51
|
Antioxidants in Sport Sarcopenia. Nutrients 2020; 12:nu12092869. [PMID: 32961753 PMCID: PMC7551250 DOI: 10.3390/nu12092869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The decline of skeletal muscle mass and strength that leads to sarcopenia is a pathology that might represent an emergency healthcare issue in future years. Decreased muscle mass is also a condition that mainly affects master athletes involved in endurance physical activities. Skeletal muscles respond to exercise by reshaping the biochemical, morphological, and physiological state of myofibrils. Adaptive responses involve the activation of intracellular signaling pathways and genetic reprogramming, causing alterations in contractile properties, metabolic status, and muscle mass. One of the mechanisms leading to sarcopenia is an increase in reactive oxygen and nitrogen species levels and a reduction in enzymatic antioxidant protection. The present review shows the recent experimental models of sarcopenia that explore molecular mechanisms. Furthermore, the clinical aspect of sport sarcopenia will be highlighted, and new strategies based on nutritional supplements, which may contribute to reducing indices of oxidative stress by reinforcing natural endogenous protection, will be suggested.
Collapse
|
52
|
Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 2020; 33:542-558. [PMID: 32037856 DOI: 10.1089/ars.2020.8041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The management of cancer patients is frequently complicated by the occurrence of a complex syndrome known as cachexia. It is mainly characterized by muscle wasting, a condition that associates with enhanced protein breakdown and with negative energy balance. While the mechanisms underlying cachexia have been only partially elucidated, understanding the pathogenesis of muscle wasting in cancer hosts is mandatory to design new targeted therapeutic strategies. Indeed, most of cancer patients will experience cachexia during the course of their disease, and about 25% of cancer-related deaths are due to this syndrome, rather than to the tumor itself. Recent Advances: Compelling evidence suggests that an altered redox homeostasis likely contributes to cancer-induced muscle protein depletion, directly or indirectly activating the intracellular degradative pathways. In addition, oxidative stress impinges on both mitochondrial number and function; the other way round, altered mitochondria lead to enhanced redox imbalance, creating a vicious loop that eventually results in negative energy metabolism. Critical Issues: The present review focuses on the possibility that pharmacological and nonpharmacological strategies able to restore a physiologic redox balance could be useful components of treatment schedules aimed at counteracting cancer-induced muscle wasting. Future Directions: Exercise and the use of exercise mimetic drugs represent the most promising approaches capable of reinforcing the muscle antioxidant defenses of cancer patients. The results from ongoing and new clinical trials are needed to validate the preclinical studies and provide effective therapies for cancer cachexia. Antioxid. Redox Signal. 33, 542-558.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
53
|
Ouyang J, Hou Q, Wang M, Zhao W, Feng D, Pi Y, Sun X. Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was conducted to investigate the effects of the mulberry [Morus alba var. multicaulis (Perrott.) Loud.] leaf powder (MLP) supplementation in dietary concentrates on growth performance, blood metabolites, meat quality, and antioxidant enzyme (AOE) gene expression in fattening Hu lambs. Forty approximately 3-mo-old Hu lambs (16.5 ± 0.6 kg) were randomly allocated to five groups and fed with concentrates containing 0%, 15%, 30%, 45%, or 60% MLP (control, T15, T30, T45, and T60, respectively). The results showed that 15%–30% MLP supplementation maintained growth and carcass performance, and the weight of total stomach, especially of rumen in T15 and T30, were higher than those of the control. Dietary MLP supplementation decreased serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, cholesterol, and triglyceride levels, but increased the high-density lipoprotein levels. Moreover, MLP supplementation improved the longissimus lumborum muscle color (redness), tenderness, and water-holding capacity. It was further observed that 15% MLP supplementation enhanced all AOE mRNA levels apart from that of EPHX1. In summary, dietary MLP supplementation could partially improve the blood metabolites, meat quality, and AOE mRNA levels in the liver of fattening Hu lamb, and the level of 15% supplementation was the most promising.
