51
|
Wilson IBH, Paschinger K. Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Anal Bioanal Chem 2015; 408:461-71. [PMID: 26650734 DOI: 10.1007/s00216-015-9154-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 01/15/2023]
Abstract
Trichuris suis, a nematode parasite of pigs, has attracted attention as its eggs have been administered to human patients as a potential therapy for inflammatory diseases. The immunomodulatory factors remain molecularly uncharacterised, but in vitro studies suggest that glycans on the parasite's excretory/secretory proteins may play a role. Using an off-line LC-MS approach in combination with chemical and enzymatic treatments, we have examined the N-linked oligosaccharides of T. suis. In addition to the paucimannosidic and oligomannosidic N-glycans typical of many invertebrates, a number of glycans carry N,N'-diacetyllactosamine (LacdiNAc) modified by fucose and/or phosphorylcholine. Such antennal epitopes are similar to ones previously associated with immunomodulation by helminths; here we propose phosphorylcholine modifications predominantly of terminal N-acetylgalactosamine but also of subterminal α1,3-fucosylated N-acetylglucosamine. Exact knowledge of the glycome of T. suis will facilitate more targeted studies on glycan receptors in the host as well as the engineering of cell lines to produce correctly glycosylated recombinant forms of candidate proteins for future studies on immunomodulation.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| | - Katharina Paschinger
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| |
Collapse
|
52
|
Yan S, Jin C, Wilson IBH, Paschinger K. Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures. J Proteome Res 2015; 14:5291-305. [PMID: 26538210 PMCID: PMC4673604 DOI: 10.1021/acs.jproteome.5b00746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have shown a remarkable degree of plasticity in the N-glycome of the model nematode Caenorhabditis elegans; ablation of glycosylation-relevant genes can result in radically altered N-glycan profiles despite only minor biological phenotypic effects. Up to four fucose residues and five different linkages of fucose are known on the N-glycans of C. elegans. Due to the complexity in the wild type, we established three mutant strains defective in two core fucosyltransferases each (fut-1;fut-6, fut-1;fut-8, and fut-6;fut-8). Enzymatically released N-glycans were subject to HPLC and MALDI-TOF MS/MS, in combination with various treatments, to verify structural details. The N-glycome of the fut-1;fut-6 mutant was the most complex of the three double-mutant strains due to the extension of the core α1,6-fucose as well as the presence of fucose on the bisecting galactose. In contrast, maximally two fucoses were found on N-glycans of the fut-1;fut-8 and fut-6;fut-8 strains. The different locations and capping of fucose meant that up to 13 isomeric structures, many highly galactosylated, were determined for some single masses. These data not only show the high variability of the N-glycomic capacity of a "simple" nematode but also exemplify the need for multiple approaches to reveal individual glycan structures within complex invertebrate glycomes.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet , 405 30 Göteborg, Sweden
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | | |
Collapse
|
53
|
Eckmair B, Jin C, Abed-Navandi D, Paschinger K. Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. Mol Cell Proteomics 2015; 15:573-97. [PMID: 26598642 DOI: 10.1074/mcp.m115.051573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/11/2022] Open
Abstract
Various studies in the past have revealed that molluscs can produce a wide range of rather complex N-glycan structures, which vary from those occurring in other invertebrate animals; particularly methylated glycans have been found in gastropods, and there are some reports of anionic glycans in bivalves. Due to the high variability in terms of previously described structures and methodologies, it is a major challenge to establish glycomic workflows that yield the maximum amount of detailed structural information from relatively low quantities of sample. In this study, we apply differential release with peptide:N-glycosidases F and A followed by solid-phase extraction on graphitized carbon and reversed-phase materials to examine the glycome of Volvarina rubella (C. B. Adams, 1845), a margin snail of the clade Neogastropoda. The resulting four pools of N-glycans were fractionated on a fused core RP-HPLC column and subject to MALDI-TOF MS and MS/MS in conjunction with chemical and enzymatic treatments. In addition, selected N-glycan fractions, as well as O-glycans released by β-elimination, were analyzed by porous graphitized carbon-LC-MS and MS(n). This comprehensive approach enabled us to determine a number of novel modifications of protein-linked glycans, including N-methyl-2-aminoethylphosphonate on mannose and N-acetylhexosamine residues, core β1,3-linked mannose, zwitterionic moieties on core Galβ1,4Fuc motifs, additional mannose residues on oligomannosidic glycans, and bisubstituted antennal fucose; furthermore, typical invertebrate N-glycans with sulfate and core fucose residues are present in this gastropod.
Collapse
Affiliation(s)
- Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | | | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria;
| |
Collapse
|
54
|
Cabrera G, Salazar V, Montesino R, Támbara Y, Struwe WB, Leon E, Harvey DJ, Lesur A, Rincón M, Domon B, Méndez M, Portela M, González-Hernández A, Triguero A, Durán R, Lundberg U, Vonasek E, González LJ. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae). Glycobiology 2015; 26:230-50. [PMID: 26537504 DOI: 10.1093/glycob/cwv096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively α(1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the α(1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators.
