51
|
Li LL, Wang D, Ge CY, Yu L, Zhao JL, Ma HT. Dehydroepiandrosterone reduced lipid droplet accumulation via inhibiting cell proliferation and improving mitochondrial function in primary chicken hepatocytes. Physiol Res 2018. [PMID: 29527919 DOI: 10.33549/physiolres.933769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) possesses fat-reducing effect, while little information is available on whether DHEA regulates cell proliferation and mitochondrial function, which would, in turn, affect lipid droplet accumulation in the broiler. In the present study, the lipid droplet accumulation, cell proliferation, cell cycle and mitochondrial membrane potential were analysis in primary chicken hepatocytes after DHEA treated. The results showed that total area and counts of lipid droplets were significantly decreased in hepatocytes treated with DHEA. The cell viability was significantly increased, while cell proliferation was significantly inhibited in a dose dependent manner in primary chicken hepatocytes after DHEA treated. DHEA treatment significantly increased the cell population in S phase and decreased the population in G2/M in primary chicken hepatocytes. Meanwhile, the cyclin A and cyclin-dependent kinases 2 (CDK2) mRNA abundance were significantly decreased in hepatocytes after DHEA treated. No significant differences were observed in the number of mitochondria, while the mitochondrial membrane permeability and succinate dehydrogenase (SDH) activity were significantly increased in hepatocytes after DHEA treated. In conclusion, our results demonstrated that DHEA reduced lipid droplet accumulation by inhibiting hepatocytes proliferation and enhancing mitochondrial function in primary chicken hepatocytes.
Collapse
Affiliation(s)
- L L Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
OBJECTIVE To analyze the effects of intravaginal prasterone obtained in the three randomized clinical studies performed in postmenopausal women suffering from moderate to severe (MS) dyspareunia due to vulvovaginal atrophy (VVA). METHODS In three independent 12-week prospective, randomized, double-blind, and placebo-controlled clinical studies, the effect of daily intravaginal 0.50% (6.5 mg) prasterone was examined on four co-primary objectives in women having MS pain during sexual activity (dyspareunia), identified as their most bothersome symptom (MBS) of VVA at baseline. RESULTS In 436 women treated with 0.50% prasterone and 260 women who received placebo, an average 35.1% decrease over placebo in the percentage of parabasal cells (P < 0.0001), an average 7.7% increase in the percentage of superficial cells (P < 0.0001), and a mean 0.72 pH unit decrease in vaginal pH (P < 0.0001) were observed. The severity score of most bothersome symptom dyspareunia was decreased by a 0.46 unit (49%) (P < 0.0001 over placebo), whereas the severity score of MS vaginal dryness decreased by 0.31 unit (P < 0.0001 over placebo). A very positive evaluation was obtained on the acceptability of the technique of administration of the insert, whereas the male partners reported a very positive evaluation of the changes observed in their sexual partner. CONCLUSION The efficacy data demonstrate highly positive effects on all the symptoms and signs of vulvovaginal atrophy with no significant drug-related side effects in line with the physiology of menopause and intracrinology.
Collapse
|
53
|
Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol 2018; 465:4-26. [PMID: 28865807 PMCID: PMC6565845 DOI: 10.1016/j.mce.2017.08.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Androgens play an important role in metabolic homeostasis and reproductive health in both men and women. Androgen signalling is dependent on androgen receptor activation, mostly by testosterone and 5α-dihydrotestosterone. However, the intracellular or intracrine activation of C19 androgen precursors to active androgens in peripheral target tissues of androgen action is of equal importance. Intracrine androgen synthesis is often not reflected by circulating androgens but rather by androgen metabolites and conjugates. In this review we provide an overview of human C19 steroid biosynthesis including the production of 11-oxygenated androgens, their transport in circulation and uptake into peripheral tissues. We conceptualise the mechanisms of intracrinology and review the intracrine pathways of activation and inactivation in selected human tissues. The contribution of liver and kidney as organs driving androgen inactivation and renal excretion are also highlighted. Finally, the importance of quantifying androgen metabolites and conjugates to assess intracrine androgen production is discussed.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
54
|
