51
|
Liu C, Chen YJ, Sun B, Chen HG, Mustieles V, Messerlian C, Sun Y, Meng TQ, Lu WQ, Pan XF, Xiong CL, Hou J, Wang YX. Blood trihalomethane concentrations in relation to sperm mitochondrial DNA copy number and telomere length among 958 healthy men. ENVIRONMENTAL RESEARCH 2023; 216:114737. [PMID: 36372149 DOI: 10.1016/j.envres.2022.114737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Bin Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Carmen Messerlian
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Chen-Liang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China.
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
52
|
Kumar N. Sperm Mitochondria, the Driving Force Behind Human Spermatozoa Activities: Its Functions and Dysfunctions - A Narrative Review. Curr Mol Med 2023; 23:332-340. [PMID: 35400342 DOI: 10.2174/1566524022666220408104047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Male infertility is a major issue, and numerous factors contribute to it. One of the important organelles involved in the functioning of human spermatozoa is mitochondria. There are 50-75 mitochondria helically arranged in mid-piece bearing one mitochondrial DNA each. Sperm mitochondria play a crucial role in sperm functions, including the energy production required for sperm motility and the production of reactive oxygen species, which in the physiological range helps in sperm maturation, capacitation, and acrosome reaction. It also plays a role in calcium signaling cascades, intrinsic apoptosis, and sperm hyperactivation. Any structural or functional dysfunction of sperm mitochondria results in increased production of reactive oxygen species and, a state of oxidative stress, decreased energy production, all leading to sperm DNA damage, impaired sperm motility and semen parameters, and reduced male fertility. Furthermore, human sperm mitochondrial DNA mutations can result in impaired sperm motility and parameters leading to male infertility. Numerous types of point mutations, deletions, and missense mutations have been identified in mtDNA that are linked with male infertility. Methods: Recent literature was searched from English language peer-reviewed journals from databases including PubMed, Scopus, EMBASE, Scholar, and Web of Science till September 2021. Search terms used were "Sperm mitochondria and male fertility", "Bioenergetics of sperm", "Sperm mitochondria and reactive oxygen species", "Sperm mitochondrial mutations and infertility". Conclusion: Sperm mitochondria is an important organelle involved in various functions of human spermatozoa and sperm mitochondrial DNA has emerged as one of the potent biomarkers of sperm quality and male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar-508126, Hyderabad Metropolitan Region, Telangana, India
| |
Collapse
|
53
|
Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Cells 2022; 12:52. [PMID: 36611846 PMCID: PMC9818230 DOI: 10.3390/cells12010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Aneesha Kohli
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Gabriele Koepf
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shady Amr
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Marina Reichlmeir
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 35392 Gießen, Germany
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
54
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
55
|
Ommati MM, Ahmadi HN, Sabouri S, Retana-Marquez S, Abdoli N, Rashno S, Niknahad H, Jamshidzadeh A, Mousavi K, Rezaei M, Akhlagh A, Azarpira N, Khodaei F, Heidari R. Glycine protects the male reproductive system against lead toxicity via alleviating oxidative stress, preventing sperm mitochondrial impairment, improving kinematics of sperm, and blunting the downregulation of enzymes involved in the steroidogenesis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2990-3006. [PMID: 36088639 DOI: 10.1002/tox.23654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal widely dispersed in the environment because of human industrial activities. Many studies revealed that Pb could adversely affect several organs, including the male reproductive system. Pb-induced reproductive toxicity could lead to infertility. Thus, finding safe and clinically applicable protective agents against this complication is important. It has been found that oxidative stress plays a fundamental role in the pathogenesis of Pb-induced reprotoxicity. Glycine is the simplest amino acid with a wide range of pharmacological activities. It has been found that glycine could attenuate oxidative stress and mitochondrial impairment in various experimental models. The current study was designed to evaluate the role of glycine in Pb-induced reproductive toxicity in male mice. Male BALB/c mice received Pb (20 mg/kg/day; gavage; 35 consecutive days) and treated with glycine (250 and 500 mg/kg/day; gavage; 35 consecutive days). Then, reproductive system weight indices, biomarkers of oxidative stress in the testis and isolated sperm, sperm kinetic, sperm mitochondrial indices, and testis histopathological alterations were monitored. A significant change in testis, epididymis, and Vas deferens weight was evident in Pb-treated animals. Markers of oxidative stress were also significantly increased in the testis and isolated sperm of the Pb-treated group. A significant disruption in sperm kinetic was also evident when mice received Pb. Moreover, Pb exposure caused significant deterioration in sperm mitochondrial indices. Tubular injury, tubular desquamation, and decreased spermatogenic index were histopathological alterations detected in Pb-treated mice. It was found that glycine significantly blunted oxidative stress markers in testis and sperm, improved sperm mitochondrial parameters, causing considerable higher velocity-related indices (VSL, VCL, and VAP) and percentages of progressively motile sperm, and decreased testis histopathological changes in Pb-exposed animals. These data suggest glycine as a potential protective agent against Pb-induced reproductive toxicity. The effects of glycine on oxidative stress markers and mitochondrial function play a key role in its protective mechanism.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nategh Ahmadi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Sajjad Rashno
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Akhlagh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
56
|
Zhu H, Wang H, Cheng Y, Liu D, Zhang A, Wen Z, Gao J. Hadh deficiency induced oligoasthenoteratozoospermia through the TNF-α/Bcl-2 pathway in male mice. FASEB J 2022; 36:e22661. [PMID: 36398584 DOI: 10.1096/fj.202201144r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
The process of spermatogenesis is a complex and delicate process that is still not fully understood. In this study, we examined the role of fatty acid oxidase 3-hydroxy acyl CoA dehydrogenase (HADH) in maintaining normal spermatogenesis in mice. In male mice, ablation of the Hadh gene using CRISPR/Cas9 technology arrested spermatocyte meiosis, increased multinucleated giant germ cells and vacuoles in seminiferous tubules, and accompanied with acrosomal dysplasia. Hadh-/- male mice showed the typical features of oligoasthenoteratozoospermia (OAT), including decreased sperm concentration and motility and increased sperm abnormalities. Next, we explored the molecular events in the testes of the mutant mice. We found fatty acids accumulated in the testis of Hadh-/- mice. And also, inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased, apoptosis-related protein Bcl-2 was decreased, and Bax and cleaved-Caspase3 were increased in Hadh-/- male mice testis. After using etanercept, a specific inhibitor of TNF-α, testis injury caused by Hadh knockout was significantly alleviated, the sperm quality and motility were improved, and germ cell apoptosis was reduced. So our study demonstrated that Hadh deletion caused an increase in fatty acids. The accumulated fatty acids further induced testicular inflammation and germ cell apoptosis through the TNF-α/Bcl-2 signaling pathway, finally resulting in OAT in the Hadh-/- mice. Inhibiting TNF-α may be used as a new treatment approach for testicular inflammation and OAT.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
