51
|
Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online 2017; 19:2. [PMID: 28331435 PMCID: PMC5356409 DOI: 10.1186/s12575-017-0051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
Collapse
Affiliation(s)
- Yan Lu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Shulin/Sl Li
- MD Anderson Cancer Center, the university of Texas, 1840 Old Spanish Trail, Houston, TX USA
| | - Shiguo/Sg Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai, China
| | - Yabin/Yb Gong
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Jun/J Shi
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Ling/L Xu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| |
Collapse
|
52
|
|
53
|
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent implementation of low-dose computed tomography (LDCT) screening is predicted to lead to diagnosis of lung cancer at an earlier stage, with survival benefit. However, there is still a pressing need for biomarkers that will identify individuals eligible for screening, as well as improve the diagnostic accuracy of LDCT. In addition, biomarkers for prognostic stratification of patients with early stage disease, and those that can be used as surrogates to monitor tumor evolution, will greatly improve clinical management. Molecular alterations found in the DNA of tumor cells, such as mutations, translocations and methylation, are reflected in DNA that is released from the tumor into the bloodstream. Thus, in recent years, circulating tumor DNA (ctDNA) has gained increasing attention as a noninvasive alternative to tissue biopsies and potential surrogate for the entire tumor genome. Activating gene mutations found in ctDNA have been proven effective in predicting response to targeted therapy. Analysis of ctDNA is also a valuable tool for longitudinal follow-up of cancer patients that does not require serial biopsies and may anticipate the acquisition of resistance. DNA methylation has also emerged as a promising marker for early detection, prognosis and real-time follow-up of tumor dynamics that is independent of the genomic composition of the primary tumor. This review summarizes the various investigational applications of methylated ctDNA in lung cancer reported to date. It also provides a brief overview of the technologies for analysis of DNA methylation in liquid biopsies, and the challenges that befall the implementation of methylated ctDNA into routine clinical practice.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
54
|
Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics 2016; 8:1151-67. [PMID: 27479016 DOI: 10.2217/epi.16.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSCLC is an aggressive disease with one of the poorer prognosis among cancers. The disappointing response to chemotherapy drives the search for genetic biomarkers aimed at both attaining an earlier diagnosis and choosing the most appropriate chemotherapy. In this scenario, epigenomic markers, such as DNA methylation, histone acetylation and the expression of noncoding RNAs, have been demonstrated to be reliable for the stratification of NSCLC patients. Newest techniques with increased sensitivity and the isolation of nucleic acids from plasma may allow an early diagnosis and then monitoring the efficacy over time. However, prospective confirmatory studies are still lacking. This article presents an overview of the epigenetic markers evaluated in NSCLC and discusses the role of their real-time detection in the clinical management of the disease.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Altavilla
- Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
55
|
Gainetdinov IV, Kapitskaya KY, Rykova EY, Ponomaryova AA, Cherdyntseva NV, Vlassov VV, Laktionov PP, Azhikina TL. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016; 99:127-30. [PMID: 27565927 DOI: 10.1016/j.lungcan.2016.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/12/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach.
Collapse
Affiliation(s)
- Ildar V Gainetdinov
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Kristina Yu Kapitskaya
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Elena Yu Rykova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk State, Russia.
| | - Anastasia A Ponomaryova
- Tomsk Cancer Research Institute, National Research Tomsk Polytechnic University, Tomsk, Russia.
| | - Nadezda V Cherdyntseva
- Tomsk Cancer Research Institute, National Research Tomsk State University, Tomsk, Russia.
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Academician E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology, Novosibirsk, Russia Technical University, Novosibirsk, Russia.
| | - Tatyana L Azhikina
- Department of Genetics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
56
|
Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 2016; 23:R157-71. [PMID: 26764421 PMCID: PMC4737995 DOI: 10.1530/erc-15-0369] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Circulating tumor DNA (ctDNA) in the plasma or serum of cancer patients provides an opportunity for non-invasive sampling of tumor DNA. This 'liquid biopsy' allows for interrogations of DNA such as quantity, chromosomal alterations, sequence mutations and epigenetic changes, and can be used to guide and improve treatment throughout the course of the disease. This tremendous potential for real-time 'tracking' in a cancer patient has led to substantial research efforts in the ctDNA field. ctDNA can be distinguished from non-tumor DNA by the presence of tumor-specific mutations and copy number variations, and also by aberrant DNA methylation, with both DNA sequence and methylation changes corresponding to those found in the tumor. Aberrant methylation of specific promoter regions can be a very consistent feature of cancer, in contrast to mutations, which typically occur at a wide range of sites. This consistency makes ctDNA methylation amenable to the design of widely applicable clinical assays. In this review, we examine ctDNA methylation in the context of monitoring disease status, treatment response and determining the prognosis of cancer patients.
