51
|
Xu J, Xin B, Wang C, Zheng Y, Chen C, Zhou M, Tian X, Du X. Tailoring double‐layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture transport. J Appl Polym Sci 2020. [DOI: 10.1002/app.49530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinhao Xu
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Binjie Xin
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Chun Wang
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
- State Key Laboratory of Separation Membranes Membrane Process Tianjin Polytechnic University Tianjin China
| | - Yuansheng Zheng
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Chuoming Chen
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Mengjuan Zhou
- Collage of Textile Donghua University Shanghai China
| | - Xu Tian
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| | - Xuanxuan Du
- School of Textiles and Fashion Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
52
|
Multilayer-structured fibrous membrane with directional moisture transportability and thermal radiation for high-performance air filtration. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe demand of high-performance filter media for the face masks is urgent nowadays due to the severe air pollution. Herein, a highly breathable and thermal comfort membrane that combines the asymmetrically superwettable skin layer with the nanofibrous membrane has been fabricated via successive electrospinning and electrospraying technologies. Thanks to high porosity, interconnected pore structure, and across-thickness wettability gradient, the composite membrane with a low basis weight of 3.0 g m−2 exhibits a good air permeability of 278 mm s−1, a comparable water vapor permeability difference of 3.61 kg m−2 d−1, a high filtration efficiency of 99.3%, a low pressure drop of 64 Pa, and a favorable quality factor of 0.1089 Pa−1, which are better than those of the commercial polypropylene. Moreover, the multilayer-structured membrane displays a modest infrared transmittance of 92.1% that can keep the human face cool and comfort. This composite fibrous medium is expected to protect humans from PM2.5 and keep them comfortable even in a hygrothermal environment.
Collapse
|
53
|
Li M, Lu KJ, Wang L, Zhang X, Chung TS. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
54
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
55
|
Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117962] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Zuo JH, Gu YH, Wei C, Yan X, Chen Y, Lang WZ. Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117475] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Anitas EM. Structural characterization of Janus nanoparticles with tunable geometric and chemical asymmetries by small-angle scattering. Phys Chem Chem Phys 2020; 22:536-548. [PMID: 31834334 DOI: 10.1039/c9cp05521e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in polymer chemistry allow a facile, large-scale synthesis of nanoscale Janus particles (JP) with tunable structural and physical properties. Both the structures and distributions of regions with different chemical compositions within JP play an important role in chemical and optical sensing, or in bio-medical applications, such as drug delivery. The structural properties of symmetric JP can be accurately characterized by small-angle scattering (SAS), yet the structure of JP with tunable geometrical and chemical asymmetries (AJP) can be described only qualitatively (e.g., globular, elongated or planar), depending on the value of the scattering exponent in the Porod region of SAS intensity. Here it is shown that identification of AJP and a quantitative description of their morphology can be achieved by using the method of SAS together with contrast variation. This approach is illustrated by providing analytic expressions for SAS intensities and for contrast matching points for two kinds of common multiphase AJP: spheres with one cap and those with two caps. The influence of the model's parameters is presented and discussed, and the structural evolution of AJP upon solvent deuteration is characterized. The results suggest that the combination of the SAS technique with multiphase modeling provides unprecedented detailed information about the structural conformation of AJP, which allows their identification from experimental SAS data. Monte Carlo simulations are performed both to validate the obtained results and to illustrate the above findings for complex AJP for which analytic expressions are not available.
Collapse
|
58
|
Zhang Z, Han N, Tan L, Qian Y, Zhang H, Wang M, Li W, Cui Z, Zhang X. Bioinspired Superwettable Covalent Organic Framework Nanofibrous Composite Membrane with a Spindle-Knotted Structure for Highly Efficient Oil/Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16545-16554. [PMID: 31755726 DOI: 10.1021/acs.langmuir.9b02661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covalent organic frameworks (COFs) have attracted broad interest in a number of fields including gas access, catalysis, and ionic adsorption. However, owing to the low stability in water, the application of COFs in the field of oil/water separation is extensively impeded. In this paper, we synthesized COF-DhaTab/polyacrylonitrile (PAN) nanofibrous composite membranes with a bioinspired spindle-knotted structure via a facile blending electrospinning method. The COF-DhaTab/PAN composite membrane shows prewetting-induced superoleophobicity under water and superhydrophobicity under oil. It possesses outstanding rejection ratio (>99.9%), excellent antifouling performance, and ultrahigh oil/water mixture flux up to 4229.29 L/m2h even though driven only by gravity. Specifically, an extraordinary oil contact angle under water (152.3°) and a satisfied water contact angle under oil (153.7°) were offered by the composite membrane. These are mainly attributed to the spindle-knotted structures induced by COFs. To the best of our knowledge, the application of COF/PAN composite membrane in the field of oil/water separation has never been reported. It is an innovative approach for oily wastewater treatment and oil purification.
