51
|
Abstract
The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic plasticity, by which neural precursors can replace damaged oligodendrocytes and myelin, and also effectively attenuate the autoimmune process in a local, nonsystemic manner to protect brain cells from further injury, as well as facilitate the intrinsic capacity of the brain for recovery. These fundamental immunomodulatory and neurotrophic properties are shared by stem cells of different sources. By using different routes of delivery, cells may target both affected white matter tracts and the perivascular niche where the trafficking of immune cells occur. It is unclear yet whether the therapeutic properties of transplanted cells are maintained with the duration of time. The application of neural stem cell therapy (derived from fetal brain or from human embryonic stem cells) will be realized once their purification, mass generation, and safety are guaranteed. However, previous clinical experience with bone marrow stromal (mesenchymal) stem cells and the relative easy expansion of autologous cells have opened the way to their experimental application in MS. An initial clinical trial has established the probable safety of their intravenous and intrathecal delivery. Short-term follow-up observed immunomodulatory effects and clinical benefit justifying further clinical trials.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
52
|
Fulton DL, Denarier E, Friedman HC, Wasserman WW, Peterson AC. Towards resolving the transcription factor network controlling myelin gene expression. Nucleic Acids Res 2011; 39:7974-91. [PMID: 21729871 PMCID: PMC3185407 DOI: 10.1093/nar/gkr326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network.
Collapse
Affiliation(s)
- Debra L Fulton
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
53
|
Rivera FJ, Steffenhagen C, Kremer D, Kandasamy M, Sandner B, Couillard-Despres S, Weidner N, Küry P, Aigner L. Deciphering the oligodendrogenic program of neural progenitors: cell intrinsic and extrinsic regulators. Stem Cells Dev 2010; 19:595-606. [PMID: 19938982 DOI: 10.1089/scd.2009.0293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the developing and adult CNS, neural stem/progenitor cells (NSPCs) and oligodendroglial progenitor cells (OPCs) follow an oligodendrogenic process with the aim of myelinating axons. This process is to a high degree regulated by an oligodendrogenic program (OPr) composed of intrinsic and extrinsic factors that modulate the different steps required for NSPCs to differentiate into myelinating oligodendrocytes. Even though NSPCs and OPCs are present in the diseased CNS and have the capacity to generate oligodendrocytes, sparse remyelination of axons constitutes a major constraint in therapies toward multiple sclerosis (MS) and spinal cord injury (SCI). Lack of pro-oligodendrogenic factors and presence of anti-oligodendrogenic activities are thought to be the main reasons for this limitation. Thus, molecular and cellular strategies aiming at remyelination and at targeting such pro- and anti-oligodendrogenic mechanisms are currently under investigation. The present review summarizes the current knowledge on the OPr; it implements our own findings on mesenchymal stem cell-derived pro-oligodendroglial factors and on the role of p57/kip2 in oligodendroglial differentiation. Moreover, it describes molecular and cellular approaches for the development of future therapies toward remyelination.
Collapse
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Garcia-Lopez R, Martinez S. Oligodendrocyte precursors originate in the parabasal band of the basal plate in prosomere 1 and migrate into the alar prosencephalon during chick development. Glia 2010; 58:1437-50. [DOI: 10.1002/glia.21019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
55
|
García-González D, Clemente D, Coelho M, Esteban PF, Soussi-Yanicostas N, de Castro F. Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development. Exp Neurol 2010; 222:285-95. [PMID: 20083104 DOI: 10.1016/j.expneurol.2010.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/18/2009] [Accepted: 01/10/2010] [Indexed: 10/20/2022]
Abstract
FGF-2 and Anosmin-1 are diffusible proteins which act in cell proliferation and/or migration during CNS development. We describe their developmental expression patterns in the subventricular zone (SVZ) of the forebrain and the neuronal precursors (NPs) that migrate from this neurogenic site towards the olfactory bulb, forming the rostral migratory stream (RMS). The analysis is carried out before (E14), during (E17, P5) and after (P15) the peaks of migration along the RMS and before this acquires its mature conformation. At all these stages, FGF-2 exerts a FGFR1-mediated motogenic effect on NPs and induces the proliferation of SVZ astrocytes (putatively type B cells from triads), and Anosmin-1 works as a typical chemotropic agent for the NPs (mediated by FGFR1 at P5-P15). Altogether, our results are consistent with the notion that FGF-2 increases cell proliferation in the SVZ and would be the motogenic cue which feeds the migration of the newly produced NPs once generated, from early development (E14) and at least until P15, while Anosmin-1 cooperates in this migration attracting the NPs. In this sense, both cues should be considered as two of the first to be chronologically identified as actors in the formation of the RMS.