Collapse
Affiliation(s)
- Kristina Warton
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Kate L Mahon
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Goli Samimi
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| |
Collapse
|
57
|
Salvianti F, Orlando C, Massi D, De Giorgi V, Grazzini M, Pazzagli M, Pinzani P. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma. Front Mol Biosci 2016; 2:76. [PMID: 26779490 PMCID: PMC4705904 DOI: 10.3389/fmolb.2015.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and metastatic melanomas. Our data suggest that cell-free tumor DNA and CTCs represent two complementary aspects of the liquid biopsy which may improve the diagnosis and the clinical management of melanoma patients.
Collapse
Affiliation(s)
- Francesca Salvianti
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence Florence, Italy
| | - Claudio Orlando
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence Florence, Italy
| | - Daniela Massi
- Division of Pathology, Department of Surgery and Translational Medicine, University of Florence Florence, Italy
| | - Vincenzo De Giorgi
- Division of Dermatology, Department of Surgery and Traslational Medicine, University of Florence Florence, Italy
| | - Marta Grazzini
- Division of Dermatology, Department of Surgery and Traslational Medicine, University of Florence Florence, Italy
| | - Mario Pazzagli
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence Florence, Italy
| | - Pamela Pinzani
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence Florence, Italy
| |
Collapse
|
58
|
Balgkouranidou I, Chimonidou M, Milaki G, Tsaroucha E, Kakolyris S, Georgoulias V, Lianidou E. SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer. ACTA ACUST UNITED AC 2016; 54:1385-93. [DOI: 10.1515/cclm-2015-0776] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022]
Abstract
AbstractSOX17 belongs to the high-mobility group-box transcription factor superfamily and down-regulates the Wnt pathway. The aim of our study was to evaluate the prognostic significance ofWe examined the methylation status ofIn operable NSCLC,Our results show that
Collapse
|
59
|
Santarelli L, Staffolani S, Strafella E, Nocchi L, Manzella N, Grossi P, Bracci M, Pignotti E, Alleva R, Borghi B, Pompili C, Sabbatini A, Rubini C, Zuccatosta L, Bichisecchi E, Valentino M, Horwood K, Comar M, Bovenzi M, Dong LF, Neuzil J, Amati M, Tomasetti M. Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma. Lung Cancer 2015; 90:457-64. [DOI: 10.1016/j.lungcan.2015.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
|
60
|
Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G. "Liquid biopsy"-ctDNA detection with great potential and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:235. [PMID: 26539452 DOI: 10.3978/j.issn.2305-5839.2015.09.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating tumor DNA (ctDNA) is now being extensively studied as it is a noninvasive "real-time" biomarker that can provide diagnostic and prognostic information before, during treatment and at progression. These include DNA mutations, epigenetic alterations and other forms of tumor-specific abnormalities such as microsatellite instability (MSI) and loss of heterozygosity (LOH). ctDNA is of great value in the process of cancer treatment. However, up to date, there is no strict standard considering the exact biomarker because the development and progression of cancer is extremely complicated. Also, results of the studies evaluating ctDNA are not consistent due to the different detection methods and processing. The major challenge is still assay sensitivity and specificity for analysis of ctDNA. This review mainly focuses on the tumor specific DNA mutations, epigenetic alterations as well as detecting methods of ctDNA. The advantages and disadvantages will also be discussed.
Collapse
Affiliation(s)
- Mingwei Ma
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Hongcheng Zhu
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Chi Zhang
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Xinchen Sun
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Xianshu Gao
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Gang Chen
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
61
|
Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 2015; 113:372-81. [PMID: 26158424 PMCID: PMC4522630 DOI: 10.1038/bjc.2015.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.
Collapse
Affiliation(s)
- A M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| | - E O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Warton K, Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci 2015; 2:13. [PMID: 25988180 PMCID: PMC4428375 DOI: 10.3389/fmolb.2015.00013] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. Unlike mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. Since DNA methylation is reflected within circDNA, detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA) for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker.