57
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
58
|
Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C, Martín-Cano FE. An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation). Anim Reprod Sci 2022; 246:106805. [PMID: 34275685 DOI: 10.1016/j.anireprosci.2021.106805] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
An overview of the sperm metabolism is presented; using the stallion as a model we review glycolysis, Krebs Cycle and oxidative phosphorylation, paying special attention to the interactions among them. In addition, metabolism implies a series of coordinated oxidation-reduction reactions and in the course of these reactions reactive oxygen species (ROS) and reactive oxoaldehydes are produced ; the electron transport chain (ETC) in the mitochondria is the main source of the anion superoxide and hydrogen peroxide, while glycolysis produces 2-oxoaldehydes such as methylglyoxal as byproducts; due to the adjacent carbonyl groups are strong electrophiles (steal electrons oxidizing other compounds). Sophisticated mechanisms exist to maintain redox homeostasis, because ROS under controlled production also have important regulatory functions in the spermatozoa. The interactions between metabolism and production of reactive oxygen species are essential for proper sperm function, and deregulation of these processes rapidly leads to sperm malfunction and finally death. Lastly, we briefly describe two techniques that will expand our knowledge on sperm metabolism in the coming decades, metabolic flow cytometry and the use of the "omics" technologies, proteomics and metabolomics, specifically the micro and nano proteomics/metabolomics. A better understanding of the metabolism of the spermatozoa will lead to big improvements in sperm technologies and the diagnosis and treatment of male factor infertility.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
59
|
Xue F, Liu Y, Lv Z, Zhang J, Xiong S, Zha L, Liu Z, Shu J. Regulatory effects of differential dietary energy levels on spermatogenesis and sperm motility of yellow-feathered breeder cocks. Front Vet Sci 2022; 9:964620. [PMID: 36246315 PMCID: PMC9556827 DOI: 10.3389/fvets.2022.964620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
The semen quality of breeder cocks profoundly impacted the numbers of matched layer hens and the economic benefits of the poultry industry. Adequacy and balance of poultry nutrition, especially the energy provision, critically modulated the reproductive potential of breeder cocks, however, the underlying mechanism was still unclear. For the purpose of this study, a total of 90 yellow-feathered 13-week-old roosters with the same age in days and similar body weight (1,437 ± 44.3 g) were selected and randomly divided into the low energy diet (LE), the moderate energy diet (ME), and the high energy diet (HE) treatments. The phenotypic parameters related to reproduction include semen quality, fertility, and hatchability, and the testis morphological parameters, including seminiferous epithelium length (SEL), seminiferous tubule perimeter (STP), seminiferous tubule area (STA), and Johnsen score, were measured to investigate the regulatory effects of different energy diets on reproductive performances. Furthermore, spermatogenesis and sperm motility-related genes, which included the sry-related high mobility group box (SOX) gene family and sperm-associated antigen (SPAG) gene family, and mitochondria apoptosis-related genes, such as Cyt-C, Bcl-2, and Bax, were measured to determine the underlying mechanism of energy on the reproductive performances. The The results showed that the gonadosomatic index and sperm motility in the ME treatment significantly increased compared with the LE treatment. Chickens in the ME treatment showed a preferable performance of testis development, especially a significant increment of SEL and Johnsen Score, compared with the LE and HE treatments. Finally, spermatogenesis-related genes, which included SPAG6, SPAG16, SOX5, SOX6, and SOX13, and apoptosis-related genes of mitochondria, such as the Cyt-C and Bcl-2, were significantly upregulated in the ME treatment. This study concluded that proper energy provision stimulated regular energy metabolism for spermatogenesis and sperm capacitation, which finally increased semen quality and reproductive performances of breeder cocks.
Collapse
Affiliation(s)
- Fuguang Xue
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ziyang Lv
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, China
| | - Jian Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shiyuan Xiong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Zha
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyu Liu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jingting Shu
| |
Collapse
|
60
|
Gonzalez-Castro RA, Peña FJ, Herickhoff LA. Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:400-408. [PMID: 35099118 DOI: 10.1002/cyto.b.22058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Motility, morphology, membrane integrity and DNA fragmentation are sperm characteristics routinely used to assess quality of boar spermatozoa. However, the evaluation of individual parameters has intrinsic restrictions in the estimation of potential fertility. Therefore, we aimed to validate a new multiparametric protocol to assess fertility potential through the evaluation of viability, acrosome integrity and mitochondrial activity within the same sperm population for cooled and frozen-thawed boar spermatozoa. METHOD Three multicolor protocols to assess viability, acrosome integrity and/or mitochondrial activity were compared for agreement containing two dyes (HM-panel; Hoechst 33342, MitoTracker™ Deep Red), three dyes (3-panel; SYBR®14, propidium iodide and lectin PNA-Alexa™ 647) or four dyes (4-panel; Hoechst 33342, lectin PNA-Alexa™ 488, propidium iodide and MitoTracker™ Deep Red). Cooled (n = 132) and frozen-thawed (n = 254) samples of boar spermatozoa were assessed by flow cytometry. RESULTS 4-Panel enabled the detection of several sperm subpopulations based on plasma membrane integrity, acrosome status and mitochondrial activity in cooled and frozen-thawed spermatozoa. No significant differences were observed between 3-panel and 4-panel for the percentage of live, live-acrosome intact, and dead-acrosome reacted spermatozoa. However, the percentage of acrosome-intact spermatozoa was significantly higher in cooled samples when stained by 3-panel than 4-panel. Percentages of sperm parameters between protocols were strongly correlated, and agreement analysis demonstrated that both assays resulted in similar values for both sperm sample type. CONCLUSION Our results indicate that a four-color protocol is a practical, simple and reliable procedure to simultaneously evaluate boar sperm viability, acrosome integrity and mitochondrial activity under clinical conditions.