Traish AM, Vignozzi L, Simon JA, Goldstein I, Kim NN. Role of Androgens in Female Genitourinary Tissue Structure and Function: Implications in the Genitourinary Syndrome of Menopause. Sex Med Rev 2018; 6:558-571. [PMID: 29631981 DOI: 10.1016/j.sxmr.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Genitourinary conditions in women increase in prevalence with age. Androgens are prerequisite hormones of estrogen biosynthesis, are produced in larger amounts than estrogens in women, and decrease throughout adulthood. However, research and treatment for genitourinary complaints have traditionally focused on estrogens to the exclusion of other potential hormonal influences. AIM To summarize and evaluate the evidence that androgens are important for maintaining genitourinary health in women and that lack of androgenic activity can contribute to the development of symptoms of the genitourinary syndrome of menopause. METHODS The role of androgens in the pathophysiology, diagnosis, and treatment of genitourinary syndrome of menopause was discussed by an international and multidisciplinary panel during a consensus conference organized by the International Society for the Study of Women's Sexual Health. A subgroup further examined publications from the PubMed database, giving preference to clinical studies or to basic science studies in human tissues. MAIN OUTCOME MEASURES Expert opinion evaluating trophic and functional effects of androgens, their differences from estrogenic effects, and regulation of androgen and estrogen receptor expression in female genitourinary tissues. RESULTS Androgen receptors have been detected throughout the genitourinary system using immunohistochemical, western blot, ligand binding, and gene expression analyses. Lower circulating testosterone and estradiol concentrations and various genitourinary conditions have been associated with differential expression of androgen and estrogen receptors. Supplementation of androgen and/or estrogen in postmenopausal women (local administration) or in ovariectomized animals (systemic administration) induces tissue-specific responses that include changes in androgen and estrogen receptor expression, cell growth, mucin production, collagen turnover, increased perfusion, and neurotransmitter synthesis. CONCLUSION Androgens contribute to the maintenance of genitourinary tissue structure and function. The effects of androgens can be distinct from those of estrogens or can complement estrogenic action. Androgen-mediated processes might be involved in the full or partial resolution of genitourinary syndrome of menopause symptoms in women. Traish AM, Vignozzi L, Simon JA, et al. Role of Androgens in Female Genitourinary Tissue Structure and Function: Implications in the Genitourinary Syndrome of Menopause. Sex Med Rev 2018;6:558-571.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, MA, USA
| | - Linda Vignozzi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - James A Simon
- Women's Health & Research Consultants, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, USA
| | | | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA.
| |
Collapse
|
55
|
Klinge CM, Clark BJ, Prough RA. Dehydroepiandrosterone Research: Past, Current, and Future. VITAMINS AND HORMONES 2018; 108:1-28. [PMID: 30029723 DOI: 10.1016/bs.vh.2018.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of "oestrus-producing" hormones was a major research breakthrough in biochemistry and pharmacology during the early part of the 20th century. The elucidation of the molecular weight and chemical structure of major oxidative metabolites of dehydroepiandrosterone (DHEA) led to the award of the Nobel Prize in 1939 to Adolf Frederick Johann Butenandt and Leopold Ruzicka. Considered a bulk androgen in the circulation, DHEA and its sulfated metabolite DHEA-S can be taken up by most tissues where the sterols are metabolized to active androgenic and estrogenic compounds needed for growth and development. Butenandt's interactions with the German pharmaceutical company Schering led to production of gram quantities of these steroids and other chemically modified compounds of this class. Sharing chemical expertise allowed Butenandt's laboratory at the Kaiser Wilhelm Institute to isolate and synthesize many steroid compounds in the elucidation of the pathway leading from cholesterol to testosterone and estrogen derivatives. As a major pharmaceutical company worldwide, Schering AG sought these new biological sterols as pharmacological agents for endocrine-related diseases, and the European medical community tested these compounds in women for conditions such as postmenopausal depression, and in men for increasing muscle mass. Since it was noted that circulating DHEA-S levels decline as a function of age, experimental pathology experiments in animals were performed to determine how DHEA may protect against cancer, diabetes, aging, obesity, immune function, bone density, depression, adrenal insufficiency, inflammatory bowel disease, diminished sexual function/libido, AIDS/HIV, chronic obstructive pulmonary disease, coronary artery disease, chronic fatigue syndrome, and metabolic syndrome. While the mechanisms by which DHEA ameliorates these conditions in animal models have