51
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
52
|
Cao Y, Hu J, Sui J, Jiang L, Cong Y, Ren G. Quercetin is able to alleviate TGF-β-induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Exp Ther Med 2018; 16:2442-2448. [PMID: 30210596 PMCID: PMC6122524 DOI: 10.3892/etm.2018.6489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are characterized by a gradual loss of kidney function over time. A number of studies have indicated that tubule interstitial fibrosis (TIF) is associated with the occurrence and development of CKD. The aim of the present study was to investigate the effect of quercetin treatment on the fibrosis of renal tubular epithelial cells and to determine whether the anti-fibrotic effects of quercetin are achieved via microRNA (miR)-21. Human tubular epithelial HK-2 cells were cultured with transforming growth factor (TGF)-β to induce fibrosis and the expression of fibrotic markers collagen I, fibronectin, α-smooth muscle actin (SMA) and epithelial-cadherin were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Cells were treated with 7.5, 15 or 30 mg/ml quercetin, following which fibrosis and miR-21 expression were evaluated. Quercetin-treated cells were transfected with miR-21 mimics and the expression of fibrotic markers was examined using RT-qPCR. Finally, the expression of fibrosis-associated miR-21 target genes, phosphatase and tensin homolog (PTEN) and TIMP Metallopeptidase Inhibitor 3 (TIMP3), was measured in cells treated with quercetin with or without miR-21 mimics using RT-qPCR, western blotting and immunocytochemistry. The results revealed that TGF-β treatment induced a significant increase in the expression of fibrotic markers in HK-2 cells, while quercetin treatment partially inhibited the fibrosis of HK-2 cells. Furthermore, quercetin treatment significantly inhibited TGF-β-induced miR-21 upregulation and transfection with miR-21 mimics reversed the anti-fibrotic effects of quercetin. Quercetin treatment markedly upregulated PTEN and TIMP3 expression, whereas transfection with miR-21 mimics reversed this effect. The results of the present study suggest that quercetin is able to alleviate TGF-β-induced fibrosis in HK-2 cells via suppressing the miR-21 and upregulating PTEN and TIMP3. Quercetin may have potential as an anti-fibrotic treatment for patients with renal fibrosis.
Collapse
Affiliation(s)
- Yaochen Cao
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Jialin Hu
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Jianying Sui
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Limei Jiang
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Yakun Cong
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Guoqing Ren
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| |
Collapse
|
53
|
Montford JR, Furgeson SB. A new CTGF target in renal fibrosis. Kidney Int 2018; 92:784-786. [PMID: 28938948 DOI: 10.1016/j.kint.2017.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
Lymphangiogenesis appears to accompany renal fibrosis, but signals that regulate the lymphangiogenic growth factor vascular endothelial growth factor C are not well understood. Kinashi et al. have shown that conditionally deleting connective tissue growth factor reduces renal fibrosis, vascular endothelial growth factor C, and lymphangiogenesis. Connective tissue growth factor has pleiotropic effects in the setting of renal fibrosis; this study adds a potentially new mechanism for the profibrotic effects of connective tissue growth factor.
