51
|
Tiwari G, Tiwari R, Singh R, Rai AK. Ultra-deformable Liposomes as Flexible Nanovesicular Carrier to Penetrate Versatile Drugs Transdermally. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681208666180820145327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Transferosomes also known as ultra-deformable liposomes were introduced by
Gregor Cevc in 1990. These are deformable vesicles that transport drug across the skin, which is the best
route of drug delivery because skin is the largest human organ with 3 kg total weight and a surface area
of 1.5-2.0 m2.
Methods:
Transferosomes are able to efficiently deliver low as well as high molecular weight drug
across the skin in terms of quantity and depth. Various methods used for the preparation of transferosomes
such as thin film hydration method, reverse phase evaporation method, vortex/sonication
method, ethanol injection method and freeze thaw method.
Results:
The prepared transferosomal preparation will be evaluated for particle shape and size, entrapment
efficiency, stability study, penetration ability and skin permeation study. In vitro release studies are
to be performed using a specific dissolution medium.
Conclusion:
Ultra deformable liposomes can be used for delivery of different drugs e.g. analgesic, anesthetic,
corticosteroids, anticancer, sex hormone, insulin, gap junction protein, and albumin.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Rachna Singh
- Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Awani K. Rai
- Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| |
Collapse
|
52
|
Shabbir M, Nagra U, Zaman M, Mahmood A, Barkat K. Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery. Curr Pharm Des 2020; 26:2149-2166. [PMID: 31931691 DOI: 10.2174/1381612826666200114090659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
The delivery of drugs, via different layers of skin, is challenging because it acts as a natural barrier and exerts hindrance against molecules to permeate into or through it. To overcome such obstacles, different noninvasive methods, like vehicle-drug interaction, modifications of the horny layer and nanoparticles have been suggested. The aim of the present review is to highlight some of the non-invasive methods for topical, diadermal and transdermal delivery of drugs. Special emphasis has been made on the information available in numerous research articles that put efforts in overcoming obstacles associated with barrier functions imposed by various layers of skin. Advances have been made in improving patient compliance that tends to avoid hitches involved in oral administration. Of particular interest is the use of lipid-based vesicles and nanoparticles for dermatological applications. These particulate systems can effectively interact and penetrate into the stratum corneum via lipid exchange and get distributed in epidermis and dermis. They also have the tendency to exert a systemic effect by facilitating the absorption of an active moiety into general circulation.
Collapse
Affiliation(s)
- Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
53
|
Rabia S, Khaleeq N, Batool S, Dar MJ, Kim DW, Din FU, Khan GM. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: passive targeting via topical route. Nanomedicine (Lond) 2020; 15:183-203. [PMID: 31916472 DOI: 10.2217/nnm-2019-0320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: In this study, the targeting of rifampicin (RIF)-loaded nanotransfersomes (NTs) incorporated in chitosan gel for leishmania-infected macrophages via the topical route was investigated. Materials & methods: NTs were prepared through a thin-film hydration process and incorporated into chitosan gel. Results: The mean particle size of the NTs was 190 nm, with 83% encapsulation efficiency. The permeation rate of the NTs was threefold higher than that of the RIF solution. The NTs improved cellular internalization via passive targeting, which was confirmed by macrophage uptake evaluation. A low IC50 value, flow cytometry analysis and in vivo study demonstrated the RIF-loaded NTs enhanced apoptosis and had better antileishmanial effects. Conclusion: RIF-loaded NT gel could be a fitting carrier for the delivery of antileishmanial drugs in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Samreen Rabia
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45230, Pakistan
| | - Nadra Khaleeq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45230, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45230, Pakistan
| | | | - Dong Wuk Kim
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Fakhar-Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45230, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45230, Pakistan
| |
Collapse
|
54
|
Rabiei M, Kashanian S, Samavati SS, Jamasb S, McInnes SJP. Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 2019; 28:356-367. [DOI: 10.1080/1061186x.2019.1693579] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Morteza Rabiei
