51
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
52
|
Whole and polysaccharide powdered Sporisorium reilianum improves DSS-induced colitis in BALB/c mice by modulating gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
53
|
Weng YJ, Jiang DX, Liang J, Ye SC, Tan WK, Yu CY, Zhou Y. Effects of Pretreatment with Bifidobacterium bifidum Using 16S Ribosomal RNA Gene Sequencing in a Mouse Model of Acute Colitis Induced by Dextran Sulfate Sodium. Med Sci Monit 2021; 27:e928478. [PMID: 33686049 PMCID: PMC7959103 DOI: 10.12659/msm.928478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bifidobacterium is a potentially effective and safe treatment for patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease. However, information on the influence of B. bifidum on gut microbial diversity of treated and pretreated IBD patients is limited. Material/Methods Our study investigated therapeutic and preventive effects of B. bifidum ATCC 29521 on C57BL/6 mice with dextran sulfate sodium (DSS)-induced acute colitis via 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Results Treatment and pretreatment of mice with B. bifidum ATCC 29521 significantly alleviated the severity of acute colitis on the basis of clinical and pathologic indicators. 16S rRNA gene sequencing showed that administration of B. bifidum shifted composition of the gut microbiome in mice with DSS-induced colitis in both treated and pretreated groups. Mice pretreated with B. bifidum ATCC 29521 for 21 days exhibited a significant increase in diversity of the gut microbiome. Principal coordinate analysis showed that gut microbiota structure was shaped by different treatments and time points. On the basis of linear discriminant analysis of effect size, the abundance of the genus Escherichia-Shigella, belonging to the family Enterobacteriaceae, was reduced in the B. bifidum-treated group, indicating that pathogens were inhibited by the B. bifidum treatment. Furthermore, the genera Intestinimonas and Bacteroides were significantly associated with the B. bifidum-pretreated group. Conclusions 16S rRNA gene sequencing showed that pretreatment with B. bifidum ATCC 29521 reduced intestinal inflammation and altered the gut microbiota to favor the genera Intestinimonas and Bacteroides.
Collapse
Affiliation(s)
- Yi-Jie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Dan-Xian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Jian Liang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Shi-Cai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Wen-Kai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Cai-Yuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
54
|
Huang M, Li S, He Y, Lin C, Sun Y, Li M, Zheng R, Xu R, Lin P, Ke X. Modulation of gastrointestinal bacterial in chronic atrophic gastritis model rats by Chinese and west medicine intervention. Microb Cell Fact 2021; 20:31. [PMID: 33530970 PMCID: PMC7852297 DOI: 10.1186/s12934-021-01525-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic atrophic gastritis (CAG) is well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. The present study was designed to identify the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qinghuayin (QHY) as well as antibiotic on model rats. The result shown the overall structure alteration of bacterial appeared under medicine intervened, antibiotic caused a marked depletion in bacterial diversity and richness. The enrichments of Firmicutes (85.1-90.7%) in antibiotic-free converts into Bacteroidetes (30.7-34.6%) in antibiotic-added model rat were demonstrated. Firmicutes as the most dominant phylum in antibiotic-free treatments and significantly decreased till 21.9-68.5% in antibiotic-added treatments. Especially QHY-treated rats showed highest RA of Firmicutes (90.7%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG, which attributed to close relation with the modulatory of internal bacterial communities.
Collapse
Affiliation(s)
- Minghan Huang
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Sihan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Youcheng He
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Cuili Lin
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Yueming Sun
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Mingzhu Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zheng
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Ruoying Xu
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Ping Lin
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China.
| | - Xiao Ke
- Department of Gastroenterology, The Second People's Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China.