Collapse
Affiliation(s)
- Raul A Gonzalez-Castro
- Membrane Protective Technologies Inc., Fort Collins, Colorado, USA
- Deparment of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Fernando J Peña
- Department of Animal Medicine, Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Caceres, Spain
| | | |
Collapse
|
61
|
Natural Astaxanthin Improves Testosterone Synthesis and Sperm Mitochondrial Function in Aging Roosters. Antioxidants (Basel) 2022; 11:antiox11091684. [PMID: 36139758 PMCID: PMC9495865 DOI: 10.3390/antiox11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.
Collapse
|
62
|
Chen Y, Chen X, Zhang H, Sha Y, Meng R, Shao T, Yang X, Jin P, Zhuang Y, Min W, Xu D, Jiang Z, Li Y, Li L, Yue W, Yin C. TBC1D21 is an essential factor for sperm mitochondrial sheath assembly and male fertility‡. Biol Reprod 2022; 107:619-634. [PMID: 35403672 DOI: 10.1093/biolre/ioac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
During spermiogenesis, the formation of the mitochondrial sheath is critical for male fertility. The molecular processes that govern the development of the mitochondrial sheath remain unknown. Whether TBC1D21 serves as a GTPase-activating protein (GAP) for GTP hydrolysis in the testis is unclear, despite recent findings indicating that it collaborates with numerous proteins to regulate the formation of the mitochondrial sheath. To thoroughly examine the property of TBC1D21 in spermiogenesis, we applied the CRISPR/Cas9 technology to generate the Tbc1d21-/- mice, Tbc1d21D125A R128K mice with mutation in the GAP catalytic residues (IxxDxxR), and Tbc1d21-3xFlag mice. Male Tbc1d21-/- mice were infertile due to the curved spermatozoa flagella. In vitro fertilization is ineffective for Tbc1d21-/- sperm, although healthy offspring were obtained by intracytoplasmic sperm injection. Electron microscopy revealed aberrant ultrastructural changes in the mitochondrial sheath. Thirty-four Rab vectors were constructed followed by co-immunoprecipitation, which identified RAB13 as a novel TBC1D21 binding protein. Interestingly, infertility was not observed in Tbc1d21D125A R128K mice harboring the catalytic residue, suggesting that TBC1D21 is not a typical GAP for Rab-GTP hydrolysis. Moreover, TBC1D21 was expressed in the sperm mitochondrial sheath in Tbc1d21-3xFlag mice. Immunoprecipitation-mass spectrometry demonstrated the interactions of TBC1D21 with ACTB, TPM3, SPATA19, and VDAC3 to regulate the architecture of the sperm midpiece. The collective findings suggest that TBC1D21 is a scaffold protein required for the organization and stabilization of the mitochondrial sheath morphology.
Collapse
Affiliation(s)
- Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiu Chen
- Department of Pharmacy, Heze University, Heze, Shandong, China
| | - Haihang Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Ranran Meng
- National Institute of Biological Sciences, Beijing, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyan Yang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Wanping Min
- National Institute of Biological Sciences, Beijing, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
63
|
Raad MV, Fesahat F, Talebi AR, Hosseini-Sharifabad M, Horoki AZ, Afsari M, Sarcheshmeh AA. Altered methyltransferase gene expression, mitochondrial copy number and 4977-bp common deletion in subfertile men with variable sperm parameters. Andrologia 2022; 54:e14531. [PMID: 35841193 DOI: 10.1111/and.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Semen parameters have been found to predict reproductive success poorly and are the most prevalent diagnostic tool for male infertility. There are few conflicting reports regarding the correlation of DNMT genes expression, mitochondrial DNA copy number (mtDNAcn) and deletion (mtDNAdel) with different sperm parameters. To investigate DNMT mRNA level, mtDNAcn and deletion in infertile men, with different sperm parameters, compared with fertile men, semen samples from 30 men with unknown male infertility and normal sperm parameters (experimental group I), 30 infertile patients with at least two abnormal sperm parameters (experimental group II) and 30 fertile normozoospermic men (control group) were collected. After semen analysis, total RNA and DNA were extracted. The isolated DNA was used for assessing the respective mtDNAcn and the presence of common 4977 bp deletion in mtDNA by applying real-time quantitative PCR and multiplex PCR, respectively. Synthesized cDNA from total RNAs was used to quantify DNMT1, DNMT3A and DNMT3B transcripts in study groups by using real-time quantitative reverse-transcription PCR. Significantly higher proportions of mtDNAcn were found in experimental group II. DNMT1 was significantly downregulated in both experimental groups and 4977 bp deletion was not detected. Progressive motility and normal morphology were significantly and negatively correlated with mtDNAcn. A significant positive correlation was detected between sperm parameters and DNMT1 mRNA levels. In conclusion, infertile men with different sperm parameter qualities showed elevated mtDNA content. Abnormal sperm parameters associated with DNMT1 gene expression indicate the possibility of changes in some epigenetic aspects of spermatogenesis in subfertile men with different sperm parameters.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Zare Horoki
- Department of Urology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Afsari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
64
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
65
|
Characterization of Mitochondrial Prohibitin in Opsariichthys bidens and Its Potential Functions in Spermatogenesis. Int J Mol Sci 2022; 23:ijms23137295. [PMID: 35806298 PMCID: PMC9266877 DOI: 10.3390/ijms23137295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Spermatogenesis is the intricate and coordinated process by which spermatogonia develop into haploid differentiated spermatozoa. Mitochondria are essential for spermatogenesis, and prohibitin (PHB) is closely associated with mitochondrial structure and function during spermatogenesis. Although PHB has been implicated in spermatogenesis in some taxa, its roles in Opsariichthys bidens have not been determined. In this study, the expression patterns and potential functions of PHB in spermatogenesis in O. bidens were characterized using histological microscopic observations, PCR cloning, real-time quantitative PCR (qPCR), Western blotting (WB) and immunofluorescence (IF). The full-length cDNA of Ob-phb was 1500 bp encoding 271 amino acids. A sequence alignment demonstrated that the PHB protein is conserved among different animals. qPCR revealed that phb mRNA is widely distributed in O. bidens and highly expressed in the testes at stages IV and V. WB revealed that Ob-PHB is located in the mitochondria of testes. IF revealed the colocalization of PHB signals and mitochondria. Signals were detected around nuclei in spermatogonia and spermatocytes, gradually moving to the tail region during spermiogenesis, and finally aggregating in the midpiece. These results indicate that Ob-PHB was expressed in the mitochondria during spermatogenesis. In addition, this study proposed Ob-PHB may participate in the degradation of mitochondria and cell differentiation during spermatogenesis.
