51
|
Li W, Mills AA. Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes. Epigenomics 2015; 6:381-95. [PMID: 25333848 DOI: 10.2217/epi.14.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chromatin is vital to normal cells, and its deregulation contributes to a spectrum of human ailments. An emerging concept is that aberrant chromatin regulation culminates in gene expression programs that set the stage for the seemingly diverse pathologies of cancer, developmental disorders and neurological syndromes. However, the mechanisms responsible for such common etiology have been elusive. Recent evidence has implicated lesions affecting chromatin-remodeling proteins in cancer, developmental disorders and neurological syndromes, suggesting a common source for these different pathologies. Here, we focus on the chromodomain helicase DNA binding chromatin-remodeling family and the recent evidence for its deregulation in diverse pathological conditions, providing a new perspective on the underlying mechanisms and their implications for these prevalent human diseases.
Collapse
Affiliation(s)
- Wangzhi Li
- Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
52
|
Bishop B, Ho KK, Tyler K, Smith A, Bonilla S, Leung YF, Ogas J. The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1040-50. [PMID: 26092436 DOI: 10.1016/j.bbagrm.2015.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The chromatin remodeler CHD5 plays a critical role in tumor suppression and neurogenesis in mammals. CHD5 contributes to gene expression during neurogenesis, but there is still much to learn regarding how this class of remodelers contributes to differentiation and development. CHD5 remodelers are vertebrate-specific, raising the prospect that CHD5 plays one or more conserved roles in this phylum. Expression of chd5 in adult fish closely mirrors expression of CHD5 in adult mammals. Knockdown of Chd5 during embryogenesis suggests new roles for CHD5 remodelers based on resulting defects in craniofacial development including reduced head and eye size as well as reduced cartilage formation in the head. In addition, knockdown of Chd5 results in altered expression of neural markers in the developing brain and eye as well as a profound defect in differentiation of dopaminergic amacrine cells. Recombinant zebrafish Chd5 protein exhibits nucleosome remodeling activity in vitro, suggesting that it is the loss of this activity that contributes to the observed phenotypes. Our studies indicate that zebrafish is an appropriate model for functional characterization of CHD5 remodelers in vertebrates and highlight the potential of this model for generating novel insights into the role of this vital class of remodelers.
Collapse
Affiliation(s)
- Brett Bishop
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kwok Ki Ho
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kim Tyler
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda Smith
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Sylvia Bonilla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Joe Ogas
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
53
|
Micucci JA, Sperry ED, Martin DM. Chromodomain helicase DNA-binding proteins in stem cells and human developmental diseases. Stem Cells Dev 2015; 24:917-26. [PMID: 25567374 DOI: 10.1089/scd.2014.0544] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dynamic regulation of gene expression is vital for proper cellular development and maintenance of differentiated states. Over the past 20 years, chromatin remodeling and epigenetic modifications of histones have emerged as key controllers of rapid reversible changes in gene expression. Mutations in genes encoding enzymes that modify chromatin have also been identified in a variety of human neurodevelopmental disorders, ranging from isolated intellectual disability and autism spectrum disorder to multiple congenital anomaly conditions that affect major organ systems and cause severe morbidity and mortality. In this study, we review recent evidence that chromodomain helicase DNA-binding (CHD) proteins regulate stem cell proliferation, fate, and differentiation in a wide variety of tissues and organs. We also highlight known roles of CHD proteins in human developmental diseases and present current unanswered questions about the pleiotropic effects of CHD protein complexes, their genetic targets, nucleosome sliding functions, and enzymatic effects in cells and tissues.
Collapse
Affiliation(s)
- Joseph A Micucci
- 1 Division of Hematology, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | | | | |
Collapse
|
54
|
Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res 2015; 165:36-47. [PMID: 24880148 PMCID: PMC4793962 DOI: 10.1016/j.trsl.2014.05.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
Collapse
Affiliation(s)
- Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri.
| |
Collapse
|
55
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
56
|
Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 2014; 5:3812. [PMID: 24818823 DOI: 10.1038/ncomms4812] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
One of the most remarkable chromatin remodelling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying this process of extensive chromatin remodelling.
Collapse
Affiliation(s)
- Wangzhi Li
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jie Wu
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sang-Yong Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ming Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen A Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Q Zhang
- 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA [2] MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
57
|
Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM. Role of CHD5 in human cancers: 10 years later. Cancer Res 2014; 74:652-8. [PMID: 24419087 DOI: 10.1158/0008-5472.can-13-3056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.
Collapse
Affiliation(s)
- Venkatadri Kolla
- Authors' Affiliations: Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia; and The University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|