Collapse
Affiliation(s)
- Diego García-González
- Grupo de Neurobiología del Desarrollo-GNDe, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, E-45071-Toledo, Spain
| | | | | | | | | | | |
Collapse
|
56
|
Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J. Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol 2009; 105:61-71. [PMID: 19629560 PMCID: PMC2789930 DOI: 10.1007/s00395-009-0047-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 06/29/2009] [Accepted: 07/10/2009] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to evaluate the expression of hedgehog (Hh) signaling molecules and the chemotactic activity of Sonic hedgehog (Shh) in monocytes from control (CTR) and diabetic patients with or without coronary artery disease (CAD). Previously several studies demonstrated that exogenous administration of Shh can induce angiogenesis and accelerate repair of ischemic myocardium and skeletal muscles. Blood samples were collected from (1) CTR (n = 25); (2) patients with stable CAD without diabetes mellitus (CAD−DM, n = 10); and (3) with stable CAD with DM (CAD+DM, n = 15). Monocytes were isolated by Percoll gradient and subjected to PCR and chemotaxis analysis. Hh signaling molecules were expressed in human monocytes, and Shh-induced monocyte chemotaxis. Shh-stimulated migration of monocytes from CTR measured 172.5 ± 90% and a maximal stimulation was observed at Shh concentration of 1 μg/ml. However, Shh failed to induce migration of monocytes from CAD+DM (94.3 ± 27%, P < 0.001 vs. CTR). The impaired response to Shh was associated with strong transcriptional upregulation of the receptor Ptc, while expression of downstream molecules was not altered. Moreover, Ptc is strongly expressed in macrophages of human aortic atherosclerotic plaque. Thus, Shh is a potent chemoattractant for monocytes and it activates classical signaling pathways related to migration. The Shh signaling was negatively affected by DM which might be involved in the pathogenesis of DM-related complications.
Collapse
Affiliation(s)
- Marina Dunaeva
- Department of Cardiology, University Hospital of Maastricht, Cardiovascular Research Institute of Maastricht (CARIM), P.Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
57
|
Yam PT, Langlois SD, Morin S, Charron F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 2009; 62:349-62. [PMID: 19447091 DOI: 10.1016/j.neuron.2009.03.022] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 11/26/2008] [Accepted: 03/17/2009] [Indexed: 12/12/2022]
Abstract
Sonic hedgehog (Shh) plays essential roles in developmental events such as cell fate specification and axon guidance. Shh induces cell fate specification through canonical Shh signaling, mediated by transcription. However, the mechanism by which Shh guides axons is unknown. To study this, we developed an in vitro assay for axon guidance, in which neurons can be imaged while responding to a defined gradient of a chemical cue. Axons of dissociated commissural neurons placed in a Shh gradient turned rapidly toward increasing concentrations of Shh. Consistent with this rapid response, we showed that attraction by Shh does not require transcription. Instead, Shh stimulates the activity of Src family kinase (SFK) members in a Smoothened-dependent manner. Moreover, SFK activity is required for Shh-mediated guidance of commissural axons, but not for induction of Gli transcriptional reporter activity. Together, these results indicate that Shh acts via a rapidly acting, noncanonical signaling pathway to guide axons.
