51
|
Genomic diversity of Clostridium difficile strains. Res Microbiol 2015; 166:353-60. [DOI: 10.1016/j.resmic.2015.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
|
52
|
Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, Paulick A, Anderson L, Kuijper EJ, Wilcox MH. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One 2015; 10:e0118150. [PMID: 25679978 PMCID: PMC4332677 DOI: 10.1371/journal.pone.0118150] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
PCR-ribotyping has been adopted in many laboratories as the method of choice for C. difficile typing and surveillance. However, issues with the conventional agarose gel-based technique, including inter-laboratory variation and interpretation of banding patterns have impeded progress. The method has recently been adapted to incorporate high-resolution capillary gel-based electrophoresis (CE-ribotyping), so improving discrimination, accuracy and reproducibility. However, reports to date have all represented single-centre studies and inter-laboratory variability has not been formally measured or assessed. Here, we achieved in a multi-centre setting a high level of reproducibility, accuracy and portability associated with a consensus CE-ribotyping protocol. Local databases were built at four participating laboratories using a distributed set of 70 known PCR-ribotypes. A panel of 50 isolates and 60 electronic profiles (blinded and randomized) were distributed to each testing centre for PCR-ribotype identification based on local databases generated using the standard set of 70 PCR-ribotypes, and the performance of the consensus protocol assessed. A maximum standard deviation of only ±3.8bp was recorded in individual fragment sizes, and PCR-ribotypes from 98.2% of anonymised strains were successfully discriminated across four ribotyping centres spanning Europe and North America (98.8% after analysing discrepancies). Consensus CE-ribotyping increases comparability of typing data between centres and thereby facilitates the rapid and accurate transfer of standardized typing data to support future national and international C. difficile surveillance programs.
Collapse
Affiliation(s)
- Warren N Fawley
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - C W Knetsch
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Duncan R MacCannell
- Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
| | - Celine Harmanus
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Tim Du
- Public Health Agency of Canada (PHAC), Winnipeg, Canada
| | | | - Ashley Paulick
- Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
| | - Lydia Anderson
- Centers for Disease Control and Prevention (CDC), Atlanta, United States of America
| | - E J Kuijper
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
53
|
Lund BM, Peck MW. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 2015; 12:177-82. [PMID: 25599421 DOI: 10.1089/fpd.2014.1842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spores of toxigenic Clostridium difficile and spores of food-poisoning strains of Clostridium perfringens show a similar prevalence in meats. Spores of both species are heat resistant and can survive cooking of foods. C. perfringens is a major cause of foodborne illness; studies are needed to determine whether C. difficile transmission by a similar route is a cause of infection.
Collapse
Affiliation(s)
- Barbara M Lund
- Institute of Food Research , Norwich Research Park, Colney, Norwich, United Kingdom
| | | |
Collapse
|
54
|
Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect Dis 2014; 34:763-72. [PMID: 25471195 DOI: 10.1007/s10096-014-2290-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infection control strategies require an understanding of its epidemiology. In this study, we analysed the toxin genotypes of 130 non-duplicate clinical isolates of C. difficile from a university hospital in Tokyo, Japan. Multilocus sequence typing (MLST) and eBURST analysis were performed for these isolates and nine strains previously analysed by polymerase chain reaction (PCR) ribotyping. Minimum inhibitory concentrations (MICs) were determined for six antibiotics, and the bacterial resistance mechanisms were investigated. Ninety-five toxigenic strains (73%), including seven tcdA-negative, tcdB-positive and cdtA/cdtB-negative strains (A(-)B(+)CDT(-)) and three A(+)B(+)CDT(+) strains, and 35 (27%) non-toxigenic strains, were classified into 23 and 12 sequence types, respectively. Of these, sequence type (ST)17 (21.8%) was the most predominant. MLST and eBURST analysis showed that 139 strains belonged to seven groups and singletons, and most A(+)B(+)CDT(-) strains (98%, 89/91) were classified into group 1. All isolates were susceptible to metronidazole, vancomycin and meropenem; the ceftriaxone, clindamycin and ciprofloxacin resistance rates were 49, 59 and 99%, respectively. Resistance rates to ceftriaxone and clindamycin were higher in toxigenic strains than in non-toxigenic strains (P < 0.001). All ST17 and ST81 strains were resistant to these antibiotics. The clindamycin- and fluoroquinolone-resistant strains carried erm(B) and mutations in GyrA and/or GyrB, respectively. To our knowledge, this is the first MLST-based study of the molecular epidemiology of toxigenic and non-toxigenic strains in Japan, providing evidence that non-toxigenic and toxigenic strains exhibit high genetic diversity and that toxigenic strains are more likely than non-toxigenic strains to exhibit multidrug resistance.