Collapse
Affiliation(s)
- Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Qirui Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Dan Feng
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu Pi
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xuezhao Sun
- The Centre for Ruminant Precision Nutrition and Smart Farming, Jilin Agricultural Science and Technology University, Jilin 132101, People’s Republic of China
| |
Collapse
|
54
|
Wong SK, Ima-Nirwana S, Chin KY. Effects of astaxanthin on the protection of muscle health (Review). Exp Ther Med 2020; 20:2941-2952. [PMID: 32855659 PMCID: PMC7444411 DOI: 10.3892/etm.2020.9075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia refers to the involuntary and generalized deterioration of skeletal muscle mass and strength, which may lead to falls, frailty, physical disability, loss of independence, morbidity and mortality. The majority of molecular and cellular changes involved in the degeneration of muscle tissues are mediated by oxidative stress. Therefore, astaxanthin may act as a potential adjunct therapy for sarcopenia owing to its antioxidant activity. The present review examines the effects of astaxanthin on the promotion of skeletal muscle performance and prevention of muscle atrophy and the potential mechanisms underlying these effects. The available evidence till date was retrieved from PubMed and Medline electronic databases. The present review reported the beneficial effects of astaxanthin in preventing muscle degeneration in various animal models of sarcopenia. In humans, the effects of astaxanthin in combination with other antioxidants on muscle health are mixed, wherein positive and negligible effects were reported. Mechanistic studies revealed that astaxanthin promotes muscle health by reducing oxidative stress, myoblast apoptosis and proteolytic pathways while promoting mitochondria regeneration and formation of blood vessels. Thus, astaxanthin is a potential therapeutic agent for sarcopenia but its effects in humans require further validation.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
55
|
Musarò A, Scicchitano BM. Counteracting sarcopenia: the role of IGF-1 isoforms. Aging (Albany NY) 2020; 11:3410-3411. [PMID: 31195371 PMCID: PMC6594807 DOI: 10.18632/aging.102027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Roma 00168, Italy
| |
Collapse
|
56
|
Gu Y, Zhang S, Wang J, Chi VTQ, Zhang Q, Liu L, Meng G, Yao Z, Wu H, Bao X, Sun S, Zhou M, Jia Q, Song K, Huang J, Huo J, Zhang B, Ding G, Niu K. Relationship between consumption of raw garlic and handgrip strength in a large-scale adult population. Clin Nutr 2020; 39:1234-1241. [DOI: 10.1016/j.clnu.2019.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
|
57
|
Semba RD, Tian Q, Carlson MC, Xue QL, Ferrucci L. Motoric cognitive risk syndrome: Integration of two early harbingers of dementia in older adults. Ageing Res Rev 2020; 58:101022. [PMID: 31996326 PMCID: PMC7697173 DOI: 10.1016/j.arr.2020.101022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Dementia is characterized by a long preclinical phase that may last years to decades before the onset of mild cognitive impairment. Slow gait speed and subjective memory complaint commonly co-occur during this preclinical phase, and each is a strong independent predictor of cognitive decline and dementia. Motoric cognitive risk (MCR) syndrome is a pre-dementia syndrome that combines these two early harbingers of dementia. The risk of cognitive decline or dementia is stronger for MCR than for either slow gait speed or subjective memory complaint alone. Slow gait speed and subjective memory complaint have several common risk factors: cardiovascular disease, diabetes mellitus, abnormal cortisol profiles, low vitamin D levels, brain atrophy with decreased hippocampal volume, and increased deposition of beta-amyloid in the brain. The underlying pathogenesis of MCR remains poorly understood. Metabolomics and proteomics have great potential to provide new insights into biological pathways involved in MCR during the long preclinical phase preceding dementia.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qu Tian
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qian-Li Xue
- Departments of Medicine, Biostatistics, and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
58
|
Ballatore MB, Bettiol MDR, Vanden Braber NL, Aminahuel CA, Rossi YE, Petroselli G, Erra-Balsells R, Cavaglieri LR, Montenegro MA. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chem 2020; 319:126472. [PMID: 32163839 DOI: 10.1016/j.foodchem.2020.126472] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023]
Abstract
Whey protein is one of the most relevant co-products manufactured by the dairy industry and it is a powerful environmental pollutant. Therefore, the enzymatic hydrolysis of whey protein concentrate (WPC 35) to produce antioxidant peptides is an innovative approach which can provide added value to whey. The WPC 35 hydrolysis with trypsin was carried out for 4.31 h at 41.1 °C with an enzyme/substrate ratio of 0.017. Under such hydrolysis conditions, the peptides produced have the highest radical scavenging activity and cytoprotector effect. The WPC hydrolysate and a permeate ≤3 kDa were characterized by SDS-page, RP-HPLC and MALDI-TOF-MS. Furthermore, O2•- and HO• scavenging activity and the cytoprotective effect against a stress agent in epithelial cells of the rat ileum (IEC-18) were determined. In this study, strong antioxidant and cytoprotective peptides were obtained from a low-cost dairy industry product, which could improve consumers' health when used as functional ingredients.