Collapse
|
66
|
Amor H, Hammadeh ME. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes (Basel) 2022; 13:genes13071182. [PMID: 35885965 PMCID: PMC9325252 DOI: 10.3390/genes13071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
According to current estimates, infertility affects one in four couples trying to conceive. Primary or secondary infertility can be due either to both partners or only to the man or the woman. Up to 15% of infertility cases in men can be attributed to genetic factors that can lead to irreversible partial or complete spermatogenic arrest. The increased use of assisted reproductive technology (ART) has provided not only insights into the causes of male infertility but also afforded a diagnostic tool to detect and manage this condition among couples. Genes control a variety of physiological attributes, such as the hypothalamic–pituitary–gonadal axis, development, and germ cell differentiation. In the era of ART, it is important to understand the genetic basis of infertility so as to provide the most tailored therapy and counseling to couples. Genetic factors involved in male infertility can be chromosome abnormalities or single-gene disorders, mitochondrial DNA (mtDNA) mutations, Y-chromosome deletions, multifactorial disorders, imprinting disorders, or endocrine disorders of genetic origin. In this review, we discuss the role of mitochondria and the mitochondrial genome as an indicator of sperm quality and fertility.
Collapse
|
67
|
Daigneault BW, de Agostini Losano JD. Tributyltin chloride exposure to post-ejaculatory sperm reduces motility, mitochondrial function and subsequent embryo development. Reprod Fertil Dev 2022; 34:833-843. [PMID: 35610772 DOI: 10.1071/rd21371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Male exposure to environmental toxicants can disrupt spermatogenesis and sperm function. However, consequences of environmentally relevant organotin exposure to post-ejaculatory mammalian spermatozoa on fertility are poorly understood. AIMS Determine the consequences of tributyltin chloride (TBT) exposure on post-ejaculatory sperm function and subsequent embryo development. METHODS Frozen-thawed bovine sperm were exposed to TBT (0.1-100nM) for 90min (acute) and 6h (short-term) followed by quantification of multiple sperm kinematics via computer aided sperm analysis. JC-1 dye was used to measure mitochondrial membrane potential. Sperm were then exposed to TBT for 90min in non-capacitating conditions, washed several times by centrifugation and applied to gamete co-incubation for in vitro embryo production to the blastocyst stage. KEY RESULTS 100nM TBT decreased total motility (88 vs 79%), progressive motility (80 vs 70%) curvilinear velocity and beat-cross frequency for 90min with similar phenotypes at 6h (P<0.05). Sperm mitochondrial membrane potential was lower in 10 and 100nM groups after 6h (P≤0.05). Embryos fertilised from TBT-exposed sperm had reduced cleavage rate (80 vs 62%) and 8-16 cell morula development (55 vs 24%) compared to development from unexposed sperm. CONCLUSIONS Exposure of post-ejaculatory mammalian sperm to TBT alters sperm function through lowered motility and mitochondrial membrane potential. Fertilisation of oocytes with TBT-exposed sperm reduces embryo development through mechanisms of paternal origin. IMPLICATIONS Acute and short-term environmental exposure of post-ejaculatory sperm to organotins and endocrine disrupting chemicals such as TBT contribute to idiopathic subfertility and early embryo loss.
Collapse
|
68
|
Assessment of the Role of Nuclear ENDOG Gene and mtDNA Variations on Paternal Mitochondrial Elimination (PME) in Infertile Men: An Experimental Study. Reprod Sci 2022; 29:2208-2222. [PMID: 35477840 DOI: 10.1007/s43032-022-00953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
In humans and most animals, maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) is considered as an universal assumption. Recently, several lines of evidence suggest that different species seem to employ distinct mechanisms to prevent the inheritance of paternal mtDNA. There are few studies in the literature on the molecular basis of sperm mtDNA elimination in mammals and paternal mtDNA transmission in humans. Endonuclease G (ENDOG) is a mitochondrial nuclease encoded by nuclear ENDOG gene. The critical importance of ENDOG gene on paternal mitochondrial elimination (PME) has been previously demonstrated in model organisms such as C. elegans and D. melanogaster. However, its mechanism in human is still unclear. Therefore, we aimed to evaluate whether nuclear ENDOG gene copy number could be a potential marker of paternal mtDNA transmission or not.Male factor infertility patients diagnosed with different infertility subgroups such as azoospermia, oligoteratozoospermia, astheno-teratozoospermia were included in this study: 13 infertile men and 25 healthy men as control group. Quantitative real-time polymerase chain reaction (qPCR) analysis and dual-color Fluorescence in situ hybridization (FISH) method were used to compare the groups. FISH method was applied to verify qPCR results and two signals were observed in nearly all patients. ENDOG gene copy number data were evaluated by comparing them with entire human mtDNA next-generation sequencing (NGS) analysis results obtained through bioinformatics and proteomics tools. Mitochondrial whole genome sequencing (WGS) data allowed determination of novel and reported variations such as single nucleotide polymorphisms (SNPs), multiple nucleotide polymorphism (MNP), insertion/deletion (INDEL). Missense variants causing amino acid substitution were filtered out from patients' mtDNA WGS data.Relative copy number of target ENDOG gene in male infertility patients [0.49 (0.31 - 0.77)] was lower than healthy controls [1.00 (0.66 - 1.51)], and statistical results showed significant differences between the groups (p < 0.01). A total of 38 missense variants were detected in the genes encoding the proteins involved in the respiratory chain complex. Moreover, we detected paternal mtDNA transmissions in the children of these patients who applied to assisted reproductive techniques.In conclusion, this study reveals that ENDOG gene may be an important factor for the PME mechanism in humans. To the best of our knowledge, this is the first study in humans about this topic and assessment of ENDOG gene sequencing and gene expression studies in a larger sample size including patients with male factor infertility would be our future project.
