51
|
Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis. Appl Environ Microbiol 2016; 82:5332-9. [PMID: 27342558 DOI: 10.1128/aem.01166-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. IMPORTANCE Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad range of P. aeruginosa strains. Indeed, a great reduction of bacterial proliferation was shown in phage therapy for mouse models of P. aeruginosa keratitis. Therefore, to reduce antibiotic usage, phage therapy should be investigated and developed further.
Collapse
|
52
|
Experimental Phage Therapy for Burkholderia pseudomallei Infection. PLoS One 2016; 11:e0158213. [PMID: 27387381 PMCID: PMC4936672 DOI: 10.1371/journal.pone.0158213] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections.
Collapse
|
53
|
Wang Z, Zheng P, Ji W, Fu Q, Wang H, Yan Y, Sun J. SLPW: A Virulent Bacteriophage Targeting Methicillin-Resistant Staphylococcus aureus In vitro and In vivo. Front Microbiol 2016; 7:934. [PMID: 27379064 PMCID: PMC4908117 DOI: 10.3389/fmicb.2016.00934] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/31/2016] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive pathogen causing a variety of infections in humans and animals. Extensive use of antibiotics has led to the emergence of methicillin-resistant S. aureus (MRSA). As an alternative antibacterial agent against drug-resistant S. aureus, a lytic phage, designated SLPW, was isolated from fecal sewage in a pig farm. The SLPW was morphologically classified under Podoviridae and contains a double-stranded DNA genome. The genome of SLPW was 17,861 bp (29.35% G+C) containing 20 open reading frames and lacked regions encoding lysogeny-related integrase gene and cI repressor gene. Phage SLPW showed a broad host range and high efficiency of plating against various types of S. aureus. One-step growth curve showed a short latency period (10 min) and a long lytic period (120 min). Phage SLPW remained stable under a wide range of temperatures or pH and was almost unaffected in chloroform or ultraviolet light. Further, it efficiently lysed MRSA strains in vitro and in vivo. Intraperitoneal phage administration at 1 h post-infection cured the mice and reduced the bacterial expression of inflammatory cytokines in mice. Specifically, the phage SLPW displayed a wide antibacterial spectrum. It was therapeutically effective against intra-abdominal infection in mice harboring different multilocus sequence typing (MLST) types of S. aureus strains. Therefore, phage SLPW is a potential therapeutic agent against MRSA infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
54
|
Hwang JY, Kim JE, Song YJ, Park JH. Safety of using Escherichia coli bacteriophages as a sanitizing agent based on inflammatory responses in rats. Food Sci Biotechnol 2016; 25:355-360. [PMID: 30263278 PMCID: PMC6049376 DOI: 10.1007/s10068-016-0050-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023] Open
Abstract
Use of bacteriophages as sanitizing agents has received much attention. However, safety in humans is debatable. To determine inflammatory immune responses against bacteriophages, rats were treated with a 8 log plaque-forming cocktail of 5 bacteriophages for pathogenic Escherichia coli per day for 4 weeks. Food consumption, feeding efficiency, and body weight of rats treated with the cocktail were not different from controls. Phages were not detected in the sera of phage-fed rats with no changes in organ weights. Notable changes were not observed upon histopathological examination of the liver, kidney, and spleen. Pro-inflammatory cytokine mRNA expression, except COX-2 (2.4x increase), remained unaffected after treatment with the phage cocktail. No remarkable changes were observed for levels of 12 pro-inflammatory cytokines in sera. Inflammatory responses in rats orally treated with a phage cocktail were not observed. Bacteriophages for E. coli are indicated as immunologically safe in rats.
Collapse
Affiliation(s)
- Ji-Yeon Hwang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| | - Jung-Eun Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi, 13120 Korea
| |
Collapse
|
55
|
Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA. Strain Specific Phage Treatment for Staphylococcus aureus Infection Is Influenced by Host Immunity and Site of Infection. PLoS One 2015; 10:e0124280. [PMID: 25909449 PMCID: PMC4409319 DOI: 10.1371/journal.pone.0124280] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a “post-antibiotic era”, the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use.