- Department of Nanobiotechnology, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | - Shahriar Jamasb
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Steven J. P. McInnes
- School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia
| |
Collapse
|
55
|
Soni K, Mujtaba A, Akhter MH, Zafar A, Kohli K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J Microencapsul 2019; 37:91-108. [PMID: 31810417 DOI: 10.1080/02652048.2019.1701114] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: The optimisation and evaluation of ethosomal nanogel (NGs) for topical delivery in skin cancer.Methods: The formulations were optimised by employing 3-factor, 3-level Box Behnken design for responses of vesicle size, and fluxes. They characterised in vitro and evaluated for drug release, permeation and retention, skin penetration of ethosome, electron microscopy, texture analysis, and in vitro cytotoxicity.Results: The optimised formulation exhibited z-average 125.67 ± 10.43 nm, apparent zeta potential -17.1 ± 2.61 mV, average flux of drug loaded ethosome were 54.72 ± 5.45 and 59.83 ± 6.09 µg/cm2/h. Further, Rhodamine B loaded ethosome penetrated deeper up to 183.82 µm. The NGs texture analysis showed index of viscosity 225.45 g.s, firmness 209.34 g, cohesiveness -189.48 g, and consistency 59.45 g.s. The optimised ethosome NGs exhibited significant anti-cancer effect in B16-F10 murine tumour cell line (p < 0.05).Conclusion: Ethosomal NGs could be promising for skin cancer treatment.
Collapse
Affiliation(s)
- Kriti Soni
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia
| | | | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf, Kingdom of Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
56
|
Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2019; 573:118817. [PMID: 31678520 DOI: 10.1016/j.ijpharm.2019.118817] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022]
Abstract
Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level.
Collapse
|
57
|
Manickam B, Sreedharan R, Chidambaram K. Drug/Vehicle Impacts and Formulation Centered Stratagems for Enhanced Transdermal Drug Permeation, Controlled Release and Safety: Unparalleled Past and Recent Innovations-An Overview. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885514666190212113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:Transdermal drug delivery systems (TDDS) are one of the fascinating unconventional drug delivery systems offering plentiful advantages of which patient compliance is of paramount importance. However, as a matter of fact, the transdermal delivery of drug molecules is absolutely a tedious job which is precisely influenced by a number of factors including penetration barrier properties of the skin, drug characteristics formulation allied issues, etc. Over the years, innumerable tremendous efforts have been made in transporting the drugs through the skin into the systemic circulation by noteworthy tactics. This paper discusses such revolutionary formulation based techniques that have been endeavored in achieving the enhanced skin permeation of drugs, controlled release, and safety.
Collapse
Affiliation(s)
- Balamurugan Manickam
- School of Pharmacy, College of Pharmacy and Nursing, University of Nizwa, Initial Campus, Birkat Al Mouz, Nizwa, P.O. Box 33, PC 616, Oman
| | - Rajesh Sreedharan
- Faculty of Pharmaceutical Sciences, UCSI University, No-1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | | |
Collapse
|
58
|
Wu Z, Yang C, Chen L, Ma L, Wu X, Dai X, Qiao Y, Shi X. A Multiscale Study on the Effect of Sodium Cholate on the Deformation Ability of Elastic Liposomes. AAPS PharmSciTech 2019; 20:311. [PMID: 31520324 DOI: 10.1208/s12249-019-1485-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
Elastic liposoxy1mes (ELs) are biocompatible bilayer vesicular systems commonly used in the transdermal delivery of drugs. Compared with conventional liposomes (CLs), the strong deformation ability conferred by edge activators (EAs) is one of the most critical properties of ELs. However, due to limited research methods, little is known about the effect of EAs on the deformation abilities of vesicles. In this study, taking sodium cholate as an example, a multiscale study was carried to study the effect of EAs on the deformability of ELs, including in vitro diffusion experiment at macroscale, "vesicle-pore" model experiment at the microscale and flat patch model experiment at the molecular scale. As a result, it was found that sodium cholate could decrease the kc of DPPC bilayer, which enabled it to remain morphologically intact during a strong deformation process. Such kind of differences on deformation ability made pogostone ELs (contain sodium cholate) present a better permeation effect compared with that of pogostone CLs. All of these provide a multiscale and thorough understanding of the effect of sodium cholate on the deformation ability of ELs.