Collapse
|
55
|
Abstract
This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray.
Collapse
|
56
|
Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, Harris D, Lipman L, Keessen EC, Corver J, Kuijper EJ, Lawley TD. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. ACTA ACUST UNITED AC 2014; 19:20954. [PMID: 25411691 DOI: 10.2807/1560-7917.es2014.19.45.20954] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Farm animals are a potential reservoir for human Clostridium difficile infection (CDI), particularly PCR ribotype 078 which is frequently found in animals and humans. Here, whole genome single-nucleotide polymorphism (SNP) analysis was used to study the evolutionary relatedness of C. difficile 078 isolated from humans and animals on Dutch pig farms. All sequenced genomes were surveyed for potential antimicrobial resistance determinants and linked to an antimicrobial resistance phenotype. We sequenced the whole genome of 65 C. difficile 078 isolates collected between 2002 and 2011 from pigs (n = 19), asymptomatic farmers (n = 15) and hospitalised patients (n = 31) in the Netherlands. The collection included 12 pairs of human and pig isolates from 2011 collected at 12 different pig farms. A mutation rate of 1.1 SNPs per genome per year was determined for C. difficile 078. Importantly, we demonstrate that farmers and pigs were colonised with identical (no SNP differences) and nearly identical (less than two SNP differences) C. difficile clones. Identical tetracycline and streptomycin resistance determinants were present in human and animal C. difficile 078 isolates. Our observation that farmers and pigs share identical C. difficile strains suggests transmission between these populations, although we cannot exclude the possibility of transmission from a common environmental source.
Collapse
Affiliation(s)
- C W Knetsch
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dingle KE, Elliott B, Robinson E, Griffiths D, Eyre DW, Stoesser N, Vaughan A, Golubchik T, Fawley WN, Wilcox MH, Peto TE, Walker AS, Riley TV, Crook DW, Didelot X. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol 2014; 6:36-52. [PMID: 24336451 PMCID: PMC3914685 DOI: 10.1093/gbe/evt204] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.
Collapse
Affiliation(s)
- Kate E Dingle
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 2014; 172:309-17. [PMID: 24894133 DOI: 10.1016/j.vetmic.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/15/2014] [Accepted: 05/05/2014] [Indexed: 11/20/2022]
Abstract
Clostridium difficile has been identified as a significant agent of diarrhoea and enterocolitis in both foals and adult horses. Hospitalization, antibiotic therapy or changes in diet may contribute to the development of C. difficile infection. Horses admitted to a care unit are therefore at greater risk of being colonized. The aim of this study was to investigate the carriage of C. difficile in hospitalized horses and the possible influence of some risk factors in colonization. During a seven-month period, faecal samples and data relating the clinical history of horses admitted to a veterinary teaching hospital were collected. C. difficile isolates were characterized through toxin profiles, cytotoxicity activity, PCR-ribotyping, antimicrobial resistance and multilocus sequence typing (MLST). Ten isolates were obtained with a total of seven different PCR-ribotypes, including PCR-ribotype 014. Five of them were identified as toxinogenic. A high resistance to gentamicin, clindamycin and ceftiofur was found. MLST revealed four different sequencing types (ST), which included ST11, ST26, ST2 and ST15, and phylogenetic analysis showed that most of the isolates clustered in the same lineage. Clinical history suggests that horses frequently harbour toxigenic and non-toxigenic C. difficile and that in most cases they are colonized regardless of the reason for hospitalization; the development of diarrhoea is more unusual.
Collapse
|
59
|
Hensbergen PJ, Klychnikov OI, Bakker D, van Winden VJC, Ras N, Kemp AC, Cordfunke RA, Dragan I, Deelder AM, Kuijper EJ, Corver J, Drijfhout JW, van Leeuwen HC. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteomics 2014; 13:1231-44. [PMID: 24623589 DOI: 10.1074/mcp.m113.034728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial secreted proteins constitute a biologically important subset of proteins involved in key processes related to infection such as adhesion, colonization, and dissemination. Bacterial extracellular proteases, in particular, have attracted considerable attention, as they have been shown to be indispensable for bacterial virulence. Here, we analyzed the extracellular subproteome of Clostridium difficile and identified a hypothetical protein, CD2830, as a novel secreted metalloprotease. Following the identification of a CD2830 cleavage site in human HSP90β, a series of synthetic peptide substrates was used to identify the favorable CD2830 cleavage motif. This motif was characterized by a high prevalence of proline residues. Intriguingly, CD2830 has a preference for cleaving Pro-Pro bonds, unique among all hitherto described proteases. Strikingly, within the C. difficile proteome two putative adhesion molecules, CD2831 and CD3246, were identified that contain multiple CD2830 cleavage sites (13 in total). We subsequently found that CD2830 efficiently cleaves CD2831 between two prolines at all predicted cleavage sites. Moreover, native CD2830, secreted by live cells, cleaves endogenous CD2831 and CD3246. These findings highlight CD2830 as a highly specific endoproteinase with a preference for proline residues surrounding the scissile bond. Moreover, the efficient cleavage of two putative surface adhesion proteins points to a possible role of CD2830 in the regulation of C. difficile adhesion.
