51
|
Arulprakasam KR, Dharumadurai D. Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microb Pathog 2021; 161:105252. [PMID: 34662717 DOI: 10.1016/j.micpath.2021.105252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Evolution of genome sequencing technology, on the one hand, and advancement of computational genome mining tools, on the other hand, paves way for improvement in predicting secondary metabolites. In past, numerous efforts were made concerning genome mining for recognizing secondary metabolites within the genus, but only a negligible quantity of comparative genomic reports had carried out among species of different genera. In this study, we explored potential of 24 actinobacteria species belonging to the genera, including Streptomyces, Nocardia, Micromonospora, and Saccharomonospora, to traverse diversity and distribution of Biosynthetic Gene Clusters (BGCs). Investigating results obtained from antiSMASH (Antibiotics and Secondary Metabolites Analysis Shell), NaPDoS (Natural Product Domain Seeker), and NP.searcher revealed conservation of genus-specific gene clusters among various species. E.g., NAGGN (n-acetyl glutaminyl glutamine amide) is present in Micromonospora, furan in Nocardia, melanin, and lassopeptide occur in Streptomyces. Bioactive compounds like alkyl-O-dihydro geranyl methoxy hydroquinone, SapB, desferrioxamine E, 2-Methylisoborneol, mayamycin, cyclodipeptide synthase, diisonitrile, salinichelin, hopene, ectoine and isorenieratene are highly conserved among diverse genera. Furthermore, pharmacological activity of actinobacterial derived metabolites against bacterial and fungal pathogens were illustrated. We need to accomplish large-scale analysis of natural products, including various genera of actinobacteria to deliver comprehensive intuition to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Karthick Raja Arulprakasam
- Department of Microbiology, School of Life Sciences Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dhanasekaran Dharumadurai
- Department of Microbiology, School of Life Sciences Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
52
|
Homero U, Tortella G, Sandoval E, Cuozzo SA. Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties. Microbiol Res 2021; 253:126877. [PMID: 34644673 DOI: 10.1016/j.micres.2021.126877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The extracellular polymeric substances (EPS) have shown free radical scavenging and antitumor activity against both breast and colon cell lines. In this regard, actinobacteria have become an increasingly popular sources of EPS. Therefore, in this study four Streptomyces strains isolated from contaminated soil (M7, A5, A14 and MC1) were evaluated for determining its biofilm-forming capacity including under pesticide stress. In addition, chemical composition of EPS and its cytotoxic effects over 4T1 breast cancer cell and Caco-2 human tumor colon cells were evaluated. The results demonstrated that Streptomyces sp. A5 had the highest capability to develop biofilm more than other strains tested, even under pesticide stress. Moreover, this strain produced EPS with a total protein/total polysaccharide rate of 1.59 ± 0.05. On the other hand, cytotoxicity assays of EPS showed that Streptomyces sp. A5 display a higher toxic effect against 4T1 Breast cancer cells (96.2 ± 13.5 %), Caco-2 (73.9 ± 6.4 %) and low toxicity (29.9 % ± 9.1 %) against non-transformed intestinal cells (IEC-18). Data do not show cytotoxic effect relationship with biofilm-forming capabilities of strains, nor the chemical composition of EPS matrix. The gene that codes for polysaccharide deacetylase, parB-like and transRDD proteins, were identified. These results contribute to the knowledge about the variability of chemical composition and potential cytotoxic properties of EPS produced by Streptomyces biofilms. It proposes interesting future challenges for linking Streptomyces-based pesticide remediation technology with the development of new antitumor drugs.
Collapse
Affiliation(s)
- Urrutia Homero
- Facultad de Ciencas Biológicas Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - E Sandoval
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina
| | - Sergio A Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, T4000, Tucumán, Argentina.