Collapse
Affiliation(s)
- María Belén Ballatore
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Marina Del Rosario Bettiol
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Noelia L Vanden Braber
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Carla Aylen Aminahuel
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Yanina Estefanía Rossi
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Gabriela Petroselli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales Pabellón II, 3er P., Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Lilia René Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina
| | - Mariana Angélica Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CIC-CONICET), Argentina.
| |
Collapse
|
59
|
A Study of Histopathologic Evaluation and Clinical Correlation for Isolated Congenital Myogenic Ptosis and Aponeurotic Ptosis. Ophthalmic Plast Reconstr Surg 2020; 36:380-384. [PMID: 31913207 DOI: 10.1097/iop.0000000000001564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate light microscopy and transmission electron microscopy findings of levator muscle/aponeurosis materials and their correlation with clinical findings in isolated congenital myogenic and aponeurotic blepharoptosis. METHODS Demographic and clinical data were obtained from patients. Qualitative and quantitative evaluations for muscle fiber morphology were performed using light microscopy and transmission electron microscopy on tissue samples which were obtained from the most proximal part of the aponeurosis excised during levator muscle/aponeurosis resection surgery. RESULTS Seventeen (55%) of the cases were isolated congenital myogenic ptosis, and 14 (45%) were aponeurotic ptosis. Muscle bundle splitting, cytoplasmic loss, and centrally located nuclei were observed in both groups. Muscle tissue covered 25% of the sample in 67% of the cases, 50% in 11%, 75% in 11%, and 100% in 11% in the myogenic group. In the aponeurotic group, muscle tissue covered 25% of the sample in 44.5% of the cases, 50% in 11%, and 100% in 44.5% (χ, p = 0.52). Myofibrillar loss areas accompanied by Z-line disorganization which were occupied by degenerated organelles were present in both groups under transmission electron microscopy, and findings were not significantly different between groups (χ, p > 0.05). Mean mitochondrial diameter was significantly larger in aponeurotic ptosis (Mann-Whitney U, p = 0.047). No correlation was found between functional and microscopic parameters. CONCLUSION Decreased amount of striated muscle and the presence of fiber damage indicators were observed in both groups. Muscle fiber loss in myogenic ptosis may be a feature of muscle dysgenesis. Ultrastructural damage in aponeurotic ptosis may be explained with increased oxidative stress or long-term contractile stress. Further genetic and immunohistochemical studies will be helpful to further understand the pathogenesis of diseases.
Collapse
|
60
|
Nutritional and Pharmacological Interventions to Expedite Recovery Following Muscle-Damaging Exercise in Older Adults: A Narrative Review of the Literature. J Aging Phys Act 2019; 27:914-928. [PMID: 30859892 DOI: 10.1123/japa.2018-0351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exercise-induced muscle damage (EIMD) manifests as muscle soreness, inflammation, and reductions in force generating capacity that can last for several days after exercise. The ability to recover and repair damaged tissues following EIMD is impaired with age, with older adults (≥50 years old) experiencing a slower rate of recovery than their younger counterparts do for the equivalent exercise bout. This narrative review discusses the literature examining the effect of nutritional or pharmacological supplements taken to counter the potentially debilitating effects of EIMD in older adults. Studies have assessed the effects of nonsteroidal anti-inflammatory drugs, vitamin C and/or E, or higher protein diets on recovery in older adults. Each intervention showed some promise for attenuating EIMD, but, overall, there is a paucity of available data in this population, and more studies are required to determine the influence of nutrition or pharmacological interventions on EIMD in older adults.
