51
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
52
|
Chen H, Shi M, Gilam A, Zheng Q, Zhang Y, Afrikanova I, Li J, Gluzman Z, Jiang R, Kong LJ, Chen-Tsai RY. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci Rep 2019; 9:16838. [PMID: 31727959 PMCID: PMC6856096 DOI: 10.1038/s41598-019-53198-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Hemophilia A is a monogenic disease with a blood clotting factor VIII (FVIII) deficiency caused by mutation in the factor VIII (F8) gene. Current and emerging treatments such as FVIII protein injection and gene therapies via AAV-delivered F8 transgene in an episome are costly and nonpermanent. Here, we describe a CRISPR/Cas9-based in vivo genome editing method, combined with non-homologous end joining, enabling permanent chromosomal integration of a modified human B domain deleted-F8 (BDD-F8) at the albumin (Alb) locus in liver cells. To test the approach in mice, C57BL/6 mice received tail vein injections of two vectors, AAV8-SaCas9-gRNA, targeting Alb intron 13, and AAV8-BDD-F8. This resulted in BDD-F8 insertion at the Alb locus and FVIII protein expression in the liver of vector-, but not vehicle-, treated mice. Using this approach in hemophilic mice, BDD-F8 was expressed in liver cells as functional human FVIII, leading to increased plasma levels of FVIII and restoration of blood clotting properties in a dose-dependent manor for at least 7 months, with no detectable liver toxicity or meaningful off-target effects. Based on these findings, our BDD-F8 genome editing approach may offer an efficacious, long-term and safe treatment for patients with hemophilia A.
Collapse
Affiliation(s)
- Hainan Chen
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Mi Shi
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Avital Gilam
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Qi Zheng
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Yin Zhang
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Ivka Afrikanova
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Jinling Li
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Zoya Gluzman
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Ruhong Jiang
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA
| | - Ling-Jie Kong
- Applied Stemcell, Inc., 521 Cottonwood Drive, Milpitas, CA, 95035, USA.
| | | |
Collapse
|
53
|
Zhang Z, Zhang Y, Lin X, Chen Z, Wu S. Development of a novel reverse transcription droplet digital PCR assay for the sensitive detection of Senecavirus A. Transbound Emerg Dis 2018; 66:517-525. [PMID: 30375741 DOI: 10.1111/tbed.13056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
In pigs, Senecavirus A (SVA) causes a vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. Sensitive and specific detection of SVA is critical for controlling this emerging disease. In this study, a novel reverse transcription droplet digital PCR (RT-ddPCR) assay, targeting the conserved viral polymerase 3D gene, was established for the detection of SVA. This assay exhibited good linearity, repeatability and reproducibility, and maintained linearity at extremely low concentrations of SVA nucleic acid templates. The detection limit of RT-ddPCR was 1.53 ± 0.22 copies of SVA RNA per reaction (n = 8), and the assay showed approximately 10-fold greater sensitivity than a reverse transcription real-time PCR (RT-rPCR) assay. Moreover, specificity analysis showed that the RT-ddPCR for SVA had no cross-reactivity with other important swine pathogens. In clinical diagnosis of 134 pig serum and tissue samples, 26 and 21 samples were identified as positive by RT-ddPCR and RT-rPCR, respectively. The overall agreement between the two assays was 96.27% (129/134). Further linear regression analysis showed a significant correlation between the RT-ddPCR and RT-rPCR assays with an R2 value of 0.9761. Our results indicate that the RT-ddPCR assay is a robust diagnostic tool for the sensitive detection of SVA, even in samples with a low viral load.
Collapse
Affiliation(s)
- Zhou Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongning Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|