Collapse
Affiliation(s)
- Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kurka H, Ehrenreich A, Ludwig W, Monot M, Rupnik M, Barbut F, Indra A, Dupuy B, Liebl W. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation. PLoS One 2014; 9:e86535. [PMID: 24482682 PMCID: PMC3902958 DOI: 10.1371/journal.pone.0086535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022] Open
Abstract
PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation.
Collapse
Affiliation(s)
- Hedwig Kurka
- Technische Universität München, Department of Microbiology, Freising, Germany
| | - Armin Ehrenreich
- Technische Universität München, Department of Microbiology, Freising, Germany
| | - Wolfgang Ludwig
- Technische Universität München, Department of Microbiology, Freising, Germany
| | - Marc Monot
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institute Pasteur, Paris, France
| | - Maja Rupnik
- Institute of Public Health Maribor and University of Maribor, Faculty of Medicine and Centre of excellence Cipkebip, Ljubljana, Slovenia
| | - Frederic Barbut
- National Reference Laboratory for Clostridium difficile, Faculté de Médecine Pierre et Marie Curie and Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, AGES – Austrian Agency for Health & Food Safety, Vienna, Austria
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institute Pasteur, Paris, France
| | - Wolfgang Liebl
- Technische Universität München, Department of Microbiology, Freising, Germany
- * E-mail:
| |
Collapse
|
61
|
Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013; 75:63-89. [DOI: 10.1016/j.toxicon.2013.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
62
|
Abstract
Clostridium difficile was isolated from 147 of 201 (73%) rectal swabs of piglets from 15 farms of Lower Saxony and North Rhine-Westphalia. In 14 farms, 14 to 100% (mean, 78%) of the animals tested were culture positive. The rate of isolation was 68% postpartum, increased to 94% in animals 2 to 14 days of age, and declined to 0% for animals 49 days of age and older. There was no link between isolation and antibiotic treatment or diarrhea of piglets. Strains were assigned to 10 PCR ribotypes, and up to 4 PCR ribotypes were found to be present at the same time on a farm. The closely related PCR ribotypes 078 (55%) and 126 (20%) were most frequently recovered and were present in 13 of the 14 positive farms. The comparison of multilocus VNTR (variable number of tandem repeats) analysis (MLVA) data from this study and previously published data on human, porcine, and bovine PCR ribotype 078 isolates from 5 European countries revealed genetic differences between strains of different geographic origin and confirmed the relatedness of human and porcine C. difficile isolates. This study demonstrated that the human-pathogenic PCR ribotypes 078 and 126 are predominant in piglets in Germany. The results suggest that presence of C. difficile is correlated with animal age but not with antibiotic treatment or clinical disease. MLVA indicated that strains of the same geographical origin are often genetically related and corroborated the hypothesis of a close epidemiological connection between human and porcine C. difficile isolates.