Collapse
Affiliation(s)
- Patricia T Yam
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | | | | | | |
Collapse
|
58
|
Bribián A, Esteban PF, Clemente D, Soussi-Yanicostas N, Thomas JL, Zalc B, de Castro F. A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neurobiol 2009; 68:1503-16. [PMID: 18814310 DOI: 10.1002/dneu.20678] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At embryonic stages of development, oligodendrocyte precursors (OPCs) generated in the preoptic area colonize the entire optic nerve (ON). Different factors controlling migration of ON OPCs have been identified, including secreted growth factors, morphogens and guidance cues, as well as cell adhesion molecules. We have shown previously that the soluble form of the extracellular matrix (ECM) protein anosmin-1, impairs OPC migration induced by FGF-2. In the present work, we show that anosmin-1 is expressed by both migrating OPCs and axons of the retinal ganglion cells in the embryonic ON. In vitro, we observe that OPC migration is strongly impaired by contact with anosmin-1 when used as a substrate and, in contrast to previous results, this effect is independent of FGF-2/FGFR1 signaling. We also show that OPCs preferentially adhere to anosmin-1 when compared with other ECM molecules used as substrates, and that when the endogenous anosmin-1 expressed by OPCs is blocked, OPC adhesion to all the different substrates (including anosmin-1), is significantly reduced. This novel effect of anosmin-1 on cell adhesion is also independent of FGF-2/FGFR1. We finally demonstrate that the blockade of the endogenous anosmin-1 expressed by OPCs impairs their migration. Our data suggest that the endogenous anosmin-1 expressed by OPCs is necessary for the correct adhesion of these cells to the different components of the ECM (including anosmin-1 itself), contributing to the migration of these cells.
Collapse
Affiliation(s)
- Ana Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, Toledo E-45071, Spain
| | | | | | | | | | | | | |
Collapse
|
59
|
Wang Y, Imitola J, Rasmussen S, O'Connor KC, Khoury SJ. Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 2008; 64:417-27. [PMID: 18991353 DOI: 10.1002/ana.21457] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neurovascular niches have been proposed as critical components of the neural stem cell (NSC) response to acute central nervous system injury; however, it is unclear whether these potential reparative niches remain functional during chronic injury. Here, we asked how central nervous system inflammatory injury regulates the intrinsic properties of NSCs and their niches. METHODS We investigated the sonic hedgehog (Shh)-Gli1 pathway, an important signaling pathway for NSCs, in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), and its regulation by inflammatory cytokines. RESULTS We show that Shh is markedly upregulated by reactive and perivascular astroglia in areas of injury in MS lesions and during EAE. Astroglia outside the subventricular zone niche can support NSC differentiation toward neurons and oligodendrocytes, and Shh is a critical mediator of this effect. Shh induces differential upregulation of the transcription factor Gli1, which mediates Shh-induced NSC differentiation. However, despite the increase in Shh and the fact that Gli1 was initially increased during early inflammation of EAE and active lesions of MS, Gli1 was significantly decreased in spinal cord oligodendrocyte precursor cells after onset of EAE, and in chronic active and inactive lesions from MS brain. The Th1 cytokine interferon-gamma was unique in inducing Shh expression in astroglia and NSCs, while paradoxically suppressing Gli1 expression in NSCs and inhibiting Shh-mediated NSC differentiation. INTERPRETATION Our data suggest that endogenous repair potential during chronic injury appears to be limited by inflammation-induced alterations in intrinsic NSC molecular pathways such as Gli1.