Collapse
|
59
|
Yang C, Dai X, Yang S, Ma L, Chen L, Gao R, Wu X, Shi X. Coarse-grained molecular dynamics simulations of the effect of edge activators on the skin permeation behavior of transfersomes. Colloids Surf B Biointerfaces 2019; 183:110462. [PMID: 31479973 DOI: 10.1016/j.colsurfb.2019.110462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
Abstract
Transfersomes (TRS) can provide sustained drug delivery and themselves are biocompatible, biodegradable and nontoxic. Edge activators (EAs) are key factors for increasing the deformability of TRS, and this active deformation mechanism is of commercial interest, especially at the molecular level. Accordingly, in this paper, the deformability of pure dipalmitoyl phosphatidylcholine (DPPC) vesicles, TRS with sodium cholate as an EA, and DPPC vesicles containing pogostone (POG) were compared via umbrella sampling technology. The DPPC conformation and membrane fluidity of these three types of bilayer systems were evaluated, and the changes in the membrane properties of vesicles caused by EAs were studied. EAs could increase the deformability of TRS by decreasing the deformation energy barrier due to their amphiphilic structures, which was similar to those of DPPC molecules. The membrane properties also changed via treatment with EAs including altering the tail chain angle, disturbing the ordered tail chain arrangement and prompting lateral diffusion of DPPC molecules. In addition, the impact of EAs on DPPC bilayers was further demonstrated to be concentration dependent. An ideal concentration was identified for the lowest amount of EA that offered a gel-liquid-crystalline phase transition of DPPC bilayers. Importantly, POG, a lipophobic transdermal drug, can also affect the skin permeation behavior of vesicles but had weaker effects than EA.
Collapse
Affiliation(s)
- Chang Yang
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xingxing Dai
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Shufang Yang
- Sinopharm Zhijun (Shenzhen) Pharmaceutical Co., Ltd., No. 16 of Lanqing 1stRoad, Guanlan Hi-tech Industrial Park, Longhua District, Shenzhen, 518109, China.
| | - Lina Ma
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Liping Chen
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Ruilin Gao
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xiaowen Wu
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
60
|
Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, Ali A. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
61
|
Self-nanoemulsifying drug delivery system of nabumetone improved its oral bioavailability and anti-inflammatory effects in rat model. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Huang Z, Du Y, Li X, Sun X, Feng Z, Ma X. Enantioseparation of basic drugs by capillary electrochromatography using a stationary phase of transfersomes. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhifeng Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaoqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
63
|
Sheshala R, Anuar NK, Abu Samah NH, Wong TW. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech 2019; 20:164. [PMID: 30993407 DOI: 10.1208/s12249-019-1362-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
Collapse
|
64
|
Tailoring novel soft nano-vesicles ‘Flexosomes’ for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo – in vivo evaluation. Int J Pharm 2019; 560:101-115. [DOI: 10.1016/j.ijpharm.2019.01.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 11/18/2022]
|
65
|
Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300:114-140. [PMID: 30853528 DOI: 10.1016/j.jconrel.2019.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
Antioxidants (AOs) play a crucial role in the protection and maintenance of health and are also integral ingredients in beauty products. Unfortunately, most of them are sensitive due to their instability and insolubility. The use of liposomes to protect AOs and expand their applicability to cosmeceuticals, thereby, is one of the most effective solutions. Notwithstanding their offered advantages for the delivery of AOs, liposomes, in their production and application, present many challenges. Here, we provide a critical review of the major problems complicating the development of liposomes for AO delivery. Along with issues related to preparation techniques and encapsulation efficiency, the loss of protective function and inefficiency of skin permeability are the main disadvantages of liposomes. Corresponding development strategies for resolving these problems, with their respective advantages and drawbacks, are introduced, discussed in some depth, and summarized in these pages as well. Advanced liposomes have a vital role to play in the development and delivery of AOs in practical cosmeceutical product applications.