Collapse
|
63
|
Abstract
Clostridium difficile infections (CDI) have emerged as a major cause of healthcare associated disease, and recent epidemiological evidence also suggests an important role in community-acquired diarrhea. This increase is associated with specific types, especially PCR ribotypes 027 and 078, which are sometimes referred to as “hypervirulent”. Over the past years major advances have been made in our understanding of C. difficile pathogenicity, with the identification and characterization of the major clostridial toxins TcdA and TcdB. However, the relation between the toxins, their regulation, and “hypervirulence” remain unclear. Here I review our current understanding of C. difficile pathogenicity and argue that “hypervirulent” is an inadequate term to describe PCR ribotypes 027 and 078, that the ability of C. difficile to cause problematic infections is a consequence of a multifactorial process that extends beyond toxins, sporulation, and antimicrobial resistance, and that vigilance is in order toward types that are closely related to ribotypes 027 and 078, but are currently not considered problematic.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Medical Microbiology; Leiden University Medical Center; Leiden, the Netherlands
| |
Collapse
|
64
|
Schneeberg A, Neubauer H, Schmoock G, Grossmann E, Seyboldt C. Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J Med Microbiol 2013; 62:1190-1198. [DOI: 10.1099/jmm.0.056473-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study provides data on the distribution and relationship of C. difficile PCR ribotypes in diarrhoeic calves in Germany. C. difficile was isolated from 176 of 999 (17.6 %) faecal samples or swabs of diarrhoeic calves from 603 farms collected between January 2010 and August 2012 by eight federal laboratories of six states. Strains were assigned to 17 PCR ribotypes. PCR ribotypes 033 (57 %), 078 (17 %) and 045/FLI01 (closest match to 045 in the WEBRIBO database; 9 %) were found the most frequently. Nine per cent of all culture-positive tested animals shed more than one multiple locus variable number tandem repeat analysis (MLVA) or PCR ribotype. Eight PCR ribotypes with related profiles (including 033, 078 and 045/FLI01) representing 92 % of all isolates were grouped into three clusters. Molecular relatedness was supported by the absence of the MLVA locus A6
Cd
only in clustered strains and identical toxin gene profiles for strains within each cluster. Previously reported mulitilocus sequence typing analysis for PCR ribotypes that were also recovered in this study found identical sequence types and a tcdC deletion (Δ39 bp) for 033, 045, 078 and 126 (ST-11), confirming this clustering. A different geographical occurrence of PCR ribotypes was shown for cluster 033 (found more frequently in southern Germany) and 045 (found more frequently in northern Germany). This study showed that clusters of C. difficile PCR ribotypes related to 033, 078 and 045 are predominant in diarrhoeic calves in Germany. The high number of strains belonging to PCR ribotype 078 demonstrated that diarrhoeic calves are also potential reservoirs for human pathogenic C. difficile strains.
Collapse
Affiliation(s)
- Alexander Schneeberg
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Naumburger Strasse 96a, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Naumburger Strasse 96a, 07743 Jena, Germany
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Naumburger Strasse 96a, 07743 Jena, Germany
| | - Ernst Grossmann
- Aulendorf State Veterinary Diagnostic Centre, Löwenbreitestrasse 18/20, 88326 Aulendorf, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Naumburger Strasse 96a, 07743 Jena, Germany
| |
Collapse
|
65
|
Debast SB, Bauer MP, Sanders IMJG, Wilcox MH, Kuijper EJ. Antimicrobial activity of LFF571 and three treatment agents against Clostridium difficile isolates collected for a pan-European survey in 2008: clinical and therapeutic implications. J Antimicrob Chemother 2013; 68:1305-11. [PMID: 23420839 DOI: 10.1093/jac/dkt013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
OBJECTIVES In November 2008, a study was performed with support from the European Centre for Disease Prevention and Control (ECDC) to obtain an overview of Clostridium difficile infections (CDIs) in European hospitals. A collection of 398 C. difficile isolates obtained from this hospital-based survey was utilized to identify antimicrobial susceptibility patterns of common C. difficile PCR ribotypes across Europe. METHODS The MICs of three approved therapeutic agents (vancomycin, metronidazole and fidaxomicin) and LFF571 (a novel semi-synthetic thiopeptide antibiotic) were determined by the agar dilution method. RESULTS MICs of fidaxomicin and LFF571 were in general 2-4-fold lower than those of vancomycin and metronidazole. Isolates belonging to clade 2, including the hypervirulent ribotype 027, had one-dilution higher MIC50 and MIC90 values for fidaxomicin and metronidazole, whereas similar MIC values were observed for vancomycin and LFF571. Isolates belonging to C. difficile PCR ribotype 001 were more susceptible to fidaxomicin than other frequently found PCR ribotypes 014/020 and 078. Six isolates from three different countries had a metronidazole MIC of 2 mg/L. Four of the six isolates were characterized as PCR ribotype 001. CONCLUSIONS There was no evidence of in vitro resistance of C. difficile to any of the four agents tested. However, the results suggest type-specific differences in susceptibility for the treatment agents we investigated. Continuous surveillance of C. difficile isolates in Europe is needed to determine the possible clinical implications of ribotype-specific changes in susceptibility to therapeutic agents.