Collapse
Affiliation(s)
- Kristina Warton
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre and St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Goli Samimi
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre and St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
63
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
64
|
Cheng X, Chen H. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives. Onco Targets Ther 2014; 7:1689-704. [PMID: 25285017 PMCID: PMC4181629 DOI: 10.2147/ott.s66502] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of the patients were observed in numerous clinical studies. However, overall survival is not prolonged because of later-acquired drug resistance. Recent studies reveal a heterogeneous subclonal architecture of lung cancer, so it is speculated that the tumor may rapidly adapt to environmental changes via a Darwinian selection mechanism. In this review, we aim to provide an overview of both spatial and temporal tumor heterogeneity as potential mechanisms underlying epidermal growth factor receptor tyrosine kinase inhibitor resistance in nonsmall cell lung cancer and summarize the possible origins of tumor heterogeneity covering theories of cancer stem cells and clonal evolution, as well as genomic instability and epigenetic aberrations in lung cancer. Moreover, investigational measures that overcome heterogeneity-associated drug resistance and new assays to improve tumor assessment are also discussed.
Collapse
Affiliation(s)
- Xinghua Cheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
65
|
van den Oever JME, Balkassmi S, Segboer T, Verweij EJ, van der Velden PA, Oepkes D, Bakker E, Boon EMJ. Mrassf1a-pap, a novel methylation-based assay for the detection of cell-free fetal DNA in maternal plasma. PLoS One 2013; 8:e84051. [PMID: 24391879 PMCID: PMC3877162 DOI: 10.1371/journal.pone.0084051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES RASSF1A has been described to be differentially methylated between fetal and maternal DNA and can therefore be used as a universal sex-independent marker to confirm the presence of fetal sequences in maternal plasma. However, this requires highly sensitive methods. We have previously shown that Pyrophosphorolysis-activated Polymerization (PAP) is a highly sensitive technique that can be used in noninvasive prenatal diagnosis. In this study, we have used PAP in combination with bisulfite conversion to develop a new universal methylation-based assay for the detection of fetal methylated RASSF1A sequences in maternal plasma. METHODS Bisulfite sequencing was performed on maternal genomic (g)DNA and fetal gDNA from chorionic villi to determine differentially methylated regions in the RASSF1A gene using bisulfite specific PCR primers. Methylation specific primers for PAP were designed for the detection of fetal methylated RASSF1A sequences after bisulfite conversion and validated. RESULTS Serial dilutions of fetal gDNA in a background of maternal gDNA show a relative percentage of ~3% can be detected using this assay. Furthermore, fetal methylated RASSF1A sequences were detected both retrospectively as well as prospectively in all maternal plasma samples tested (n = 71). No methylated RASSF1A specific bands were observed in corresponding maternal gDNA. Specificity was further determined by testing anonymized plasma from non-pregnant females (n = 24) and males (n = 21). Also, no methylated RASSF1A sequences were detected here, showing this assay is very specific for methylated fetal DNA. Combining all samples and controls, we obtain an overall sensitivity and specificity of 100% (95% CI 98.4%-100%). CONCLUSIONS Our data demonstrate that using a combination of bisulfite conversion and PAP fetal methylated RASSF1A sequences can be detected with extreme sensitivity in a universal and sex-independent manner. Therefore, this assay could be of great value as an addition to current techniques used in noninvasive prenatal diagnostics.
Collapse
Affiliation(s)
- Jessica M. E. van den Oever
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis (LDGA), Leiden University Medical Center, Leiden, The Netherlands
| | - Sahila Balkassmi
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis (LDGA), Leiden University Medical Center, Leiden, The Netherlands
| | - Tim Segboer
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis (LDGA), Leiden University Medical Center, Leiden, The Netherlands
| | - E. Joanne Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Egbert Bakker
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis (LDGA), Leiden University Medical Center, Leiden, The Netherlands
| | - Elles M. J. Boon
- Department of Clinical Genetics, Laboratory for Diagnostic Genome Analysis (LDGA), Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
66
|
Levenson VV, Melnikov AA. Molecular biomarkers in 2013. Expert Rev Mol Diagn 2013; 13:773-6. [PMID: 24151845 DOI: 10.1586/14737159.2013.850419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victor V Levenson
- US Biomarkers, Inc., 2201 W. Campbell Park Drive, Ste. 118, Chicago, IL 60612, USA +1 312 626 2886
| | | |
Collapse
|
67
|
Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 2013; 14:18925-58. [PMID: 24065096 PMCID: PMC3794814 DOI: 10.3390/ijms140918925] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +1-818-515-7618; Fax: +1-818-994-9875
| | - Husseina Khaddour
- Laboratory Diagnostic Medicine, Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria; E-Mail:
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| |
Collapse
|