Collapse
Affiliation(s)
- John R Montford
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Renal Section, Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Seth B Furgeson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Medicine, Denver Health Hospital, Denver, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
54
|
姜 婷, 张 雯, 向 晓, 束 双, 谢 唯, 汤 珣, 章 俊. [Lithium chloride arrests HK-2 cell cycle in G2 phase through AKT/GSK-3β signal pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:541-546. [PMID: 29891449 PMCID: PMC6743901 DOI: 10.3969/j.issn.1673-4254.2018.05.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of lithium chloride (LiCl) on cell cycle of HK-2 cells and explore the possible pathways involved. METHODS HK-2 cells were treated with LiCl at different concentrations (5, 12.5, 20, and 25 mmol/L) for 12, 24, 48, or 72 h, and the changes in cell cycle and viability were detected using flow cytometry and CCK-8 assay, respectively. Western blotting was used to analyze the changes in the expressions of cyclin B1 and CDK1 (the two G2 phase-related proteins) and those of AKT/GSK-3β signaling pathway-related proteins in the treated cells. RESULTS LiCl treatment time- and concentration-dependently increased HK-2 cell percentage in G2 phase and decreased the cell vitality. The expressions of cyclin B1, CDK1, p-GSK-3β, and β-catenin increased and the expression of p-AKT decreased significantly in the cells as LiCl treatment time and concentration increased. CONCLUSION LiCl may cause HK-2 cell cycle arrest in G2 phase through activation of the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- 婷婷 姜
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 雯英 张
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 晓红 向
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 双双 束
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 唯 谢
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 珣 汤
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 俊 章
- />南方医科大学珠江医院肾内科,广东 广州 510280Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
55
|
Hunt KJ, Jaffa MA, Garrett SM, Luttrell DK, Lipson KE, Lopes-Virella MF, Luttrell LM, Jaffa AA, Lopes-Virella MF, Hunt KJ, Baker NL, Virella G, Moritz T. Plasma Connective Tissue Growth Factor (CTGF/CCN2) Levels Predict Myocardial Infarction in the Veterans Affairs Diabetes Trial (VADT) Cohort. Diabetes Care 2018; 41:840-846. [PMID: 29382658 PMCID: PMC5860844 DOI: 10.2337/dc17-2083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Connective tissue growth factor (CTGF), also known as CCN2, is a potent chemotactic and extracellular matrix-inducing matricellular protein that has been implicated in progression of inflammatory and fibroproliferative disorders. An emerging role of CTGF/CCN2 is that of a prosclerotic factor implicated in the development of cardiac disease. Our objective was to determine the role of CTGF/CCN2 as a predictor of cardiovascular events in type 2 diabetes in the Veterans Affairs Diabetes Trial (VADT) cohort. RESEARCH DESIGN AND METHODS Levels of CTGF/CCN2 were measured in 952 VADT patients a median of 1.9 years after entry into the study. Participants were followed for an average of 3.3 years for vascular outcomes. CTGF/CCN2 categories were defined as below the detectable limit (referent, 54.5%), lower half of detectable values (22.8%), and upper half of detectable values (22.7%). Hazard ratios (HRs) for cardiovascular end points in relation to CTGF/CCN2 categories were calculated by Cox proportional hazards models. RESULTS During follow-up, 4.8% had a myocardial infarction (MI), 6.9% had an MI or cardiovascular death, and 6.9% died. After adjustments by conventional risk factors, individuals in the highest category of CTGF/CCN2 were at higher risk of MI (HR 2.43 [95% CI 1.15, 5.14]), MI or cardiovascular death (HR 2.71 [95% CI 1.44, 5.08]), and all-cause mortality (HR 2.70 [95% CI 1.43, 5.08]) relative to individuals with CTGF below the detectable limit. CONCLUSIONS Our study indicates that high levels of CTGF/CCN2 predict future MI and cardiovascular death in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Sara M. Garrett
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Deirdre K. Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | | | - Maria F. Lopes-Virella
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Louis M. Luttrell
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Ayad A. Jaffa
- Department of Medicine, Medical University of South Carolina, Charleston, SC
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
56
|
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, Rodrigues-Diez R, Falke LL, Mezzano S, Ortiz A, Egido J, Goldschmeding R, Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244:227-241. [PMID: 29160908 DOI: 10.1002/path.5007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz-UAM, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. School of Medicine, Universidad Autónoma Madrid, Madrid, Spain
| |
Collapse
|
57
|