| |
Collapse
|
55
|
Wei T, Jia Y, Xue W, Ma M, Wu W. Nutritional Effects of the Enteral Nutritional Formula on Regulation of Gut Microbiota and Metabolic Level in Type 2 Diabetes Mellitus Mice. Diabetes Metab Syndr Obes 2021; 14:1855-1869. [PMID: 33953585 PMCID: PMC8089093 DOI: 10.2147/dmso.s301454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Due to the adverse effects of antidiabetic drugs, nowadays, nutraceuticals have been of much interest to investigators. Therefore, the present study aimed to explore the potential effects of enteral nutritional (EN) formulas on the gut microbiota and metabolic regulation of type 2 diabetes mellitus (T2DM) mice and compare the differences between whey protein and soy protein. METHODS EN formulas made of whey protein or soy protein were administered for five weeks and then mice tissue samples were obtained to examine the metabolic parameters and histopathology of the pancreas, liver, jejunum and colon. 16S rRNA V3-V4 region gene sequencing was used to analyze the changes in the gut microbiota. RESULTS After the five-week intervention, the alpha diversity had recovered slightly, and the soy protein group (SPG) achieved a better effect than the whey protein group (LPG). The overall composition of gut microbiota was regulated. The abundance of Bacteroidetes and TM7 had raised significantly and the abundance of Firmicutes and Deferribacteres had declined after treatment, with no significant difference between the LPG and SPG. The types of beneficial bacteria were increased at the genus and species level. The level of hexokinase (HK) and pyruvate kinase (PK) had significantly recovered and inhibited the level of α-glucosidase. In addition, the EN formulas treatment reduced the levels of inflammatory factor (TNF-α) in liver and muscle. The level of glucose transporter type 2 (GLUT-2) levels in the liver and intestine also significantly increased. Moreover, the metabolism regulation of the SPG was better than that of the LPG. The EN formulas treatment improved the pancreas, liver, jejunum and colon histology. CONCLUSION The EN formulas regulated the overall structure of the gut microbiota and improved the metabolic level in streptozotocin/high-fat diet (STZ/HFD) diabetic mice. Therefore, EN formula may potentially become an effective nutritional adjunctive therapy for T2DM.
Collapse
Affiliation(s)
- Ting Wei
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Ye Jia
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Wei Xue
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Ming Ma
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
- Correspondence: Ming Ma; Wenhui Wu College of Food Science and Engineering, Shanghai Ocean University, No. 999, Huchenghuan Road, Nanhui New City, Shanghai, 201306, People’s Republic of ChinaTel +86-21-61900296 Email ;
| | - Wenhui Wu
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| |
Collapse
|
56
|
Zhu L, Li J, Wei C, Luo T, Deng Z, Fan Y, Zheng L. A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice. Food Funct 2020; 11:10519-10533. [PMID: 33179663 DOI: 10.1039/d0fo01948h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibiotics are the most commonly used clinical drugs for anti-infection, but they can also destroy normal microorganisms and cause intestinal barrier dysfunction. To elucidate the effects and mechanism of a water-soluble polysaccharide from Fagopyrum esculentum Moench bee pollen (WFPP) on intestinal barrier integrity in antibiotic-treated mice, BALB/c mice were exposed to a broad-spectrum antibiotic (ceftriaxone) or not (control), and were administered low-, medium- and high-dose WFFP (100 mg kg-1, 200 mg kg-1 and 400 mg kg-1, respectively) daily by oral gavage for 3 weeks. Mice treated with ceftriaxone displayed symptoms of growth retardation, atrophy of immune organs including thymus and spleen, increased gut permeability, and intestinal barrier damage, which were restored after intervention with WFFP at different doses. Moreover, the beneficial effects of WFFP were closely associated with enhanced intestinal sIgA secretion and reduced inflammatory response. Furthermore 16S rDNA gene sequencing revealed that WFPP elevated microbial diversity and richness and changed the community structure, therefore, alleviating microbiota dysbiosis caused by ceftriaxone. Interestingly, WFPP could modulate the abundance of sIgA secretion-related bacteria (e.g. Proteobacteria) and inflammation-related bacteria (e.g. Enterococcus). Therefore, WFPP can relieve antibiotic-induced microbiota dysbiosis to improve intestinal barrier integrity by increasing intestinal sIgA secretion and inhibiting inflammation.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
