature of their venoms is foundational to understanding venom evolution in advanced snakes.
Collapse
Affiliation(s)
- Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St, Greeley, CO 80639-0017, USA
| | - Anthony J Saviola
- School of Biological Sciences, University of Northern Colorado, 501 20th St, Greeley, CO 80639-0017, USA
| |
Collapse
|
61
|
Sintiprungrat K, Chaisuriya P, Watcharatanyatip K, Ratanabanangkoon K. Immunoaffinity chromatography in antivenomics studies: Various parameters that can affect the results. Toxicon 2016; 119:129-39. [DOI: 10.1016/j.toxicon.2016.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
|
62
|
The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids. Toxicon 2016; 120:110-23. [DOI: 10.1016/j.toxicon.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 11/20/2022]
|
63
|
Mukherjee AK, Kalita B, Mackessy SP. A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. J Proteomics 2016; 144:73-86. [PMID: 27265321 DOI: 10.1016/j.jprot.2016.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/14/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED To address the dearth of knowledge on the biochemical composition of Pakistan Russell's Viper (Daboia russelii russelii) venom (RVV), the venom proteome has been analyzed and several biochemical and pharmacological properties of the venom were investigated. SDS-PAGE (reduced) analysis indicated that proteins/peptides in the molecular mass range of ~56.0-105.0kDa, 31.6-51.0kDa, 15.6-30.0kDa, 9.0-14.2kDa and 5.6-7.2kDa contribute approximately 9.8%, 12.1%, 13.4%, 34.1% and 30.5%, respectively of Pakistan RVV. Proteomics analysis of gel-filtration peaks of RVV resulted in identification of 75 proteins/peptides which belong to 14 distinct snake venom protein families. Phospholipases A2 (32.8%), Kunitz type serine protease inhibitors (28.4%), and snake venom metalloproteases (21.8%) comprised the majority of Pakistan RVV proteins, while 11 additional families accounted for 6.5-0.2%. Occurrence of aminotransferase, endo-β-glycosidase, and disintegrins is reported for the first time in RVV. Several of RVV proteins/peptides share significant sequence homology across Viperidae subfamilies. Pakistan RVV was well recognized by both the polyvalent (PAV) and monovalent (MAV) antivenom manufactured in India; nonetheless, immunological cross-reactivity determined by ELISA and neutralization of pro-coagulant/anticoagulant activity of RVV and its fractions by MAV surpassed that of PAV. BIOLOGICAL SIGNIFICANCE The study establishes the proteome profile of the Pakistan RVV, thereby indicating the presence of diverse proteins and peptides that play a significant role in the pathophysiology of RVV bite. Further, the proteomic findings will contribute to understand the variation in venom composition owing to different geographical location and identification of pharmacologically important proteins in Pakistan RVV.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India; School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| | - Bhargab Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| |
Collapse
|
64
|
Tang ELH, Tan CH, Fung SY, Tan NH. Venomics of Calloselasma rhodostoma, the Malayan pit viper: A complex toxin arsenal unraveled. J Proteomics 2016; 148:44-56. [PMID: 27418434 DOI: 10.1016/j.jprot.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom. BIOLOGICAL SIGNIFICANCE Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.
Collapse
Affiliation(s)
- Esther Lai Har Tang
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
65
|
Eichberg S, Sanz L, Calvete JJ, Pla D. Constructing comprehensive venom proteome reference maps for integrative venomics. Expert Rev Proteomics 2016; 12:557-73. [PMID: 26400467 DOI: 10.1586/14789450.2015.1073590] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Understanding the molecular basis of complex adaptive traits, such as snake venom, demands qualitative and quantitative comparisons of the temporal and spatial patterns of venom variation. Here, we assessed the proof-of-concept that locus-resolved reference venom proteome maps can be achieved through efficient pre-MS venom proteome decomplexation, peptide-centric MS/MS analysis and species-specific database searching. METHODS Venom proteome components were fractionated and quantified by RP-HPLC, SDS-PAGE and 2DE prior to LC-MS/MS matching against a species-specific transcriptomic dataset. RESULTS Combination of RP-HPLC/SDS-PAGE and 2DE followed by LC-MS/MS showed the existence of ∼178-180 venom protein species generated from ∼48 unique transcripts. CONCLUSIONS Our results underscore that if sufficient pre-MS and MS efforts are applied, comprehensive venom maps can be achieved. And - equally important - dissociating the venom decomplexing steps from the protein identification process represents the key to achieving a quantitative and locus-resolved insight of the venom proteome.
Collapse
Affiliation(s)
- Susann Eichberg
- a 1 Beuth Hochschule für Technik Berlin, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Libia Sanz
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Juan J Calvete
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Davinia Pla
- b 2 Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
66
|
McCleary RJR, Sridharan S, Dunstan NL, Mirtschin PJ, Kini RM. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity. J Proteomics 2016; 144:51-62. [PMID: 27240975 DOI: 10.1016/j.jprot.2016.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. BIOLOGICAL SIGNIFICANCE Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition.
Collapse
Affiliation(s)
- Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Sindhuja Sridharan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Nathan L Dunstan
- Venom Supplies Pty. Ltd., P.O. Box 547, Tanunda, South Australia 5352, Australia
| | - Peter J Mirtschin
- Venom Supplies Pty. Ltd., P.O. Box 547, Tanunda, South Australia 5352, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.
| |
Collapse
|
67
|
Suntravat M, Uzcategui NL, Atphaisit C, Helmke TJ, Lucena SE, Sánchez EE, Acosta AR. Gene expression profiling of the venom gland from the Venezuelan mapanare (Bothrops colombiensis) using expressed sequence tags (ESTs). BMC Mol Biol 2016; 17:7. [PMID: 26944950 PMCID: PMC4779267 DOI: 10.1186/s12867-016-0059-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.
Collapse
Affiliation(s)
- Montamas Suntravat
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Néstor L Uzcategui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| | - Chairat Atphaisit
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Thomas J Helmke
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Sara E Lucena
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Elda E Sánchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Alexis Rodríguez Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
68
|
Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins. Toxicon 2015; 107:234-51. [DOI: 10.1016/j.toxicon.2015.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023]
|
69
|
Schield DR, Walsh MR, Card DC, Andrew AL, Adams RH, Castoe TA. Epi
RAD
seq: scalable analysis of genomewide patterns of methylation using next‐generation sequencing. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12435] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Drew R. Schield
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| | - Matthew R. Walsh
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| | - Daren C. Card
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| | - Audra L. Andrew
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| | - Richard H. Adams
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| | - Todd A. Castoe
- Department of Biology University of Texas at Arlington 501 S. Nedderman Dr. Arlington TX 76019 USA
| |
Collapse
|