Collapse
|
69
|
Wang T, Xiao Y, Hu Z, Gu J, Hua R, Hai Z, Chen X, Zhang JV, Yu Z, Wu T, Yeung WSB, Liu K, Guo C. MFN2 Deficiency Impairs Mitochondrial Functions and PPAR Pathway During Spermatogenesis and Meiosis in Mice. Front Cell Dev Biol 2022; 10:862506. [PMID: 35493072 PMCID: PMC9046932 DOI: 10.3389/fcell.2022.862506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are highly dynamic organelles and their activity is known to be regulated by changes in morphology via fusion and fission events. However, the role of mitochondrial dynamics on cellular differentiation remains largely unknown. Here, we explored the molecular mechanism of mitochondrial fusion during spermatogenesis by generating an Mfn2 (mitofusin 2) conditional knock-out (cKO) mouse model. We found that depletion of MFN2 in male germ cells led to disrupted spermatogenesis and meiosis during which the majority of Mfn2 cKO spermatocytes did not develop to the pachytene stage. We showed that in these Mfn2 cKO spermatocytes, oxidative phosphorylation in the mitochondria was affected. In addition, RNA-Seq analysis showed that there was a significantly altered transcriptome profile in the Mfn2 deficient pachytene (or pachytene-like) spermatocytes, with a total of 262 genes up-regulated and 728 genes down-regulated, compared with wild-type (control) mice. Pathway enrichment analysis indicated that the peroxisome proliferator-activated receptor (PPAR) pathway was altered, and subsequent more detailed analysis showed that the expression of PPAR α and PPAR γ was up-regulated and down-regulated, respectively, in the MFN2 deficient pachytene (or pachytene-like) spermatocytes. We also demonstrated that there were more lipid droplets in the Mfn2 cKO cells than in the control cells. In conclusion, our study demonstrates a novel finding that MFN2 deficiency negatively affects mitochondrial functions and alters PPAR pathway together with lipid metabolism during spermatogenesis and meiosis.
Collapse
Affiliation(s)
- Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhe Hu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xueli Chen
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ting Wu
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| |
Collapse
|
70
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
71
|
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci 2022; 79:91. [PMID: 35072818 PMCID: PMC11072027 DOI: 10.1007/s00018-022-04134-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
72
|
Obesity and Male Reproduction: Do Sirtuins Play a Role? Int J Mol Sci 2022; 23:ijms23020973. [PMID: 35055159 PMCID: PMC8779691 DOI: 10.3390/ijms23020973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.
Collapse
|
73
|
OUP accepted manuscript. Hum Reprod 2022; 37:669-679. [DOI: 10.1093/humrep/deac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 11/13/2022] Open
|
74
|
Shi WH, Ye MJ, Qin NX, Zhou ZY, Zhou XY, Xu NX, Chen SC, Li SY, Xu CM. Associations of Sperm mtDNA Copy Number, DNA Fragmentation Index, and Reactive Oxygen Species With Clinical Outcomes in ART Treatments. Front Endocrinol (Lausanne) 2022; 13:849534. [PMID: 35399940 PMCID: PMC8983846 DOI: 10.3389/fendo.2022.849534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent studies have suggested that sperm mitochondrial DNA copy number (mtDNA-CN), DNA fragmentation index (DFI), and reactive oxygen species (ROS) content are crucial to sperm function. However, the associations between these measurements and embryo development and pregnancy outcomes in assisted reproductive technology (ART) remain unclear. Semen samples were collected from 401 participants, and seminal quality, parameters of sperm concentration, motility, and morphology were analyzed by a computer-assisted sperm analysis system. DFI, mtDNA-CN, and ROS levels were measured using sperm chromatin structure assay, real-time quantitative polymerase chain reaction, and ROS assay, respectively. Among the participants, 126 couples underwent ART treatments, including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and 79 of the couples had embryos transferred. In 401 semen samples, elevated mtDNA-CN and DFI were associated with poor seminal quality. In 126 ART couples, only mtDNA-CN was negatively correlated with the fertilization rate, but this correlation was not significant after adjusting for male age, female age, seminal quality, ART strategy, number of retrieved oocytes, controlled stimulation protocols, and cycle rank. Regarding pregnancy outcomes, sperm mtDNA-CN, ROS, and DFI were not associated with the clinical pregnancy rate or live birth rate in 79 transferred cases. In conclusion, increased mtDNA-CN and DFI in sperm jointly contributed to poor seminal quality, but sperm mtDNA-CN, ROS, and DFI were not associated with clinical outcomes in ART.
Collapse
Affiliation(s)
- Wei-Hui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mu-Jin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ning-Xin Qin
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Yang Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuan-You Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Nai-Xin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Song-Chang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Shu-Yuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- *Correspondence: Chen-Ming Xu, ; Shu-Yuan Li,
| | - Chen-Ming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Chen-Ming Xu, ; Shu-Yuan Li,
| |
Collapse
|
75
|
Lue Y, Swerdloff R, Jia Y, Wang C. The emerging role of mitochondrial derived peptide humanin in the testis. Biochim Biophys Acta Gen Subj 2021; 1865:130009. [PMID: 34534645 DOI: 10.1016/j.bbagen.2021.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
The discovery of mitochondrial derive peptides (MDPs) has spotlighted mitochondria as central hubs in control and regulation of cell viability and metabolism in the testis in response to intracellular and extracellular stresses. MDPs (Humanin, MOTS-c and SHLP-2) are present in testes. Humanin, the first MDP, is predominantly expressed in Leydig cells, and moderately in germ cells and seminal plasma. The administration of synthetic humanin peptide agonist HNG protects male germ cells against apoptosis induced by intratesticular hormonal deprivation, testicular hyperthermia, and chemotherapeutic agents in rodent testes. Humanin interacting with IGFBP-3 and/or Bax (pro-apoptotic proteins) prevents the activation of germ cell apoptosis. Humanin participates in the network of IL-12/IL-27 family of cytokines to exert the immune-modulation of the testicular environment. Humanin and other MDPs may be important in the amelioration of testicular stress and prevention of cell injury with possible implications for male infertility, fertility preservation and contraceptive development.