Collapse
|
61
|
Increased Circulating Levels of Interleukin-6 Affect the Redox Balance in Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3018584. [PMID: 31827671 PMCID: PMC6881749 DOI: 10.1155/2019/3018584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/01/2019] [Accepted: 09/26/2019] [Indexed: 12/25/2022]
Abstract
The extent of oxidative stress and chronic inflammation are closely related events which coexist in a muscle environment under pathologic conditions. It has been generally accepted that the inflammatory cells, as well as myofibers, are sources of reactive species which are, in turn, able to amplify the activation of proinflammatory pathways. However, the precise mechanism underlining the physiopathologic interplay between ROS generation and inflammatory response has to be fully clarified. Thus, the identification of key molecular players in the interconnected pathogenic network between the two processes might help to design more specific therapeutic approaches for degenerative diseases. Here, we investigated whether elevated circulating levels of the proinflammatory cytokine Interleukin-6 (IL-6) are sufficient to perturb the physiologic redox balance in skeletal muscle, independently of tissue damage and inflammatory response. We observed that the overexpression of circulating IL-6 enhances the generation and accumulation of free radicals in the diaphragm muscle of adult NSE/IL-6 mice, by deregulating redox-associated molecular circuits and impinging the nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated antioxidant response. Our findings are coherent with a model in which uncontrolled levels of IL-6 in the bloodstream can influence the local redox homeostasis, inducing the establishment of prooxidative conditions in skeletal muscle tissue.
Collapse
|
62
|
Dolan E, Artioli GG, Pereira RMR, Gualano B. Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules 2019; 9:biom9110642. [PMID: 31652853 PMCID: PMC6921011 DOI: 10.3390/biom9110642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is characterized by a loss of muscle mass, quality, and function, and negatively impacts health, functionality, and quality of life for numerous populations, particularly older adults. Creatine is an endogenously produced metabolite, which has the theoretical potential to counteract many of the morphological and metabolic parameters underpinning sarcopenia. This can occur through a range of direct and indirect mechanisms, including temporal and spatial functions that accelerate ATP regeneration during times of high energy demand, direct anabolic and anti-catabolic functions, and enhanced muscle regenerating capacity through positively impacting muscle stem cell availability. Studies conducted in older adults show little benefit of creatine supplementation alone on muscle function or mass. In contrast, creatine supplementation as an adjunct to exercise training seems to augment the muscle adaptive response to the training stimulus, potentially through increasing capacity for higher intensity exercise, and/or by enhancing post-exercise recovery and adaptation. As such, creatine may be an effective dietary strategy to combat age-related muscle atrophy and sarcopenia when used to complement the benefits of exercise training.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
- Bone Metabolism Laboratory, Disciplina de Reumatologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de São Paulo 01246-903, SP, Brazil.
| | - Guilherme G Artioli
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| | - Rosa Maria R Pereira
- Bone Metabolism Laboratory, Disciplina de Reumatologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de São Paulo 01246-903, SP, Brazil.