Collapse
|
66
|
Kausar H, Mujeeb M, Ahad A, Moolakkadath T, Aqil M, Ahmad A, Akhter MH. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv 2018; 25:484-492. [PMID: 29411650 PMCID: PMC6058577 DOI: 10.1080/10717544.2018.1436098] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of the current study was to formulate terconazole (TCZ) loaded polymeric mixed micelles (PMMs) incorporating Cremophor EL as a stabilizer and a penetration enhancer. A 23 full factorial design was performed using Design-Expert® software for the optimization of the PMMs which were formulated using Pluronic P123 and Pluronic F127 together with Cremophor EL. To confirm the role of Cremophor EL, PMMs formulation lacking Cremophor EL was prepared for the purpose of comparison. Results showed that the optimal PMMs formulation (F7, where the ratio of total Pluronics to drug was 40:1, the weight ratio of Pluronic P123 to Pluronic F127 was 4:1, and the percentage of Cremophor EL in aqueous phase was 5%) had a high micellar incorporation efficiency (92.98 ± 0.40%) and a very small micellar size (33.23 ± 8.00 nm). Transmission electron microscopy revealed that PMMs possess spherical shape and good dispersibility. The optimal PMMs exhibited superior physical stability when compared with the PMMs formulation of the same composition but lacking Cremophor EL. Ex vivo studies demonstrated that the optimal PMMs formula markedly improved the dermal TCZ delivery compared to PMMs lacking Cremophor EL and TCZ suspension. In addition, it was found that the optimal PMMs exhibited a greater extent of TCZ deposition in the rat dorsal skin relative to TCZ suspension. Moreover, histopathological studies revealed the safety of the optimal PMMs upon topical application to rats. Consequently, PMMs enriched with Cremophor EL, as a stable nano-system, could be promising for the skin delivery of TCZ.
Collapse
Affiliation(s)
- Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
68
|
Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y, Mujeeb M, Iqbal Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:755-765. [PMID: 29730964 DOI: 10.1080/21691401.2018.1469025] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study was conducted for the optimization of transethosomes formulation for dermal fisetin delivery. The optimization of the formulation was carried out using "Box-Behnken design". The independent variables were Lipoid S 100, ethanol and sodium cholate. The prepared formulations were characterized for vesicle size, entrapment efficiency and in vitro skin penetration study. The vesicles-skin interaction, confocal laser scanning microscopy and dermatokinetic studies were performed with optimized formulation. Results of the present study demonstrated that the optimized formulation presented vesicle size of 74.21 ± 2.65 nm, zeta potential of -11.0 mV, entrapment efficiency of 68.31 ± 1.48% and flux of 4.13 ± 0.17 µg/cm2/h. The TEM image of optimized formulation exhibited sealed and spherical shape vesicles. Results of thermoanalytical techniques demonstrated that the prepared transethosomes vesicles formulation had fluidized the rigid membrane of rat's skin for smoother penetration of fisetin transethosomes. The confocal study results presented well distribution and penetration of Rhodamine B loaded transethosomes vesicles formulation up to deeper layers of the rat's skin as compared to the Rhodamine B-hydro alcoholic solution. Present study data revealed that the developed transethosomes vesicles formulation was found to be a potentially useful drug carrier for fisetin dermal delivery.