Collapse
Affiliation(s)
- Sylvia B Debast
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
66
|
Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis. Appl Environ Microbiol 2013; 79:4768-71. [PMID: 23728809 PMCID: PMC3719504 DOI: 10.1128/aem.01195-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Here we show that the frequency of mutant isolation by two-step allele exchange can be improved by increasing the length of homologous DNA and the opportunity for recombination, obviating the need for counterselection markers. These principles are demonstrated in Clostridium difficile and Streptococcus suis but are likely to be generally applicable.
Collapse
|
67
|
Clostridium difficile ribotype diversity at six health care institutions in the United States. J Clin Microbiol 2013; 51:1938-41. [PMID: 23554188 DOI: 10.1128/jcm.00056-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capillary-based PCR ribotyping was used to quantify the presence/absence and relative abundance of 98 Clostridium difficile ribotypes from clinical cases of disease at health care institutions in six states of the United States. Regionally important ribotypes were identified, and institutions in close proximity did not necessarily share more ribotype diversity than institutions that were farther apart.
Collapse
|
68
|
Weber I, Riera E, Déniz C, Pérez JL, Oliver A, Mena A. Molecular epidemiology and resistance profiles of Clostridium difficile in a tertiary care hospital in Spain. Int J Med Microbiol 2013; 303:128-33. [PMID: 23523477 DOI: 10.1016/j.ijmm.2013.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022] Open
Abstract
Epidemiological surveillance of Clostridium difficile infection has gained importance in recent years as a result of the rapid spread of epidemic strains, including hypervirulent strains and strains with reduced susceptibility to antimicrobials. The molecular epidemiology and antimicrobial susceptibility of C. difficile in the reference hospital of the Balearic Islands (Spain) is reported in this study. One hundred isolates of toxigenic C. difficile from different patients were selected using rapid dual EIA screening test. All isolates were characterized through toxin profile, PCR ribotyping and, in addition, multi-locus sequence typing (MLST) was performed on fifty selected strains. MICs to metronidazole, vancomycin, erythromycin and moxifloxacin were also determined. A total of 43 different ribotypes were distinguished, with higher prevalence of ribotype 014 (34%). Twenty one per cent of the isolates expressed binary toxin and it is noteworthy that 62% of these were identified as the hypervirulent ribotype 078, the second most prevalent ribotype found in our hospital (13%). A total of 20 different sequence types (STs) were found, including a new described allele and ST. MLST data showed a clear concordance between some ribotypes and STs, mainly represented by ribotype 014/ST-2, ribotype 078/ST-11 and ribotype 001/ST-3. Phylogenetic analysis also revealed that most of the isolates were genetically related, forming a large clonal complex. Finally, ribotypes 078 (ST-11) and 001 (ST-3) were associated with higher resistance to erythromycin and to erythromycin and moxifloxacin, respectively. All these data suggest that the combination of ribotyping and MLST is a good tool for the surveillance of the changing epidemiology of C. difficile. A wide dissemination of clones has been observed in our setting, ribotype 014 (ST-2) being the most prevalent followed by the hypervirulent ribotype 078 (ST-11) and ribotype 001 (ST-3), their spread in our setting probably influenced by their higher resistance.
Collapse
Affiliation(s)
- Irene Weber
- Servicio de Microbiología, Hospital Universitario Son Espases and Instituto Universitario de Investigaciones en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
69
|
Bakker D, Smits WK, Kuijper EJ, Corver J. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm. PLoS One 2012; 7:e43247. [PMID: 22912837 PMCID: PMC3422341 DOI: 10.1371/journal.pone.0043247] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023] Open
Abstract
In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis, sometimes resulting in colectomy or death. The main virulence factors of C. difficile are toxin A and toxin B. Besides the genes encoding these toxins (tcdA and tcdB), the pathogenicity locus (PaLoc) also contains genes encoding a sigma factor (tcdR) and a putative anti-sigma factor (tcdC). The important role of TcdR as a sigma factor for toxin expression is undisputed, whereas the role of TcdC as an anti-sigma factor, inhibiting toxin expression, is currently the subject of debate. To clarify the role of TcdC in toxin expression, we generated an isogenic ClosTron-based mutant of tcdC in Clostridium difficile strain 630Δ Erm (CT::tcdC) and determined the transcription levels of the PaLoc genes and the expression levels of the toxins in the wild type strain and the tcdC mutant strain. We found only minor differences in transcription levels of the PaLoc genes between the wild type and CT::tcdC strains and total toxin levels did not significantly differ either. These results suggest that in C. difficile 630Δerm TcdC is not a major regulator of toxin expression under the conditions tested.
Collapse
Affiliation(s)
- Dennis Bakker
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Ed J. Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
- * E-mail:
| |
Collapse
|