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| |
Collapse
|
63
|
Zinc and selenium indicators and their relation to immunologic and metabolic parameters in male patients with human immunodeficiency virus. Nutrition 2019; 70:110585. [PMID: 31698296 DOI: 10.1016/j.nut.2019.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Micronutrient deficiencies are common among people living with HIV (PLWHIV). The clinical and immunologic consequences of micronutrient deficiencies have been poorly explored in the context of human immunodeficiency virus (HIV) infection. The aim of this study was to determine the prevalence of zinc and selenium deficiency (dietary intake and serum concentrations) and analyze their associations with absolute CD4+ T-cell counts, inflammation markers, and metabolic disorders in a cohort of antiretroviral-experienced HIV-infected individuals. METHODS The zinc and selenium intakes of 124 HIV-infected men were estimated using 3-d food records. In a subcohort of 45 individuals, serum zinc and selenium concentrations and proinflammatory cytokines were determined. Body composition, bone mineral density (BMD), CD4+ T-cell counts, lipid profile, glucose, and blood pressure were determined and were associated with zinc and selenium dietary intake and serum concentrations. RESULTS Of the PLWHIV studied, 58% had suboptimal intake of zinc and 8% demonstrated suboptimal intake of selenium. Serum deficiencies for zinc and selenium were 23.9% and 65.9%, respectively. Zinc and selenium intake were correlated with increased muscle mass. Selenium intake was associated with increased BMD of the lumbar region. An inverse correlation between serum selenium concentration and several proinflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) was found. CONCLUSION Suboptimal zinc and selenium intake and serum concentration deficiencies are highly prevalent in treated HIV-positive individuals and are associated with body composition, BMD, and inflammation. Clinical trials should be designed to explore the effect of zinc and selenium supplementation on metabolic, inflammatory, and immunologic parameters on the HIV-positive population.
Collapse
|
64
|
Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells 2019; 8:cells8080906. [PMID: 31426366 PMCID: PMC6721719 DOI: 10.3390/cells8080906] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
One of the crucial systems severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. The neuromuscular junction (NMJ) represents the critical region at the level of which muscle and nerve communicate. Defects in signal transmission between terminal nerve endings and muscle membrane is a common feature of several physio-pathologic conditions including aging and Amyotrophic Lateral Sclerosis (ALS). Nevertheless, controversy exists on whether pathological events beginning at the NMJ precede or follow loss of motor units. In this review, the role of NMJ in the physio-pathologic interplay between muscle and nerve is discussed.
Collapse
|
65
|
Donizetti Verri E, da Silva GP, Marianetti Fioco E, Soares da Silva N, Valin Fabrin SC, Augusto Bueno Zanella C, Roberta Garrefa C, Faria Júnior M, Siéssere S, Hallak JEC, Palinkas M, Chaves TC, Regalo SCH. Effects of Parkinson's disease on molar bite force, electromyographic activity and muscle thickness of the masseter, temporal and sternocleidomastoid muscles: A case‐control study. J Oral Rehabil 2019; 46:912-919. [DOI: 10.1111/joor.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/10/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Edson Donizetti Verri
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
- Department of Physiotherapy Batatais Claretiano Center University São Paulo Brazil
| | - Gabriel Pádua da Silva
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
| | - Evandro Marianetti Fioco
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
- Department of Physiotherapy Batatais Claretiano Center University São Paulo Brazil
| | - Nayara Soares da Silva
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
| | - Saulo César Valin Fabrin
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
| | | | - Camila Roberta Garrefa
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
| | - Milton Faria Júnior
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
| | - Selma Siéssere
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
- National Institute of Science and Technology, Translational Medicine Ribeirão Preto Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute of Science and Technology, Translational Medicine Ribeirão Preto Brazil
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Marcelo Palinkas
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
- National Institute of Science and Technology, Translational Medicine Ribeirão Preto Brazil
- Faculty of Anhanguera de Ribeirão Preto São Paulo Brazil
| | - Thais Cristina Chaves
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School University of São Paulo Ribeirão Preto Brazil
| | - Simone Cecilio Hallak Regalo
- Department of Basic and Oral Pathology, School of Dentistry of Ribeirão Preto University of São Paulo São Paulo Brazil
- National Institute of Science and Technology, Translational Medicine Ribeirão Preto Brazil
| |
Collapse
|
66
|
Ascenzi F, Barberi L, Dobrowolny G, Villa Nova Bacurau A, Nicoletti C, Rizzuto E, Rosenthal N, Scicchitano BM, Musarò A. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 2019; 18:e12954. [PMID: 30953403 PMCID: PMC6516183 DOI: 10.1111/acel.12954] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin-like growth factor-1 (IGF-1) has been implicated in many anabolic pathways in skeletal muscle. IGF-1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF-1Ea and IGF-1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF-1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF-1Ea or IGF-1Eb transgenes was protective against age-related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1-α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF-1Ea and MLC/IGF-1Eb mice during aging. These data suggest that IGF-1 is a promising therapeutic agent in staving off advancing muscle weakness.