57
|
Marine polysaccharides from Gelidium pacificum Okamura and Cereus sinensis reveal prebiotic functions. Int J Biol Macromol 2020; 164:4381-4390. [PMID: 32926901 DOI: 10.1016/j.ijbiomac.2020.08.255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Many marine polysaccharides as prebiotics can promote host health by modulating gut microbiota. This study investigated the beneficial effects of purified marine plant-derived Gelidium pacificum Okamura polysaccharide (GPOP-1) and marine animal-derived Cereus sinensis polysaccharide (CSP-1) on normal mice by modulating gut microbiota. The composition and diversity of gut microbiota were evaluated using 16S rRNA high-throughput sequencing. The results showed that GPOP-1 and CSP-1 altered the composition of the gut microbiota and promoted the growth of beneficial bacteria. At the genus level, GPOP-1 increased the relative abundance of Bacteroides, Phascolarctobacterium, and decreased the relative abundance of Ruminococcus, Helicobacter, Allobaculum, Dorea and AF12. While CSP-1 increased the relative abundance of Coprococcus, Adlercreutzia, Roseburia, Phascolarctobacterium, and decreased the relative abundance of Bacteroides, Ruminococcus and Oscillospira. The changes in the gut microbiota may affect the body weight, immune organ index and the production of short-chain fatty acids in normal mice. Compared to the normal control group, GPOP-1 decreased average weight gain while CSP-1 increased average weight gain. Furthermore, both GPOP-1 and CSP-1 significantly increased thymus and spleen indexes and total short chain fatty acids production in mice. In summary, GPOP-1 and CSP-1 exerted prebiotic effects on normal mice.
Collapse
|
58
|
Crouwel F, Buiter HJC, de Boer NK. Gut microbiota-driven drug metabolism in inflammatory bowel disease. J Crohns Colitis 2020; 15:jjaa143. [PMID: 32652007 PMCID: PMC7904070 DOI: 10.1093/ecco-jcc/jjaa143] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The gut microbiota plays an important role in the metabolization and modulation of several types of drugs. With this study we aimed to review the literature about microbial drug metabolism of medication prescribed in inflammatory bowel disease practice. METHODS A systematic literature search was performed in Embase and PubMed from inception to October 2019. The search was conducted with predefined MeSH/Emtree and text terms. All studies about drug metabolism by microbiota of medication prescribed in inflammatory bowel disease practice were eligible. A total of 1018 records were encountered and 89 articles were selected for full text reading. RESULTS Intestinal bacterial metabolism or modulation is of influence in four specific drugs used in inflammatory bowel disease (mesalazines, methotrexate, glucocorticoids and thioguanine). The gut microbiota cleaves the azo-bond of sulfasalazine, balsalazide and olsalazine and releases the active moiety 5-aminosalicylic acid. It has an impact on the metabolization and potentially on the response of methotrexate therapy. Especially thioguanine can be converted by intestinal bacteria into the pharmacological active 6-thioguanine nucleotides without the requirement of host metabolism. Glucocorticoid compounds can be prone to bacterial degradation. CONCLUSION The human intestinal microbiota can have a major impact on drug metabolism and efficacy of medication prescribed in inflammatory bowel disease practice. A better understanding of these interactions between microbiota and drugs is needed and should be an integral part of the drug development pathway of new inflammatory bowel disease medication.