Collapse
Affiliation(s)
- Yanhe Lue
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Ronald Swerdloff
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Yue Jia
- Department of Pathology, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, The Lundquist Institute and Harbor-UCLA Medical Center, Torrance, CA, United States of America.
| |
Collapse
|
76
|
Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA. Cells 2021; 10:cells10123354. [PMID: 34943861 PMCID: PMC8699119 DOI: 10.3390/cells10123354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed that accumulations of (i) its main protein interactor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fibroblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence.
Collapse
|
77
|
Wang Y, Su R, Liu P, Yuan Z, Han Y, Zhang H, Weng Q. Seasonal changes of mitochondrial autophagy and oxidative response in the testis of the wild ground squirrels ( Spermophilus dauricus). Am J Physiol Regul Integr Comp Physiol 2021; 321:R625-R633. [PMID: 34494473 DOI: 10.1152/ajpregu.00105.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the main organelles for mammalian energy metabolism and have been implicated in the regulation of germ cell maintenance and spermatogenesis. However, little is known about the changes in the mitochondria of the testis of seasonal breeders. Here, we characterized the seasonal changes in the mitochondria in the testis of the wild ground squirrels. Increased testicle weight, seminiferous tubule diameter, and sperm count were observed in the wild ground squirrels at the breeding season. RNA-seq analysis of the wild ground squirrel testes revealed that mitochondrial-related genes were expressed differentially between the breeding and nonbreeding seasons. Immunohistochemical staining showed that key mitophagy factors including PINK1, MFN2, and PARKIN were highly expressed in various cell types of testis during the breeding season. In addition, the abundance and enzymatic activities of mitochondrial-localized antioxidative enzymes superoxide dismutase 2 (SOD2) and Catalase were decreased in the testis during the breeding season, suggesting a tightly controlled redox balance at least partially facilitated by mitophagy during the seasonal breeding. Taken together, our study reveals that mitochondrial autophagy and oxidative stress may be implicated in the seasonal reproductive recrudescence of the wild ground squirrels, which deepens our understanding of the mitochondrial regulation of seasonal reproductivity in wildlife and provides new insights into the development of potential therapeutic interventions of male infertility.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ruting Su
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Pinxuan Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
78
|
Zhuang XJ, Feng X, Tang WH, Zhu JL, Li M, Li JS, Zheng XY, Li R, Liu P, Qiao J. FAM9B serves as a novel meiosis-related protein localized in meiotic chromosome cores and is associated with human gametogenesis. PLoS One 2021; 16:e0257248. [PMID: 34507348 PMCID: PMC8432983 DOI: 10.1371/journal.pone.0257248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Meiosis is a complex process involving the expression and interaction of numerous genes in a series of highly orchestrated molecular events. Fam9b localized in Xp22.3 has been found to be expressed in testes. However, FAM9B expression, localization, and its role in meiosis have not been previously reported. In this study, FAM9B expression was evaluated in the human testes and ovaries by RT-PCR, qPCR, and western blotting. FAM9B was found in the nuclei of primary spermatocytes in testes and specifically localized in the synaptonemal complex (SC) region of spermatocytes. FAM9B was also evident in the follicle cell nuclei and diffusely dispersed in the granular cell cytoplasm. FAM9B was partly co-localized with SYCP3, which is essential for both formation and maintenance of lateral SC elements. In addition, FAM9B had a similar distribution pattern and co-localization as γH2AX, which is a novel biomarker for DNA double-strand breaks during meiosis. All results indicate that FAM9B is a novel meiosis-associated protein that is co-localized with SYCP3 and γH2AX and may play an important role in SC formation and DNA recombination during meiosis. These findings offer a new perspective for understanding the molecular mechanisms involved in meiosis of human gametogenesis.
Collapse
Affiliation(s)
- Xin-jie Zhuang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- * E-mail: (PL); (XJZ)
| | - Xue Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Wen-hao Tang
- Department of Urology, The Third Hospital of Peking University, Beijing, China
| | - Jin-liang Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Ming Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Jun-sheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Xiao-ying Zheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- * E-mail: (PL); (XJZ)
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| |
Collapse
|
79
|
Madeja ZE, Podralska M, Nadel A, Pszczola M, Pawlak P, Rozwadowska N. Mitochondria Content and Activity Are Crucial Parameters for Bull Sperm Quality Evaluation. Antioxidants (Basel) 2021; 10:antiox10081204. [PMID: 34439451 PMCID: PMC8388911 DOI: 10.3390/antiox10081204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Standard sperm evaluation parameters do not enable predicting their ability to survive cryopreservation. Mitochondria are highly prone to suffer injuries during freezing, and any abnormalities in their morphology or function are reflected by a decline of sperm quality. Our work focused on describing a link between the number and the activity of mitochondria, with an aim to validate its applicability as a biomarker of bovine sperm quality. Cryopreserved sperm collected from bulls with high (group 1) and low (group 2) semen quality was separated by swim up. The spermatozoa of group 1 overall retained more mitochondria (MitoTrackerGreen) and mtDNA copies, irrespective of the fraction. Regardless of the initial ejaculate quality, the motile sperm contained significantly more mitochondria and mtDNA copies. The same trend was observed for mitochondrial membrane potential (ΔΨm, JC-1), where motile sperm displayed high ΔΨm. These results stay in agreement with transcript-level evaluation (real-time polymerase chain reaction, PCR) of antioxidant enzymes (PRDX1, SOD1, GSS), which protect cells from the reactive oxygen species. An overall higher level of glutathione synthetase (GSS) mRNA was noted in group 1 bulls, suggesting higher ability to counteract free radicals. No differences were noted between basal oxygen consumption rate (OCR) (Seahorse XF Agilent) and ATP-linked respiration for group 1 and 2 bulls. In conclusion, mitochondrial content and activity may be used as reliable markers for bovine sperm quality evaluation.
Collapse
Affiliation(s)
- Zofia E. Madeja
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (M.P.); (P.P.)