Collapse
Affiliation(s)
- Francesca Ascenzi
- DAHFMO‐Unit of Histology and Medical EmbryologyLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | - Laura Barberi
- DAHFMO‐Unit of Histology and Medical EmbryologyLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | - Gabriella Dobrowolny
- DAHFMO‐Unit of Histology and Medical EmbryologyLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | | | - Carmine Nicoletti
- DAHFMO‐Unit of Histology and Medical EmbryologyLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Nadia Rosenthal
- Imperial Centre for Translational and Experimental MedicineImperial College LondonLondonUK
- The Jackson LaboratoryBar HarborMaine
| | - Bianca Maria Scicchitano
- Istituto di Istologia e EmbriologiaUniversità Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologyLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
| |
Collapse
|
67
|
Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells 2019; 8:E232. [PMID: 30862132 PMCID: PMC6468756 DOI: 10.3390/cells8030232] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Muscle regeneration, characterized by the activation and proliferation of satellite cells and other precursors, is accompanied by an inflammatory response and the remodeling of the extracellular matrix (ECM), necessary to remove cellular debris and to mechanically support newly generated myofibers and activated satellite cells. Muscle repair can be considered concluded when the tissue architecture, vascularization, and innervation have been restored. Alterations in these connected mechanisms can impair muscle regeneration, leading to the replacement of functional muscle tissue with a fibrotic scar. In the present review, we will discuss the cellular mediators of fibrosis and how the altered expression and secretion of soluble mediators, such as IL-6 and IGF-1, can modulate regulatory networks involved in the altered regeneration and fibrosis during aging and diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| |
Collapse
|
68
|
Forcina L, Miano C, Pelosi L, Musarò A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics 2019; 20:24-37. [PMID: 31015789 PMCID: PMC6446479 DOI: 10.2174/1389202920666190116094736] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| |
Collapse
|
69
|
Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 2019. [PMID: 31372016 DOI: 10.2147/dmso.s186600[publishedonlinefirst:2019/08/03]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The incidence and prevalence of metabolic and musculoskeletal diseases are increasing. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, inflammation, advanced glycation end-product accumulation and increased oxidative stress. These characteristics can negatively affect various aspects of muscle health, including muscle mass, strength, quality and function through impairments in protein metabolism, vascular and mitochondrial dysfunction, and cell death. Sarcopenia is a term used to describe the age-related loss in skeletal muscle mass and function and has been implicated as both a cause and consequence of T2DM. Sarcopenia may contribute to the development and progression of T2DM through altered glucose disposal due to low muscle mass, and also increased localized inflammation, which can arise through inter- and intramuscular adipose tissue accumulation. Lifestyle modifications are important for improving and maintaining mobility and metabolic health in individuals with T2DM and sarcopenia. However, evidence for the most effective and feasible exercise and dietary interventions in this population is lacking. In this review, we discuss the current literature highlighting the bidirectional relationship between T2DM and sarcopenia, highlight current research gaps and treatments, and provide recommendations for future research.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Barbora De Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, VIC, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
70
|
Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 2019; 12:1057-1072. [PMID: 31372016 PMCID: PMC6630094 DOI: 10.2147/dmso.s186600] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/07/2019] [Indexed: 12/05/2022] Open
Abstract
The incidence and prevalence of metabolic and musculoskeletal diseases are increasing. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, inflammation, advanced glycation end-product accumulation and increased oxidative stress. These characteristics can negatively affect various aspects of muscle health, including muscle mass, strength, quality and function through impairments in protein metabolism, vascular and mitochondrial dysfunction, and cell death. Sarcopenia is a term used to describe the age-related loss in skeletal muscle mass and function and has been implicated as both a cause and consequence of T2DM. Sarcopenia may contribute to the development and progression of T2DM through altered glucose disposal due to low muscle mass, and also increased localized inflammation, which can arise through inter- and intramuscular adipose tissue accumulation. Lifestyle modifications are important for improving and maintaining mobility and metabolic health in individuals with T2DM and sarcopenia. However, evidence for the most effective and feasible exercise and dietary interventions in this population is lacking. In this review, we discuss the current literature highlighting the bidirectional relationship between T2DM and sarcopenia, highlight current research gaps and treatments, and provide recommendations for future research.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Correspondence: Jakub MesinovicDepartment of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, Victoria3068, AustraliaTel + 6 138 572 2919Fax + 6 139 594 6495Email