Collapse
Affiliation(s)
- Thasleem Moolakkadath
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Aqil
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Abdul Ahad
- b Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Syed Sarim Imam
- c School of Pharmacy , Glocal University , Saharanpur , India
| | - Babar Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Yasmin Sultana
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Mujeeb
- d Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Zeenat Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| |
Collapse
|
69
|
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv 2018. [DOI: https://doi.org/10.1080/10717544.2018.1436098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
70
|
Rehman MU, Khan MA, Khan WS, Shafique M, Khan M. Fabrication of Niclosamide loaded solid lipid nanoparticles: in vitro characterization and comparative in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1926-1934. [PMID: 29113501 DOI: 10.1080/21691401.2017.1396996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Niclosamide (NCS) is an oral anthelminthic drug having low solubility and hence low bioavailability. Current investigation shows an approach to fabricate solid lipid nanoparticles (SLNs) of NCS and evaluated for pharmaceutical, in vitro and in vivo characterization. NFM-3 showed particle size 204.2 ± 2.2 nm, polydispersity index 0.328 ± 0.02 and zeta potential -33.16 ± 2 mV. Entrapment efficiency and drug loading capacity were 84.4 ± 0.02% and 5.27 ± 0.03%, respectively. Scanning electron microscopy image indicated that particles were nanoranged. DSC and P-XRD results showed change in physicochemical properties of NCS. FT-IR spectra confirmed compatibility between NCS and excipients. The drug release profile showed sustained release (93.21%) of NCS in 12 h. Different kinetic models showed zero-order kinetics and Case-II transport mechanism. Study showed maximum stability at refrigerated temperature. In vivo pharmacokinetic study showed 2.15-fold increase in NCS peak plasma concentration as solid lipid nanoparticle formulation (NFM-3) compared to commercial product while relative bioavailability was 11.08. Results including in vitro and in vivo release studies of NCS confirmed that SLNs system is suitable to improve oral delivery of NCS with increased aqueous solubility, permeability and finally bioavailability.
Collapse
Affiliation(s)
- Maqsood Ur Rehman
- a Department of Pharmacy , University of Malakand , Chakdara , Pakistan.,b Nano-Biotech Group (IBD) , National Institute for Biotechnology and Genetic Engineering , Faisalabad , Pakistan
| | - Mir Azam Khan
- a Department of Pharmacy , University of Malakand , Chakdara , Pakistan
| | - Waheed S Khan
- b Nano-Biotech Group (IBD) , National Institute for Biotechnology and Genetic Engineering , Faisalabad , Pakistan
| | - Muhammad Shafique
- a Department of Pharmacy , University of Malakand , Chakdara , Pakistan.,b Nano-Biotech Group (IBD) , National Institute for Biotechnology and Genetic Engineering , Faisalabad , Pakistan
| | - Munasib Khan
- a Department of Pharmacy , University of Malakand , Chakdara , Pakistan
| |
Collapse
|
71
|
Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 2017; 111:409-417. [PMID: 29030177 DOI: 10.1016/j.ejps.2017.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023]
Abstract
The objective of the present study was to formulate eprosartan mesylate loaded nano-bilosomes and investigates its potential for controlling streptozotocin induced diabetes nephropathy in Wistar rats. The eprosartan mesylate loaded nano-bilosomes comprising of various ratios of soybean phosphatidylcholine/sodium deoxycholate were prepared by thin film hydration technique. The prepared formulations were evaluated for vesicles size, polydispersity index, zeta potential and entrapment efficiency. Further the optimized formulation was characterized for vesicles morphology, and its efficacy for the management of diabetic nephropathy in Wistar rats. The optimized eprosartan mesylate loaded nano-bilosomes exhibited vesicles size, polydispersity index, zeta potential and entrapment efficiency of 63.88±3.46nm, 0.172±0.026, -30.40±2.75mV and 61.19±0.88% respectively. In vivo activity demonstrated that the prepared eprosartan mesylate loaded nano-bilosomes formulation demonstrated a nephro-protecting outcome as shown by the substantial decrease in serum creatinine, urea, lactate dehydrogenase, total albumin, and malondialdehyde. Additionally, an oral administration of eprosartan mesylate loaded nano-bilosomes decreases the raised expressions of Angiotensin II type 1 receptor, inducible nitric oxide synthase, and transforming growth factor-β1 in Wistar rats. Further, histopathological examination established the nephro-protective effect of prepared formulation. In conclusion, the research work in the paper suggests that the prepared eprosartan mesylate loaded nano-bilosomes could serve as a practical oral formulation for diabetic nephropathy in future therapy and may offer potential benefits in cases with hypertension and renal disease.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
72
|
Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol ® gel under Dermaroller ® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother 2017; 89:177-184. [DOI: 10.1016/j.biopha.2017.01.164] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 01/29/2017] [Indexed: 12/01/2022] Open
|