- Correspondence:
| | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.P.); (A.N.); (N.R.)
| | - Agnieszka Nadel
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.P.); (A.N.); (N.R.)
| | - Marcin Pszczola
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (M.P.); (P.P.)
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (M.P.); (P.P.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.P.); (A.N.); (N.R.)
| |
Collapse
|
80
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
81
|
Derbel R, Sellami H, Rebai A, Gdoura R, Mcelreavey E, Ammar-Keskes L. Can leukocytospermia predict prostate cancer via its effects on mitochondrial DNA? Andrologia 2021; 53:e14129. [PMID: 34053114 DOI: 10.1111/and.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/28/2022] Open
Abstract
Leukocytospermia was previously reported to affect sperm quality by the production of reactive oxygen species (ROS) leading to oxidative stress (OS). In turn, OS decreases sperm functional integrity, increases sperm DNA damage and ultimately alters fertility status. To elucidate the impact of leukocytospermia on sperm nuclear DNA integrity and mitochondrial DNA (mtDNA) structure, we conducted a study including 67 samples from infertile patients with low level of leucocytes (Group 1: n = 20) and with leukocytospermia (Group 2: n = 47). In addition to standard sperm parameters' assessment, we measured the levels of inflammation biomarkers [interleukin-6 (IL-6) and interleukin-8 (IL-8)] and evaluated the oxidative status [malondialdehyde (MDA) and enzymatic and non-enzymatic antioxidants]. In addition, we evaluated the level of sperm nuclear DNA fragmentation and analysed mitochondrial DNA (mtDNA) of sperm cells by sequencing of 5 genes [cytochrome oxidase I (COXI), cytochrome oxidase II (COXII), cytochrome oxidase III (COXIII), adenosine triphosphate synthase 6 (ATPase 6) and adenosine triphosphate synthase 8 (ATPase 8)]. As expected, patients with leukocytospermia had significantly higher MDA levels (32.56 ± 24.30 nmole/ml) than patients without leukocytospermia (17.59 ± 9.60 nmole/ml) (p < .018). Also, sperm DNA fragmentation index (DFI) was significantly higher in Group 2 (33.05 ± 18.14%) as compared to Group 1 (14.19 ± 9.50%) (p < .001). The sequencing of mtDNA revealed a high number of substitutions in Group 2 (n = 102) compared to Group 1 (n = 5). These substitutions were observed mainly in COXI. Among COXI substitutions found in Group 2, twelve changes were previously described in patients with prostate cancer and six of them were shown associated with this pathology. These findings suggest that leukocytospermia may predispose to the manifestation of prostate cancer through modification of mitochondrial DNA and this may be promoted by OS.
Collapse
Affiliation(s)
- Rihab Derbel
- Laboratory of Human Molecular Genetics, Faculty of Medicine, Sfax University, Sfax, Tunisia
| | - Hanen Sellami
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Carthage, Tunisia.,Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Radhouane Gdoura
- Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Elreavy Mcelreavey
- Laboratory of Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Leila Ammar-Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine, Sfax University, Sfax, Tunisia
| |
Collapse
|
82
|
Shi J, Fok KL, Dai P, Qiao F, Zhang M, Liu H, Sang M, Ye M, Liu Y, Zhou Y, Wang C, Sun F, Xie G, Chen H. Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq. Cell Discov 2021; 7:34. [PMID: 34001862 PMCID: PMC8129088 DOI: 10.1038/s41421-021-00260-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Spermatozoa acquire their fertilizing ability and forward motility during epididymal transit, suggesting the importance of the epididymis. Although the cell atlas of the epididymis was reported recently, the heterogeneity of the cells and the gene expression profile in the epididymal tube are still largely unknown. Considering single-cell RNA sequencing results, we thoroughly studied the cell composition, spatio-temporal differences in differentially expressed genes (DEGs) in epididymal segments and mitochondria throughout the epididymis with sufficient cell numbers. In total, 40,623 cells were detected and further clustered into 8 identified cell populations. Focused analyses revealed the subpopulations of principal cells, basal cells, clear/narrow cells, and halo/T cells. Notably, two subtypes of principal cells, the Prc7 and Prc8 subpopulations were enriched as stereocilia-like cells according to GO analysis. Further analysis demonstrated the spatially specific pattern of the DEGs in each cell cluster. Unexpectedly, the abundance of mitochondria and mitochondrial transcription (MT) was found to be higher in the corpus and cauda epididymis than in the caput epididymis by scRNA-seq, immunostaining, and qPCR validation. In addition, the spatio-temporal profile of the DEGs from the P42 and P56 epididymis, including transiting spermatozoa, was depicted. Overall, our study presented the single-cell transcriptome atlas of the mouse epididymis and revealed the novel distribution pattern of mitochondria and key genes that may be linked to sperm functionalities in the first wave and subsequent wave of sperm, providing a roadmap to be emulated in efforts to achieve sperm maturation regulation in the epididymis.