Collapse
Affiliation(s)
- Yue Wang
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
60
|
Sánchez-Camacho C, Bovolenta P. Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 2008; 135:3531-41. [PMID: 18832395 DOI: 10.1242/dev.023663] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In non-mammalian vertebrates, the relatively homogeneous population of retinal ganglion cells (RGCs) differentiates and projects entirely to the contralateral side of the brain under the influence of sonic hedgehog (Shh). In mammals, by contrast, there are two different RGC types: the Zic2-positive ipsilateral projecting and the Isl2-positive contralateral projecting. We asked whether the axons of these two populations respond to Shh and if their response differs. We have also analysed whether midline- and RGC-derived Shh contributes to the growth of the axons in the proximal visual pathway. We show that these two RGC types are characterised by a differential expression of Shh signalling components and that they respond differently to Shh when challenged in vitro. In vivo blockade of Shh activity, however, alters the path and distribution mostly of the contralateral projecting RGC axons at the chiasm, indicating that midline-derived Shh participates in funnelling contralateral visual fibres in this region. Furthermore, interference with Shh signalling in the RGCs themselves causes abnormal growth and navigation of contralateral projecting axons in the proximal portion of the pathway, highlighting a novel cell-autonomous mechanism by which Shh can influence growth cone behaviour.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER) 37, Madrid 28002, Spain
| | | |
Collapse
|
61
|
Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PLoS One 2008; 3:e2863. [PMID: 18682850 PMCID: PMC2483937 DOI: 10.1371/journal.pone.0002863] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/09/2008] [Indexed: 02/06/2023] Open
Abstract
During normal development oligodendrocyte precursors (OPCs) are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) signalling. There is also a second, late wave of oligodendrogenesis in the dorsal spinal cord independent of Shh activity. Two signalling pathways, controlled by bone morphogenetic protein and fibroblast growth factor (FGF), are active players in dorsal spinal cord specification. In particular, BMP signalling from the roof plate has a crucial role in setting up dorsal neural identity and its inhibition is sufficient to generate OPCs both in vitro and in vivo. In contrast, FGF signalling can induce OPC production from dorsal spinal cord cultures in vitro. In this study, we examined the cross-talk between mitogen-activated protein kinase (MAPK) and BMP signalling in embryonic dorsal spinal cord cultures at the SMAD1/5/8 (SMAD1) transcription factor level, the main effectors of BMP activity. We have previously shown that FGF2 treatment of neural precursor cells (NPCs) derived from rat E14 dorsal spinal cord is sufficient to generate OPCs in vitro. Utilising the same system, we now show that FGF prevents BMP-induced nuclear localisation of SMAD1-phosphorylated at the C-terminus (C-term-pSMAD1). This nuclear exclusion of C-term-pSMAD1 is dependent on MAPK activity and correlates with OLIG2 upregulation, the obligate transcription factor for oligodendrogenesis. Furthermore, inhibition of the MAPK pathway abolishes OLIG2 expression. We also show that SMAD4, which acts as a common partner for receptor-regulated Smads including SMAD1, associates with a Smad binding site in the Olig2 promoter and dissociates from it upon differentiation. Taken together, these results suggest that FGF can promote OPC generation from embryonic NPCs by counteracting BMP signalling at the Smad1 transcription factor level and that Smad-containing transcriptional complexes may be involved in direct regulation of the Olig2 promoter.
Collapse
|
62
|
Zhang J, Chen J, Li Y, Cui X, Zheng X, Roberts C, Lu M, Elias SB, Chopp M. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiol Dis 2008; 32:273-80. [PMID: 18778774 DOI: 10.1016/j.nbd.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/25/2008] [Accepted: 07/13/2008] [Indexed: 02/02/2023] Open
Abstract
We investigated the treatment of experimental autoimmune encephalomyelitis (EAE) in mice with Niaspan, an agent used to elevate high-density lipoprotein (HDL). EAE mice were treated with Niaspan starting on the immunization or clinical onset day. Neurological functional recovery was significantly increased in the Niaspan treated mice (100 mg/kgbw) compared to the controls. Inflammatory infiltrates were significantly reduced in the Niaspan treatment group compared to the EAE controls. HDL level, intact myelin area, newly formed oligodendrocytes, regenerating axons, gene and protein levels of sonic hedgehog (Shh)/Gli1 were significantly increased in the Niaspan treated mice compared to EAE controls. These data indicate that Niaspan treatment improved functional recovery after EAE, possibly, via reducing inflammatory infiltrates and demyelination areas, and stimulating oligodendrogenesis and axonal regeneration. Niaspan-mediated activation of Shh/Gli1 pathway may promote functional recovery post-EAE.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|