| |
Collapse
|
53
|
Lv L, Feng C, Li W, Zhang G, Ren Z, Liu X, Song X, Wang P. Exogenous N-acyl-homoserine lactones accelerate resuscitation of starved anaerobic granular sludge after long-term stagnation. BIORESOURCE TECHNOLOGY 2021; 337:125362. [PMID: 34116280 DOI: 10.1016/j.biortech.2021.125362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
So as to accelerate the resuscitation of starved anaerobic granular sludge after long-term stagnation, an innovative method was tried derived from the regulation of N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS). The mixture of four AHLs was added to the starved anaerobic granular sludge system in this research. The results confirmed that the exogenous AHLs shortened the recovery time of the granular sludge, and improved the treatment performance and methanogenic capacity of the recovered anaerobic sludge to the level before stagnation. At the same time, exogenous AHLs enhanced the synthesis of extracellular polymeric substances (EPS) during the resuscitation period of starved anaerobic granular sludge. The outcomes of microbial composition detection showed that the change of bacterial and methanogenic bacteria communities towards accelerated performance recovery was significantly correlated with exogenous AHLs. This exploration provided a new technical idea for speeding up the recovery of starved anaerobic granular sludge.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Chendi Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xinxin Song
- Tianjin Municipal Engineering Design & Research Institute Ltd, Tianjin 300392, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
54
|
Boruta T. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol 2021; 37:171. [PMID: 34490503 PMCID: PMC8421279 DOI: 10.1007/s11274-021-03141-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Filamentous microorganisms are potent sources of bioactive secondary metabolites, the molecules formed in response to complex environmental signals. The chemical diversity encoded in microbial genomes is only partially revealed by following the standard microbiological approaches. Mimicking the natural stimuli through laboratory co-cultivation is one of the most effective methods of awakening the formation of high-value metabolic products. Whereas the biosynthetic outcomes of co-cultures are reviewed extensively, the bioprocess aspects of such efforts are often overlooked. The aim of the present review is to discuss the submerged co-cultivation strategies used for triggering and enhancing secondary metabolites production in Streptomyces, a heavily investigated bacterial genus exhibiting an impressive repertoire of secondary metabolites, including a vast array of antibiotics. The previously published studies on influencing the biosynthetic capabilities of Streptomyces through co-cultivation are comparatively analyzed in the bioprocess perspective, mainly with the focus on the approaches of co-culture initiation, the experimental setup, the design of experimental controls and the ways of influencing the outcomes of co-cultivation processes. These topics are discussed in the general context of secondary metabolites production in submerged microbial co-cultures by referring to the Streptomyces-related studies as illustrative examples.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924, Lodz, Poland.
| |
Collapse
|
55
|
Singh TA, Passari AK, Jajoo A, Bhasin S, Gupta VK, Hashem A, Alqarawi AA, Abd Allah EF. Tapping Into Actinobacterial Genomes for Natural Product Discovery. Front Microbiol 2021; 12:655620. [PMID: 34239507 PMCID: PMC8258257 DOI: 10.3389/fmicb.2021.655620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of secondary metabolite biosynthetic gene clusters (BGCs) makes actinobacteria well-known producers of diverse metabolites. These ubiquitous microbes are extensively exploited for their ability to synthesize diverse secondary metabolites. The extent of their ability to synthesize various molecules is yet to be evaluated. Current advancements in genome sequencing, metabolomics, and bioinformatics have provided a plethora of information about the mechanism of synthesis of these bioactive molecules. Accessing the biosynthetic gene cluster responsible for the production of metabolites has always been a challenging assignment. The genomic approach developments have opened a new gateway for examining and manipulating novel antibiotic gene clusters. These advancements have now developed a better understanding of actinobacterial physiology and their genetic regulation for the prolific production of natural products. These new approaches provide a unique opportunity to discover novel bioactive compounds that might replenish antibiotics’ exhausted stock and counter the microbes’ resistance crisis.
Collapse
Affiliation(s)
- Tanim Arpit Singh
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India.,School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sheetal Bhasin
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center and Center for Safe and Improved Food, Scotland's Rural College (SRUC), SRUC Barony Campus, Dumfries, United Kingdom
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Mycology and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol 2021; 19:72. [PMID: 33982192 PMCID: PMC8116480 DOI: 10.1186/s43141-021-00156-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ability to produce microbial bioactive compounds makes actinobacteria one of the most explored microbes among prokaryotes. The secondary metabolites of actinobacteria are known for their role in various physiological, cellular, and biological processes. MAIN BODY Actinomycetes are widely distributed in natural ecosystem habitats such as soil, rhizosphere soil, actinmycorrhizal plants, hypersaline soil, limestone, freshwater, marine, sponges, volcanic cave-hot spot, desert, air, insects gut, earthworm castings, goat feces, and endophytic actinomycetes. The most important features of microbial bioactive compounds are that they have specific microbial producers: their diverse bioactivities and their unique chemical structures. Actinomycetes represent a source of biologically active secondary metabolites like antibiotics, biopesticide agents, plant growth hormones, antitumor compounds, antiviral agents, pharmacological compounds, pigments, enzymes, enzyme inhibitors, anti-inflammatory compounds, single-cell protein feed, and biosurfactant. SHORT CONCLUSIONS Further highlight that compounds derived from actinobacteria can be applied in a wide range of industrial applications in biomedicines and the ecological habitat is under-explored and yet to be investigated for unknown, rare actinomycetes diversity.
Collapse
Affiliation(s)
- Manal Selim Mohamed Selim
- Microbial Biotechnology Department—Genetic Engineering Division, National Research Centre, Giza, Egypt
| | | | - Sahar Saleh Mohamed
- Microbial Biotechnology Department—Genetic Engineering Division, National Research Centre, Giza, Egypt
| |
Collapse
|
57
|
Javed Z, Tripathi GD, Mishra M, Dashora K. Actinomycetes – The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Abstract
Knowledge of the agricultural soil microbiota, of the microbial consortia that comprise it, and the promotion of agricultural practices that maintain and encourage them, is a promising way to improve soil quality for sustainable agriculture and to provide food security. Although numerous studies have demonstrated the positive effects of beneficial soil microorganisms on crop yields and quality, the use of microbial consortia in agriculture remains low. Microbial consortia have more properties than an individual microbial inoculum, due to the synergy of the microorganisms that populate them. This review describes the main characteristics, ecosystem functions, crop benefits, and biotechnological applications of microbial consortia composed of arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and Actinobacteria, to promote the restoration of agricultural soils and, consequently, the quality and health of agricultural crops. The aim is to provide knowledge that will contribute to the development of sustainable and sufficiently productive agriculture, which will adapt in a good way to the pace of the growing human population and to climate change.