Collapse
Affiliation(s)
- Gleysin Cabrera
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | | | - Raquel Montesino
- School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, PO Box 160C, Concepción, Chile
| | - Yanet Támbara
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Evelyn Leon
- Proteomics Unit, Center of Structural Biology
| | - David J Harvey
- Glycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | - Antoine Lesur
- Luxembourg Clinical Proteomics Center, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Bruno Domon
- Luxembourg Clinical Proteomics Center, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Annia González-Hernández
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Ada Triguero
- Department of Carbohydrates, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and IIBCE, Mataojo 2020, Montevideo, Uruguay
| | - Ulf Lundberg
- Unit for Invertebrate Toxins, Venezuelan Institute for Scientific Research (IVIC), PO Box 20632, Caracas 1020A, Venezuela
| | - Eva Vonasek
- Proteomics Unit, Center of Structural Biology
| | | |
Collapse
|
55
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem Biol 2015; 10:2199-208. [PMID: 26241388 DOI: 10.1021/acschembio.5b00340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.
Collapse
Affiliation(s)
- Hideaki Mabashi-Asazuma
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chu-Wei Kuo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Donald L. Jarvis
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
- GlycoBac,
LLC, Laramie, Wyoming 82072, United States
| |
Collapse
|
56
|
Heim C, Hertzberg H, Butschi A, Bleuler-Martinez S, Aebi M, Deplazes P, Künzler M, Štefanić S. Inhibition of Haemonchus contortus larval development by fungal lectins. Parasit Vectors 2015; 8:425. [PMID: 26283415 PMCID: PMC4539729 DOI: 10.1186/s13071-015-1032-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lectins are carbohydrate-binding proteins that are involved in fundamental intra- and extracellular biological processes. They occur ubiquitously in nature and are especially abundant in plants and fungi. It has been well established that certain higher fungi produce lectins in their fruiting bodies and/or sclerotia as a part of their natural resistance against free-living fungivorous nematodes and other pests. Despite relatively high diversity of the glycan structures in nature, many of the glycans targeted by fungal lectins are conserved among organisms of the same taxon and sometimes even among different taxa. Such conservation of glycans between free-living and parasitic nematodes is providing us with a useful tool for discovery of novel chemotherapeutic and vaccine targets. In our study, a subset of fungal lectins emanating from toxicity screens on Caenorhabditis elegans was tested for their potential to inhibit larval development of Haemonchus contortus. Methods The effect of Coprinopsis cinerea lectins - CCL2, CGL2, CGL3; Aleuria aurantia lectin – AAL; Marasmius oreades agglutinin - MOA; and Laccaria bicolor lectin – Lb-Tec2, on cultivated Haemonchus contortus larval stages was investigated using a larval development test (LDT). To validate the results of the toxicity assay and determine lectin binding capacity to the nematode digestive tract, biotinylated versions of lectins were fed to pre-infective larval stages of H. contortus and visualized by fluorescent microscopy. Lectin histochemistry on fixed adult worms was performed to investigate the presence and localisation of lectin binding sites in the disease-relevant developmental stage. Results Using an improved larval development test we found that four of the six tested lectins: AAL, CCL2, MOA and CGL2, exhibited a dose-dependent toxicity in LDT, as measured by the number of larvae developing to the L3 stage. In the case of AAL, CGL2 and MOA lectin, doses as low as 5 μg/ml caused >95 % inhibition of larval development while 40 μg/ml were needed to achieve the same inhibition by CCL2 lectin. MOA was the only lectin tested that caused larval death while other toxic lectins had larvistatic effect manifesting as L1 growth arrest. Using lectin histochemistry we demonstrate that of all lectins tested, only the four toxic ones displayed binding to the larvae’s gut and likewise were found to interact with glycans localized to the gastrodermal tissue of adults. Conclusion The results of our study suggest a correlation between the presence of target glycans of lectins in the digestive tract and the lectin-mediated toxicity in Haemonchus contortus. We demonstrate that binding to the structurally conserved glycan structures found in H. contortus gastrodermal tissue by the set of fungal lectins has detrimental effect on larval development. Some of these glycan structures might represent antigens which are not exposed to the host immune system (hidden antigens) and thus have a potential for vaccine or drug development. Nematotoxic fungal lectins prove to be a useful tool to identify such targets in parasitic nematodes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1032-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Heim
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Hubertus Hertzberg
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Alex Butschi
- Malcisbo AG, Wagistrasse 27a, 8952, Schlieren, Switzerland.
| | - Silvia Bleuler-Martinez
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Markus Aebi
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Markus Künzler
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Saša Štefanić
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|