Collapse
Affiliation(s)
| | - Na Han
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina , 27606 , United States
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Tang M, Hou D, Ding C, Wang K, Wang D, Wang J. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133883. [PMID: 31446287 DOI: 10.1016/j.scitotenv.2019.133883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
As a promising thermally driven separation process, membrane distillation (MD) is capable of treating challenging wastewaters. However, the traditional hydrophobic membranes are vulnerable to fouling by non-polar contaminants owing to the strong hydrophobic-hydrophobic interactions. To address this problem, we developed novel anti-oil-fouling MD membranes in this study. The composite membranes with asymmetric wettability were fabricated through electrospinning polyacrylonitrile (PAN) fibrous coating on a hydrophobic polytetrafluoroethylene (PTFE) membrane, followed by hydrolyzing the PAN coating with ethylenediamine (EDA) and NaOH, respectively. These two composite membranes exhibited excellent underwater superoleophobicity, with the underwater oil contact angle >150°, which can be attributed to the fibrous and re-entrant surface structure and the optimized surface hydrophilicity of the electrospun coating. During MD process using saline and oily emulsion as feed, the composite membranes presented robust anti-oil-fouling performance, indicating by stable permeate flux and salt rejection. A novel oil-droplet adhesion force probe was introduced to quasi-quantitatively elucidate oil-membrane interaction and evaluate membrane fouling propensity, the force spectroscopy indicated that the fabricated composite membranes had fairly less attractive to crude oil compared with the PTFE membrane. Our research results suggest that the novel composite membranes with asymmetric wettability were competent to serve as an anti-oil-fouling MD membrane for desalinating challenging saline and oily wastewaters.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Deyin Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunli Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kunpeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dewu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
60
|
Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interface Sci 2019; 273:102022. [PMID: 31494337 DOI: 10.1016/j.cis.2019.102022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettabilities has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface-energies, and interfacial hydration layers to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface-modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.
Collapse
|
61
|
Xu Q, Peng J, Zhang W, Wang X, Lou T. Electrospun cellulose acetate/P(DMDAAC‐AM) nanofibrous membranes for dye adsorption. J Appl Polym Sci 2019. [DOI: 10.1002/app.48565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qing Xu
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Jing Peng
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Weixing Zhang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Xuejun Wang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Tao Lou
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| |
Collapse
|
62
|
Easily scaled-up photo-thermal membrane with structure-dependent auto-cleaning feature for high-efficient solar desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
63
|
He B, Ding Y, Wang J, Yao Z, Qing W, Zhang Y, Liu F, Tang CY. Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
A comprehensively fouling- and solvent-resistant aliphatic polyketone membrane for high-flux filtration of difficult oil-in-water micro- and nanoemulsions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Yang X, Yan L, Ran F, Pal A, Long J, Shao L. Interface-confined surface engineering constructing water-unidirectional Janus membrane. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
66
|
Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
67
|
Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W. Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
68
|
A dual-layer micro/nanostructured fibrous membrane with enhanced ionic conductivity for lithium-ion battery. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Polyvinylidene fluoride/polystyrene hybrid fibers with high ionic conductivity and enhanced mechanical strength as lithium-ion battery separators. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
70
|
Electret nanofibrous membrane with enhanced filtration performance and wearing comfortability for face mask. J Colloid Interface Sci 2018; 530:695-703. [PMID: 30015155 DOI: 10.1016/j.jcis.2018.07.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
Abstract
Airborne particulate matter (PM) pollution has become a serious threat to human health, thus it is highly desired for a high-filtration-performance and good-wearing-comfort face mask. Herein, a highly breathable and thermal comfort filter medium consisting of electret polyethersulfone/barium titanate nanofibrous membrane (PES/BaTiO3 NFM) integrated on a nonwoven polypropylene substrate was developed. Benefiting from the high porosity and optimized injection charge energy, the PES/BaTiO3 membrane was endowed with a good air permeability of 743 mm s-1, a modest water vapor permeability of 6.24 kg m-2 d-1, and an enhanced charge storage stability. In addition, the electret PES/BaTiO3 NFM1.5 medium with a low basis weight of 4.32 g m-2 still shows a high filtration efficiency of 99.99% and a low pressure drop of 67 Pa after being treated at 200 °C for 45 min, which is better than that of commercial media. Moreover, 3D simulation based on the characters of composite membrane was processed to graphically express the airflow distribution during the filtration process. Significantly, the NFM1.5 with a high infrared (IR) transmittance of 93.4% led to an effective radiative cooling to human body radiation. This multifunctional fibrous medium design may provide new insights into the development of environmental adaptive protection materials.
Collapse
|