51
|
Zada A, Khan M, Khan MA, Khan Q, Habibi-Yangjeh A, Dang A, Maqbool M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. ENVIRONMENTAL RESEARCH 2021; 195:110742. [PMID: 33515579 DOI: 10.1016/j.envres.2021.110742] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols are very important environmental pollutants, which have created huge problems for both aquatic and terrestrial lives. Therefore, their removal needs urgent, effective, and advanced technologies to safeguard our environment for future generation. This review encompasses a comprehensive study of the applications of chlorophenols, their hazardous effects and photocatalytic degradation under light illumination. The effect of various factors such as pH and presence of different anions on the photocatalytic oxidation of chlorophenols have been elaborated comprehensively. The production of different oxidizing agents taking part in the photodegradation of chlorophenols are given a bird eye view. The photocatalytic degradation mechanism of different chlorophenols over various photocatalyts has been discussed in more detail and elaborated that how different photocatalysts degrade the same chlorophenols with the aid of different oxidizing agents produced during photocatalysis. Finally, a future perspective has been given to deal with the effective removal of these hazardous pollutants from the environment.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Chemistry, University of Okara, Renala Khurd, Punjab, Pakistan
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qasim Khan
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Aziz Habibi-Yangjeh
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alei Dang
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, AL, 35294, USA.
| |
Collapse
|
52
|
Ullah M, Bai X, Chen J, Lv H, Liu Z, Zhang Y, Wang J, Sun B, Li L, Shi K. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
53
|
Du Z, Liu F, Xiao C, Dan Y, Jiang L. Fabrication of poly(vinyl alcohol)/sodium alginate hydrogel beads and its application in photo-Fenton degradation of tetracycline. JOURNAL OF MATERIALS SCIENCE 2021; 56:913-926. [DOI: 10.1007/s10853-020-05299-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/16/2020] [Indexed: 01/06/2025]
|
54
|
Khan WA, Arain MB, Bibi H, Tuzen M, Shah N, Zada A. Selective electromembrane extraction and sensitive colorimetric detection of copper(II). Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, an extremely effective electromembrane extraction (EME) method was developed for the selective extraction of Cu(II) followed by Red-Green-Blue (RGB) detection. The effective parameters optimized for the extraction efficiency of EME include applied voltage, extraction time, supported liquid membrane (SLM) composition, pH of acceptor/donor phases, and stirring rate. Under optimized conditions, Cu(II) was extracted from a 3 mL aqueous donor phase to 8 µL of 100 mM HCl acceptor solution through 1-octanol SLM using an applied voltage of 50 V for 15 min. The proposed method provides a working range of 0.1–0.75 µg·mL−1 with 0.03 µg·mL−1 limit for detection. Finally, the developed technique was applied to different environmental water samples for monitoring environmental pollution. Obtained relative recoveries were within the range of 93–106%. The relative standard deviation (RSD) and enhancement factor (EF) were found to be ≤4.8% and 100 respectively. We hope that this method can be introduced for quantitative determination of Cu(II) as a fast, simple, portable, inexpensive, effective, and precise procedure.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
- Department of Chemistry , University of Karachi , 75270 , Karachi , Pakistan
| | - Hashmat Bibi
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University , Department of Chemistry , 60250 , Tokat , Turkey
| | - Nasrullah Shah
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| |
Collapse
|
55
|
A novel CuO–Cu2O/Ag–Ag3PO4 nanocomposite: Synthesis, characterization, and its application for 2-chlorophenol decontamination under visible light. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
56
|
Humaira Y, Amir Z, Shouxin L. Surface plasmon resonance electron channeled through amorphous aluminum oxide bridged ZnO coupled g-C3N4 significantly promotes charge separation for pollutants degradation under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
57
|
Yasmeen H, Zada A, Ali S, Khan I, Ali W, Khan W, Khan M, Anwar N, Ali A, Huerta‐Flores AM, Subhan F. Visible light‐excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of
ZnO
semiconductor for pollutants degradation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Humaira Yasmeen
- Materials Science and Engineering College, Northeast Forestry University Harbin China
| | - Amir Zada
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Sharafat Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Imran Khan
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Waliullah Khan
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications School of Materials Science and Engineering, Northwestern Polytechnical University Xi'an China
| | - Natasha Anwar
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Asif Ali
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Ali M. Huerta‐Flores
- Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N Ciudad Universitaria San Nicolás de los Garza Mexico
| | - Fazle Subhan
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| |
Collapse
|
58
|
Aljaafari A, Ahmed F, Awada C, Shaalan NM. Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility. Front Chem 2020; 8:456. [PMID: 32714894 PMCID: PMC7345984 DOI: 10.3389/fchem.2020.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
In this work, flower-like ZnO nanorods (NRs) were successfully prepared using microwave-assisted techniques at a low temperature. The synthesized NRs exhibited a smooth surface and good crystal structure phase of ZnO. The sharp peak of the XRD and Raman spectrum confirmed the high crystallinity of these ZnO NRs with a pure wurtzite structure. The nanorods were ~2 μm in length and ~150 nm in diameter, respectively. The electron diffraction pattern confirmed that the single crystal ZnO nanorods aligned along the [001] plane. The NRs were applied to fabricate a gas sensor for reducing gases such as CH4, CO, and H2. The sensor showed a good performance and sensitivity toward the target gases. However, its response toward CH4 and CO was higher compared to H2 gas. Although the operating temperature was varied from room temperature (RT) up to 350°C, the sensor did not show a response toward any of the target gases in the range of RT-150°C, but dramatic enhancement of the sensor response was observed at 200°C, and up to higher temperatures. This behavior was ascribed to the activity of the smooth surface and the reactivity of surface oxygen species with the targeted gases. The sensor response was measured at various gas concentrations, where the calibration curve was shown. The gas sensing mechanism was described in terms of the reaction of the gases with the transformed oxygen species on the surface of the oxides.
Collapse
Affiliation(s)
- Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Chawki Awada
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|