Collapse
|
59
|
Preparation and Anti-microbial Performance of Ni0.5Zn0.5Fe2O4@Ag Nanocomposites. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01768-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
60
|
Salwan R, Sharma V, Sharma A, Singh A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol Res 2020; 235:126449. [PMID: 32114361 DOI: 10.1016/j.micres.2020.126449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Streptomyces and their biomolecules are well explored for antibiotics production, bioremediation and alleviating the plant stresses due to their plant beneficial attributes. Therefore, due to plethora of biological attributes, the accurate portraying of molecular capabilities of these microorganisms at genomic level is of paramount importance. Here, we have evaluated biochemical attributes of two Streptomyces sp. AC30and AC40 for different plant beneficial activities which are antagonistic to Fusarium oxysporum, Alternaria solani, Sclerotinia sclerotium and Phytopthora infestans. In parallel, the draft genomes of these strains were deduced to understand their genomic capabilities using Illumina platform. The complete genome of AC30and AC40 were 11,284,599 bp and 12,636,188 bp in size with total G + C content of 62.36 and 54.75 %, respectively. Overall, higher number of genes (14,024) was reported for AC40 as compared to AC30 (12,476). The comparative genome organization revealed sharing of a few biosynthetic clusters as well as some exclusive biosynthetic clusters among both the strains. Further, expansion in the chitinases and glucanases was found in the genome of AC40. In addition, genes for 3-phytase and glycosyl hydrolase family 19 were restricted to AC40 only. The comparative genome study revealed presence of plant induced nitrilase in AC40 which is predicted for its role in IAA biosynthesis, release of ammonia, biotransformation of nitrile compounds to corresponding acids and bioremediation of soil containing nitrile compounds. For IAA and secondary metabolites biosynthesis, flavin-dependent monooxygenase, a rate limiting factor in Trp-dependent auxin biosynthesis pathway was found exclusive to AC30 genome. The comparative study revealed the diversification of few pathways/strategies to suppress plant pathogens and promote plant growth by Streptomyces strains.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, (Dr YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, HP, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India.
| | - Anu Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India
| | - Ankita Singh
- Bionivid Technology Private Limited Kasturi Nagar, Bangalore-560043, India
| |
Collapse
|
61
|
Marian M, Ohno T, Suzuki H, Kitamura H, Kuroda K, Shimizu M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol Res 2020; 234:126428. [PMID: 32086186 DOI: 10.1016/j.micres.2020.126428] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
Anthracnose caused by Glomerella cingulata is one of the most devastating diseases of strawberry in Japan, particularly during its nursery period in the summer. In this study, we aimed to isolate and screen endophytic actinobacteria, to identify potential biocontrol agents capable of suppressing strawberry anthracnose. A total of 226 actinobacteria were successfully isolated from surface-sterilized strawberry tissues. In the first screening, 217 out of 226 actinobacteria isolates were studied for their suppression effect on strawberry anthracnose using a detached leaflet assay. It was discovered that isolates MBFA-172 and MBFA-227 markedly suppressed the development of anthracnose lesions. The efficacy of both isolates was then tested on two-month-old strawberry plug seedlings in a controlled environmental chamber. It was found that isolate MBFA-172 provided consistent disease suppression and was thus selected as a final candidate for further evaluation in a glasshouse experiment. Results showed that the severity as well as incidence rate of strawberry anthracnose was significantly reduced by treatment with isolate MBFA-172 compared with that of untreated control. Accordingly, the disease control efficacy provided by MBFA-172 was statistically comparable to the chemical fungicide propineb. A re-isolation experiment using a spontaneous thiostrepton-resistant mutated strain of isolate MBFA-172 revealed that it efficiently colonized the above-ground tissues of strawberry plants for at least three weeks after spray treatment. Using cultural, morphological, and physiological tests combined with 16S rRNA-based molecular analysis, MBFA-172 was identified as a moderately thermophilic Streptomyces thermocarboxydus-related species. Upon review, our results strongly indicated that MBFA-172 is a promising biocontrol agent for strawberry anthracnose.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teppei Ohno
- Faculty of Bioresources, Mie University, Mie 514-8507, Japan
| | - Hirofumi Suzuki
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Hatsuyoshi Kitamura
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Katsutoshi Kuroda
- Mie Prefecture Agricultural Research Institute, Matsusaka, Mie 515-2316, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|