been elusive to define, even less is known about its role in human disease, other than as a precursor to other sterols, e.g., testosterone and estradiol. Our groups have shown that DHEA and many of its oxidative metabolites serve as a low-affinity ligands for hepatic nuclear receptors, such as the pregnane X receptor, the constitutive androstane receptor, and estrogen receptors α/β (ERα/ERβ) as well as G protein-coupled ER (GPER1). This chapter highlights the founding research on DHEA from a historical perspective, provides an overview of DHEA biosynthesis and metabolism, briefly summarizes the early work on the beneficial effects attributed to DHEA in animals, and summarizes the human trials addressing the action of DHEA as a therapeutic agent. In general, most human studies involve weak correlations of circulating levels of DHEA and disease outcomes. Some support for DHEA as a therapeutic compound has been demonstrated for postmenopausal women, in vitro fertilization, and several autoimmune disorders, and adverse health effects, such as, acne, embryo virilization during pregnancy, and possible endocrine-dependent cancers.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
56
|
Concentration range of serum sex steroids in normal postmenopausal women and those with diagnosis of vulvovaginal atrophy. Menopause 2018; 25:293-300. [DOI: 10.1097/gme.0000000000000993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Abstract
In humans, dehydroepiandrosterone (DHEA), secreted mainly from the adrenal cortex, and its sulfate ester, DHEAS, are the most abundant circulating steroids. DHEA/DHEAS possess pleiotropic effects in human aging, bone, metabolic diseases, neurologic function/neurodegenerative diseases, cancer, immune system and disorders, cardiovascular diseases, diabetes, muscle function, sexual dysfunction, and other health conditions. The age-related reduced levels of DHEA and DHEAS are associated with bone mineral density measures of osteopenia and osteoporosis. Clinical, epidemiological, and experimental studies indicate that DHEA replacement therapy may be beneficial for bone health through its inhibition of skeletal catabolic IL-6 and stimulation of osteoanabolic IGF-I-mediated mechanisms. Studies with primary cultures of human bone marrow-derived mesenchymal stem cells (hMSCs) were used to show that DHEA stimulates osteoblastogenesis. The in vitro stimulation of both osteoblastogenesis and IGF-I gene expression by DHEA in hMSCs requires IGF-I receptor, PI3K, p38 MAPK, or p42/44 MAPK signaling pathways. The in vitro inhibition of IL-6 secretion in hMSCs by DHEA was more consistent and extensive than by estradiol or dihydrotestosterone. In summary, evidence from us and others indicates that DHEA may be useful for treating bone diseases through its inhibition of skeletal catabolic IL-6 and stimulation of anabolic IGF-I-mediated mechanisms.
Collapse
|
58
|
Archer DF, Labrie F, Montesino M, Martel C. Comparison of intravaginal 6.5mg (0.50%) prasterone, 0.3mg conjugated estrogens and 10μg estradiol on symptoms of vulvovaginal atrophy. J Steroid Biochem Mol Biol 2017; 174:1-8. [PMID: 28323042 DOI: 10.1016/j.jsbmb.2017.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
The objective is to compare the effect of intravaginal dehydroepiandrosterone (DHEA, prasterone), conjugated equine estrogens (CEE) and estradiol (E2) on moderate to severe dyspareunia and/or vaginal dryness. In a review of available data, independent prospective, randomized, double-blind and placebo-controlled Phase III 12-week clinical trials involved daily administration of 6.5mg (0.50%) prasterone, daily (21days on/7days off) 0.3mg CEE, twice weekly 0.3mg CEE or 10μg E2 daily for 2 weeks followed by twice weekly for 10 weeks. Vulvovaginal atrophy (VVA) symptoms were evaluated by questionnaires. The total severity score of dyspareunia decreased from baseline by 1.27 to 1.63 units with prasterone treatment, 1.4 with CEE and 1.23 in one statistically significant study with E2 (combined symptoms). Decreases over placebo ranged from 0.35 to 1.21 with prasterone, 0.7 to 1.0 with CEE and 0.33 for the E2 study. The total decreases in vaginal dryness severity ranged from 1.44 to 1.58 units for prasterone, 1.1 unit for CEE and 1.23 unit for E2. The decreases over placebo of vaginal dryness intensity ranged from 0.30 to 0.43 unit for prasterone, 0.40 unit for CEE and 0.33 for the E2 study with combined symptoms. Daily 6.5mg (0.50%) prasterone appears to be at least as efficacious as 0.3mg CEE or 10μg E2 for treatment of the VVA symptoms. In summary, the beneficial effects on the VVA symptomatology can be obtained by the addition of a small amount of intravaginal prasterone to compensate for the low serum concentration of prasterone observed in the majority of women after menopause without concerns about systemic effects.
Collapse
Affiliation(s)
- David F Archer
- CONRAD Clinical Research Center, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | | |
Collapse
|