Collapse
Affiliation(s)
- Femke Crouwel
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hans J C Buiter
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
59
|
Pang J, Ding J, Zhang L, Zhang Y, Yang Y, Bai X, Liu X, Jin X, Guo H, Yang Y, Liu M. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice. Int Immunopharmacol 2020; 86:106699. [PMID: 32570037 DOI: 10.1016/j.intimp.2020.106699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic autoimmune disease. At present, worms and their products has been shown to have protective effects on immune-mediated diseases. Therefore, we aimed to investigate the effect of the recombination Trichinella spiralis (T. spiralis, Ts) adult serine protease-like protein rTs-ADSp-7 on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD mouse model. Colitis was induced by intrarectal administration of a TNBS solution. The disease activity index (DAI), which included weight loss, diarrhoea, and bloody stool, was measured. Colon segments were stained with haematoxylin and eosin (H.E.) for histopathological score. Cytokine release in the serum was analysed by meso scale discovery (MSD). Cytokine release in the colon was detected by ELISA. Splenocytes were separated, and the cytokine profiles of Th1 (IFN-γ), Th2 (IL-4), Th17 (IL-17A) and Treg cells were analysed by flow cytometry. Our result showed that rTs-ADSp-7 reduced the clinical disease activity of TNBS-induced colitis in mice. In addition, we found that rTs-ADSp-7 reduced the production of Th1- and Th17-related cytokines while upregulating the expression of Th2- and Treg-related cytokines in TNBS-induced colitis mice. rTs-ADSp-7 also increased the population of Th2 and Treg cells in TNBS-induced colitis mice. rTs-ADSp-7 alleviated the severity of TNBS-induced colitis while balancing the CD4+ T cell immune response. rTs-ADSp-7 has therapeutic potential for colitis treatment and can be used as a helminth-derived protein therapy for CD or other Th1 immunity-mediated diseases.
Collapse
Affiliation(s)
- Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Puer, Yunnan, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Guo
- Beijing Hi-Tech Institute, Beijing 100094, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
60
|
Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis. Shock 2020; 55:666-675. [PMID: 32496421 DOI: 10.1097/shk.0000000000001566] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sepsis is a life-threatening syndrome which can progress to multiple organ dysfunction with high mortality. Intestinal barrier failure exerts a central role in the pathophysiological sequence of events that lead from sepsis to multiple organ dysfunction. The present study investigated the role of hydrocortisone (HC) administration and fecal microbiota transplantation (FMT) in several parameters of the gut barrier integrity, immune activation, and survival, in a model of polymicrobial sepsis in rats. METHODS Forty adults male Wistar rats were randomly divided into four groups: sham (group I), cecal ligation and puncture (CLP) (group II), CLP + HC (2.8 mg/kg, intraperitoneally single dose at 6 h) (group III), and CLP + FMT at 6 h (group IV). At 24 h post-CLP, ileal tissues were harvested for histological and immunohistochemical analyses while endotoxin, IL-6, and IL-10 levels in systemic circulation were determined. In a second experiment the same groups were observed for 7 days for mortality, with daily administration of hydrocortisone (group III) and FMT (group IV) in surviving rats. RESULTS HC administration and FMT significantly reduced mortality of septic rats by 50%. These interventions totally reversed intestinal mucosal atrophy by increasing villous density and mucosal thickness (μm, mean ± SD: Group I: 620 ± 35, Group II: 411 ± 52, Group III: 622 ± 19, Group IV: 617 ± 44). HC and FMT reduced the apoptotic body count in intestinal crypts whereas these increased the mitotic/apoptotic index. Activated caspase-3 expression in intestinal crypts was significantly reduced by HC or FMT (activated caspase-3 (+) enterocytes/10 crypts, mean ± SD: Group I: 1.6 ± 0.5, Group II: 5.8 ± 2.4, Group III: 3.6 ± 0.9, Group IV: 2.3 ± 0.6). Both treatments increased Paneth cell count and decreased intraepithelial CD3(+) T lymphocytes and inflammatory infiltration of lamina propria to control levels. In the sham group almost the total of intestinal epithelial cells expressed occludin (92 ± 8%) and claudin-1 (98 ± 4%) and CLP reduced this expression to 34 ± 12% for occludin and 35 ± 7% for claudin-1. Administration of HC significantly increased occludin (51 ± 17%) and claudin-1 (77 ± 9%) expression. FMT exerted also a significant restoring effect in tight junction by increasing occludin (56 ± 15%) and claudin-1 (84 ± 7%) expression. The beneficial effects of these treatments on gut barrier function led to significant reduction of systemic endotoxemia (EU/mL, mean ± SD: Group I: 0.93 ± 0.36, Group II: 2.14 ± 1.74, Group III: 1.48 ± 0.53, Group IV: 1.61 ± 0.58), while FMT additionally decreased IL-6 and IL-10 levels. CONCLUSION Fecal microbiota transplantation and stress dose hydrocortisone administration in septic rats induce a multifactorial improvement of the gut mechanical and immunological barriers, preventing endotoxemia and leading to improved survival.