Collapse
Affiliation(s)
- Nathan B. Pincus
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jensen D. Reckhow
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danial Saleem
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Momodou L. Jammeh
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandip K. Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
56
|
Abedon ST. Phage therapy of pulmonary infections. BACTERIOPHAGE 2015; 5:e1020260. [PMID: 26442188 PMCID: PMC4422798 DOI: 10.1080/21597081.2015.1020260] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/01/2022]
Abstract
It is generally agreed that a bacteriophage-associated phenomenon was first unambiguously observed one-hundred years ago with the findings of Twort in 1915. This was independently followed by complementary observations by d'Hérelle in 1917. D'Hérelle's appreciation of the bacteriophage phenomenon appears to have directly led to the development of phages as antibacterial agents within a variety of contexts, including medical and agricultural. Phage use to combat nuisance bacteria appears to be especially useful where targets are sufficiently problematic, suitably bactericidal phages exist, and alternative approaches are lacking in effectiveness, availability, safety, or cost effectiveness, etc. Phage development as antibacterial agents has been strongest particularly when antibiotics have been less available or useful, e.g., such as in the treatment of chronic infections by antibiotic-resistant bacteria. One relatively under-explored or at least not highly reported use of phages as therapeutic agents has been to combat bacterial infections of the lungs and associated tissues. These infections are diverse in terms of their etiologies, manifestations, and also in terms of potential strategies of phage delivery. Here I review the literature considering the phage therapy of pulmonary and pulmonary-related infections, with emphasis on reports of clinical treatment along with experimental treatment of pulmonary infections using animal models.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology; The Ohio State University ; Mansfield, OH USA
| |
Collapse
|
57
|
Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms. Appl Environ Microbiol 2015; 81:3336-48. [PMID: 25746992 DOI: 10.1128/aem.03560-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/27/2015] [Indexed: 01/09/2023] Open
Abstract
Phage therapy is a promising option for fighting against staphylococcal infections. Two lytic phages, vB_SauM_phiIPLA-RODI (phiIPLA-RODI) and vB_SepM_phiIPLA-C1C (phiIPLA-C1C), belonging to the Myoviridae family and exhibiting wide host ranges, were characterized in this study. The complete genome sequences comprised 142,348 bp and 140,961 bp and contained 213 and 203 open reading frames, respectively. The gene organization was typical of Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped into modules not clearly separated from each other, and several group I introns. In addition, four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA sequence analysis showed high similarities with two phages, GH15 and 676Z, belonging to the Twort-like virus genus (nucleotide identities of >84%); for phiIPLA-C1C, a high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge assays of phages phiIPLA-RODI and phiIPLA-C1C against planktonic staphylococcal cells confirmed their lytic ability, as they were able to remove 5 log units in 8 h. Exposure of biofilms to phages phiIPLA-RODI and phiIPLA-C1C reduced the amount of adhered bacteria to about 2 log units in both monospecies and dual-species biofilms, but phiIPLA-RODI turned out to be as effective as the mixture of both phages. Moreover, the frequencies of bacteriophage-insensitive mutants (BIMs) of Staphylococcus aureus and S. epidermidis with resistance to phiIPLA-RODI and phiIPLA-C1C were low, at 4.05 × 10(-7) ± 2.34 × 10(-9) and 1.1 × 10(-7) ± 2.08 × 10(-9), respectively. Overall, a generally reduced fitness in the absence of phages was observed for BIMs, which showed a restored phage-sensitive phenotype in a few generations. These results confirm that lytic bacteriophages can be efficient biofilm-disrupting agents, supporting their potential as antimicrobials against staphylococcal infections.
Collapse
|
58
|
Jeon J, D'Souza R, Hong SK, Lee Y, Yong D, Choi J, Lee K, Chong Y. Complete Genome Sequence of the Siphoviral Bacteriophage YMC/09/04/R1988 MRSA BP: A lytic phage from a methicillin-resistant Staphylococcus aureus isolate. FEMS Microbiol Lett 2014; 359:144-146. [PMID: 25123965 DOI: 10.1111/1574-6968.12580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/12/2014] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing cause of serious infection, both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection have been narrowed due to the limited number of newly developed antimicrobials. Herein, we analyze the completely sequenced genome of a novel virulent phage YMC/09/04/R1988 MRSA BP as a potential alternative anti-MRSA agent, which lysed clinical isolates from a patient admitted to the hospital due to hip disarticulation. The phage contains a linear double-stranded DNA genome of 44,459 bp in length, with 33.37% GC content, 62 predicted open reading frames (ORFs), and annotated functions of only 23 ORFs that are associated with structural assembly, host lysis, DNA replication, and modification. It showed a broad host range (17 of 30 strains) against MRSA strains in clinical isolates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jongsoo Jeon
- Department of Laboratory Medicine and Research Institute of Antimicrobial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|