Collapse
Affiliation(s)
- Jianwu Shi
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Kin Lam Fok
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Pengyuan Dai
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Feng Qiao
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengya Zhang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Huage Liu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengmeng Sang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mei Ye
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Yang Liu
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiwen Zhou
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengniu Wang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Fei Sun
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Gangcai Xie
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Hao Chen
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| |
Collapse
|
83
|
Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of infertile patients with leukocytospermia. J Gynecol Obstet Hum Reprod 2021; 50:102101. [DOI: 10.1016/j.jogoh.2021.102101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 01/02/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
|
84
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
85
|
Shi F, Zhang Z, Wang J, Wang Y, Deng J, Zeng Y, Zou P, Ling X, Han F, Liu J, Ao L, Cao J. Analysis by Metabolomics and Transcriptomics for the Energy Metabolism Disorder and the Aryl Hydrocarbon Receptor Activation in Male Reproduction of Mice and GC-2spd Cells Exposed to PM 2.5. Front Endocrinol (Lausanne) 2021; 12:807374. [PMID: 35046903 PMCID: PMC8761788 DOI: 10.3389/fendo.2021.807374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Fine particulate matter (PM2.5)-induced male reproductive toxicity arouses global public health concerns. However, the mechanisms of toxicity remain unclear. This study aimed to further investigate toxicity pathways by exposure to PM2.5in vitro and in vivo through the application of metabolomics and transcriptomics. In vitro, spermatocyte-derived GC-2spd cells were treated with 0, 25, 50, 100 μg/mL PM2.5 for 48 h. In vivo, the real-world exposure of PM2.5 for mouse was established. Forty-five male C57BL/6 mice were exposed to filtered air, unfiltered air, and concentrated ambient PM2.5 in Tangshan of China for 8 weeks, respectively. The results in vitro and in vivo showed that PM2.5 exposure inhibited GC-2spd cell proliferation and reduced sperm motility. Mitochondrial damage was observed after PM2.5 treatment. Increased Humanin and MOTS-c levels and decreased mitochondrial respiratory indicated that mitochondrial function was disturbed. Furthermore, nontargeted metabolomics analysis revealed that PM2.5 exposure could disturb the citrate cycle (TCA cycle) and reduce amino acids and nucleotide synthesis. Mechanically, the aryl hydrocarbon receptor (AhR) pathway was activated after exposure to PM2.5, with a significant increase in CYP1A1 expression. Further studies showed that PM2.5 exposure significantly increased both intracellular and mitochondrial reactive oxygen species (ROS) and activated NRF2 antioxidative pathway. With the RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure were mainly enriched in the metabolism of xenobiotics by the cytochrome P450 pathway, of which Cyp1a1 was the most significantly changed gene. Our findings demonstrated that PM2.5 exposure could induce spermatocyte damage and energy metabolism disorder. The activation of the aryl hydrocarbon receptor might be involved in the mechanism of male reproductive toxicity.
Collapse
Affiliation(s)
- Fuquan Shi
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhonghao Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiankang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuyang Deng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yingfei Zeng
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Han
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| |
Collapse
|
86
|
Silva LKX, Lourenço JDB, da Silva AOA, de Sousa JS, Silva AGME, Dos Reis AN, Miranda MDS, Santos SDSD, Ohashi OM, Martorano LG, da Rocha GN, Faturi C, de Morais E, Mares ÉKL, Garcia AR. Increased quality of in natura and cryopreserved semen of water buffaloes supplemented with saturated and unsaturated fatty acids from the palm oil industry. Anim Reprod 2020; 17:e20200522. [PMID: 33791028 PMCID: PMC7995264 DOI: 10.1590/1984-3143-ar2020-0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ruminant energy supplementation with vegetable oils or fats has been standing out worldwide and oil palm processing has been receiving growing interest. This study assessed the effect of supplementation with saturated and unsaturated fatty acids from the palm oil industry on the lipid profile of seminal plasma and of the sperm membrane, as well as on the morphological and functional characteristics of raw and cryopreserved buffalo semen. Twelve purebred Murrah bulls (Bubalus bubalis) were assigned to the experimental groups and fed diets for 120 days with no added lipids (CONT, four bulls), or with an extra amount of 3% lipids from crude palm oil (PALM, four bulls), or from palm oil deodorizer distillate (PODD, four bulls). Semen was collected and cryopreserved every 15 days. The lipid composition of membranes and semen quality were determined after collections. Lipid supplementation did not impact feed intake (P>0.05). Diet enrichment with PALM increased the linoleic acid (C18:2,ω6) in seminal plasma. Lipid supplementation did not increase the polyunsaturated fatty acids in the sperm membrane composition, but significantly increased the lignoceric acid (C24:0). Cryopreserved semen of the supplemented bulls presented higher progressive motility (60.2 vs. 67.9 vs. 65.2%; P<0.05) and sperm viability detected by eosin-nigrosin staining (61.1 vs. 69.4 vs. 67.8%; P<0.05). Palm oil reduced major sperm defects in both raw (12.2 vs. 9.3 vs. 13.2%; P<0.0001) and cryopreserved semen (12.4 vs. 9.4 vs. 11.2%; P<0.0001). The lipids added to the diet did not impact the population of spermatozoa with intact plasma and acrosomal membranes (PI-/PSA-), but significantly increased the percentage of spermatozoa with high mitochondrial potential (25.6 vs. 31.5 vs. 32.0%; P=0.008). The results suggest that lipid supplementation based on crude palm oil or palm oil deodorizer distillate can be safely used to feed buffalo bulls and may increase sperm attributes related to male fertility.
Collapse
Affiliation(s)
| | | | | | - José Silva de Sousa
- Centro de Biotecnologia em Reprodução Animal, Universidade Federal do Pará, Castanhal, PA, Brasil
| | | | - Adriana Novaes Dos Reis
- Centro de Biotecnologia em Reprodução Animal, Universidade Federal do Pará, Castanhal, PA, Brasil
| | - Moysés Dos Santos Miranda
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | - Otávio Mitio Ohashi
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Cristian Faturi
- Instituto de Saúde e Produção Animal, Universidade Federal Rural da Amazônia, Belém, PA, Brasil
| | - Eziquiel de Morais
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, PA, Brasil
| | | | | |
Collapse
|
87
|
Oxidative Stress in Reproduction: A Mitochondrial Perspective. BIOLOGY 2020; 9:biology9090269. [PMID: 32899860 PMCID: PMC7564700 DOI: 10.3390/biology9090269] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria are fundamental organelles in eukaryotic cells that provide ATP through oxidative phosphorylation. During this process, reactive oxygen species (ROS) are produced, and an imbalance in their concentrations can induce oxidative stress (OS), causing cellular damage. However, mitochondria and ROS play also an important role in cellular homeostasis through a variety of other signaling pathways not related to metabolic rates, highlighting the physiological relevance of mitochondria–ROS interactions. In reproduction, mitochondria follow a peculiar pattern of activation, especially in gametes, where they are relatively inactive during the initial phases of development, and become more active towards the final maturation stages. The reasons for the lower metabolic rates are attributed to the evolutionary advantage of keeping ROS levels low, thus avoiding cellular damage and apoptosis. In this review, we provide an overview on the interplay between mitochondrial metabolism and ROS during gametogenesis and embryogenesis, and how OS can influence these physiological processes. We also present the possible effects of assisted reproduction procedures on the levels of OS, and the latest techniques developed to select gametes and embryos based on their redox state. Finally, we evaluate the treatments developed to manage OS in assisted reproduction to improve the chances of pregnancy.
Collapse
|