Collapse
|
61
|
Papoutsopoulou S, Satsangi J, Campbell BJ, Probert CS. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharmacol Ther 2020; 51:1268-1285. [PMID: 32372449 DOI: 10.1111/apt.15774] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The inflammatory bowel diseases, Crohn's disease and ulcerative colitis are related multifactorial diseases. Their pathogenesis is influenced by each individual's immune system, the environmental factors within exposome and genetic predisposition. Smoking habit is the single best-established environmental factor that influences disease phenotype, behaviour and response to therapy. AIM To assess current epidemiological, experimental and clinical evidence that may explain how smoking impacts on the pathogenesis of inflammatory bowel disease. METHODS A Medline search for 'cigarette smoking', in combination with terms including 'passive', 'second-hand', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'intestinal epithelium', 'immune system', 'intestinal microbiota', 'tight junctions', 'mucus', 'goblet cells', 'Paneth cells', 'autophagy'; 'epigenetics', 'genes', 'DNA methylation', 'histones', 'short noncoding/long noncoding RNAs'; 'carbon monoxide/CO' and 'nitric oxide/NO' was performed. RESULTS Studies found evidence of direct and indirect effects of smoking on various parameters, including oxidative damage, impairment of intestinal barrier and immune cell function, epigenetic and microbiota composition changes, that contribute to the pathogenesis of inflammatory bowel disease. CONCLUSIONS Cigarette smoking promotes intestinal inflammation by affecting the function and interactions among intestinal epithelium, immune system and microbiota/microbiome.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Chris S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
62
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|
63
|
Abstract
Uveitis is a heterogeneous collection of inflammatory diseases of the intraocular uveal tissues and adjacent structures, and they collectively are a significant cause of visual morbidity. In recent years, investigating the contribution of the gut microbiota to autoimmunity, including the development of uveitis, has gained interest. Decreased disease severity has been observed in both the induced experimental autoimmune model of uveitis and the spontaneous RI61H model of uveitis in mice treated with oral broad-spectrum antibiotics and raised in germ-free conditions, implicating a role for the gut microbiota in the development of disease in these models. Also, in support of these findings are the differences in the composition of the microbiota that have been reported in uveitis patients. Proposed mechanisms accounting for the microbiota triggering uveitis include antigenic mimicry and dysbiosis leading to dysregulation of the immune system. An improved understanding of these mechanisms will facilitate potential therapeutic approaches including alteration of the microbiota with probiotic treatment and fecal microbiota transplants.
Collapse
Affiliation(s)
- Shilpa Kodati
- National Eye Institute, National Institutes of Health, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, USA.
| |
Collapse
|
64
|
|
65
|
Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 2020; 111:766-773. [PMID: 31910311 PMCID: PMC7060472 DOI: 10.1111/cas.14298] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide. In 2018, there were over 1.8 million new cases. Most sporadic CRC develop from polypoid adenomas and are preceded by intramucosal carcinoma (stage 0), which can progress into more malignant forms. This developmental process is known as the adenoma-carcinoma sequence. Early detection and endoscopic removal are crucial for CRC management. Accumulating evidence suggests that the gut microbiota is associated with CRC development in humans. Comprehensive characterization of this microbiota is of great importance to assess its potential as a diagnostic marker in the very early stages of CRC. In this review, we summarized recent studies on CRC-associated bacteria and their carcinogenic mechanisms in animal models, human cell lines and human cohorts. High-throughput technologies have facilitated the identification of CRC-associated bacteria in human samples. We have presented our metagenome and metabolome studies on fecal samples collected from a large Japanese cohort that revealed stage-specific phenotypes of the microbiota in CRC. Furthermore, we have discussed the potential carcinogenic mechanisms of the gut microbiota, from which we can infer whether changes in the gut microbiota are a cause or effect in the multi-step process of CRC carcinogenesis.
Collapse
Affiliation(s)
- Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|