Xu K, Sun Y, Kh Al-Ani M, Wang C, Sha Y, Sung KP, Dong N, Qiu X, Yang L. Synergistic promoting effects of bone morphogenetic protein 12/connective tissue growth factor on functional differentiation of tendon derived stem cells and patellar tendon window defect regeneration. J Biomech 2017; 66:95-102. [PMID: 29174694 DOI: 10.1016/j.jbiomech.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Current study investigated bone morphogenetic protein 12 (BMP12) and connective tissue growth factor (CTGF) activate tendon derived stem cells (TDSCs) tenogenic differentiation, and promotion of injured tendon regeneration. TDSCs were transfected with BMP12 and CTGF via recombinant adenovirus (Ad) infection. Gene transfection efficiency, cell viability and cytotoxicity, tenogenic gene expression, collagen I/III synthesis were evaluated in vitro. For the in vivo study, the transfected cells were transplanted into the rat patellar tendon window defect. At weeks 2 and 8 of post-surgery, the repaired tendon tissues were harvested for histological and biomechanical examinations. The transfected TDSCs revealed relatively stable transfection efficiency (80-90%) with active cell viability means while rare cytotoxicity in each group. During days 1 and 5, BMP12 and CTGF transfection caused tenogenic differentiation genes activation in TDSCs: type I/III collagen, tenascin-C, and scleraxis were all up-regulated, whereas osteogenic, adipogenic, and chondrogenic markers were all down-regulated respectively. In addition, BMP12 and CTGF overexpression significantly promote type I/III collagen synthesis. After in vivo transplantation, at 2 and 8 weeks post-surgery, BMP12, CTGF and co-transfection groups showed more integrated tendon tissue structure versus control, meanwhile, the ultimate failure loads and Young's were all higher than control. Remarkably, at 8 weeks post-surgery, the biomechanical properties of co-transfection group was approaching to normal rat patellar tendon, moreover, the ratio of type III/I collagen maintained about 20% in each transfection group, meanwhile, the type I collagen were significantly increased with co-transfection treatment. In conclusion, BMP12 and CTGF transfection stimulate tenogenic differentiation of TDSCs. The synergistic effects of simultaneous transfection of both may significantly promoted rat patellar tendon window defect regeneration.
Collapse
Affiliation(s)
- Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yanjun Sun
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Mohanad Kh Al-Ani
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Tikrit Universtiy, Collagen of Medicine, Department of Microbiology, P.O. Box (45) Salahaddin Province, Tikrit, Iraq
| | - Chunli Wang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yongqiang Sha
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Kl Paul Sung
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
58
|
Gauer S, Holzmann Y, Kränzlin B, Hoffmann SC, Gretz N, Hauser IA, Goppelt-Struebe M, Geiger H, Obermüller N. CTGF Is Expressed During Cystic Remodeling in the PKD/Mhm (cy/+) Rat Model for Autosomal-Dominant Polycystic Kidney Disease (ADPKD). J Histochem Cytochem 2017; 65:743-755. [PMID: 29058957 DOI: 10.1369/0022155417735513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Connective tissue growth factor (CTGF, also named CCN2) plays an important role in the development of tubulointerstitial fibrosis, which most critically determines the progression to end-stage renal failure in autosomal-dominant polycystic kidney disease (ADPKD), the most common genetically caused renal disease. We determined CTGF expression in a well-characterized animal model of human ADPKD, the PKD/Mhm (cy/+) rat. Kidneys of 12 weeks old (cy/+) as well as (+/+) non-affected rats were analyzed for CTGF RNA and protein expression by RT-PCR, Northern and Western blot analyses, in situ hybridization, and IHC. Besides the established expression of CTGF in glomerular cells in kidneys of wild-type (+/+) animals, in (cy/+) rats, CTGF mRNA and protein were robustly expressed in interstitial, stellate-shaped cells, located in a scattered pattern underlying the cystic epithelium and in focal areas of advanced tubulointerstitial remodeling. Renal CTGF mRNA and protein expression levels were significantly higher in (cy/+) rats compared with their (+/+) littermates. Detection of CTGF expression in cells adjacent to cystic epithelium and in areas of marked fibrosis suggests a role in the local response to cyst development and indicates that CTGF may be a relevant factor contributing to tubulointerstitial fibrosis in polycystic kidney disease.
Collapse
Affiliation(s)
- Stefan Gauer
- Department of Nephrology, Medical Clinic III, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Holzmann
- Department of Nephrology, Medical Clinic III, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bettina Kränzlin
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Sigrid C Hoffmann
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Ingeborg A Hauser
- Department of Nephrology, Medical Clinic III, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Medical Clinic 4, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Helmut Geiger
- Department of Nephrology, Medical Clinic III, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas Obermüller
- Department of Nephrology, Medical Clinic III, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|