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Barbora De Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, VIC, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
71
|
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res Rev 2018; 46:1-13. [PMID: 29742451 DOI: 10.1016/j.arr.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
This review addresses the possible structural and functional adaptations of the muscle function to neuromuscular electrical stimulation (NMES) training in frail and/or aged (without advanced chronic disease) subjects. Evidence suggests that the sarcopenic process and its structural and functional effects would be limited and/or reversed through NMES training using excito-motor currents (or direct currents). From a structural viewpoint, NMES helps reduce muscle atrophy. From a functional viewpoint, NMES enables the improvement of motor output (i.e., muscle strength), gait, balance and activities of daily living which enhances the quality of life of aged subjects. Muscle plasticity of aged subjects in response to NMES training turns out to be undeniable, although many mechanisms are not yet explained and deserve to be explore further. Mechanistic explanations as well as conceptual models are proposed to explain how muscle plasticity operates in aged subjects through NMES training. NMES could be seen as a clinically applicable training technique, safe and efficient among aged subjects and could be used more often as part of prevention of sarcopenia. Therapists and physical conditioners/trainers could exploit this new knowledge in their professional practice to improve life conditions (including the risk of fall) of frail and/or aged subjects.
Collapse
|
72
|
Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch 2018; 470:1503-1519. [DOI: 10.1007/s00424-018-2167-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
|
73
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
74
|
The Antioxidant Content and Protective Effect of Argan Oil and Syzygium aromaticum Essential Oil in Hydrogen Peroxide-Induced Biochemical and Histological Changes. Int J Mol Sci 2018; 19:ijms19020610. [PMID: 29463041 PMCID: PMC5855832 DOI: 10.3390/ijms19020610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress is an important etiology of chronic diseases and many studies have shown that natural products might alleviate oxidative stress-induced pathogenesis. The study aims to evaluate the effect of Argan oil and Syzygium aromaticum essential oil on hydrogen peroxide (H2O2)-induced liver, brain and kidney tissue toxicity as well as biochemical changes in wistar rats. The antioxidant content of Argan oil and Syzygium aromaticum essential oil was studied with the use of gas chromatography. The animals received daily by gavage, for 21 days, either distilled water, Syzygium aromaticum essential oil, Argan oil, H2O2 alone, H2O2 and Syzygium aromaticum essential oil, or H2O2 and Argan oil. Blood samples were withdrawn on day 21 for the biochemical blood tests, and the kidney, liver and brain tissue samples were prepared for histopathology examination. The results showed that the content of antioxidant compounds in Syzygium aromaticum essential oil is higher than that found in Argan oil. H2O2 increased level of blood urea, liver enzymes, total cholesterol, Low Density Lipoprotein (LDL-C), Triglycerides (TG) and Very Low Density Lipoprotein (VLDL), and decreased the total protein, albumin and High Density Lipoprotein-cholesterol (HDL-C). There was no significant effect on blood electrolyte or serum creatinine. The histopathology examination demonstrated that H2O2 induces dilatation in the central vein, inflammation and binucleation in the liver, congestion and hemorrhage in the brain, and congestion in the kidney. The H2O2-induced histopathological and biochemical changes have been significantly alleviated by Syzygium aromaticum essential oil or Argan oil. It is concluded that the Argan oil and especially the mixture of Argan oil with Syzygium aromaticum essential oil can reduce the oxidative damage caused by H2O2, and this will pave the way to investigate the protective effects of these natural substances in the diseases attributed to the high oxidative stress.
Collapse
|
75
|
Insights into the Pathogenic Secondary Symptoms Caused by the Primary Loss of Dystrophin. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|