51
|
Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem 2014; 289:14981-95. [PMID: 24727477 DOI: 10.1074/jbc.m113.529354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.
Collapse
Affiliation(s)
- Suraiya A Ansari
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Paul
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Sebastian Sommer
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Corinna Lieleg
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Qiye He
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Alexandre Z Daly
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Kara A Rode
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Wesley T Barber
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Laura C Ellis
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Erika LaPorta
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| | - Amanda M Orzechowski
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Emily Taylor
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Tanner Reeb
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Jason Wong
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509
| | - Philipp Korber
- the Adolf-Butenandt-Institut, Universität München, 80336 Munich, Germany
| | - Randall H Morse
- From the Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, the Department of Biomedical Science, University at Albany School of Public Health, Albany, New York 12201-0509, and
| |
Collapse
|
52
|
Gaillard H, Aguilera A. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004203. [PMID: 24603480 PMCID: PMC3945788 DOI: 10.1371/journal.pgen.1004203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/10/2014] [Indexed: 12/18/2022] Open
Abstract
During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3'-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
- * E-mail:
| |
Collapse
|
53
|
Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F. Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol Cell 2014; 53:549-61. [PMID: 24508389 DOI: 10.1016/j.molcel.2014.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/31/2013] [Accepted: 12/31/2013] [Indexed: 01/14/2023]
Abstract
Genomic analysis has revealed the existence of a large number of long noncoding RNAs (lncRNAs) with different functions in a variety of organisms, including yeast. Cells display dramatic changes of gene expression upon environmental changes. Upon osmostress, hundreds of stress-responsive genes are induced by the stress-activated protein kinase (SAPK) p38/Hog1. Using whole-genome tiling arrays, we found that Hog1 induces a set of lncRNAs upon stress. One of the genes expressing a Hog1-dependent lncRNA in antisense orientation is CDC28, the cyclin-dependent kinase 1 (CDK1) that controls the cell cycle in yeast. Cdc28 lncRNA mediates the establishment of gene looping and the relocalization of Hog1 and RSC from the 3' UTR to the +1 nucleosome to induce CDC28 expression. The increase in the levels of Cdc28 results in cells able to reenter the cell cycle more efficiently after stress. This may represent a general mechanism to prime expression of genes needed after stresses are alleviated.
Collapse
Affiliation(s)
- Mariona Nadal-Ribelles
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Zhenyu Xu
- EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
54
|
Gelev V, Zabolotny JM, Lange M, Hiromura M, Yoo SW, Orlando JS, Kushnir A, Horikoshi N, Paquet E, Bachvarov D, Schaffer PA, Usheva A. A new paradigm for transcription factor TFIIB functionality. Sci Rep 2014; 4:3664. [PMID: 24441171 PMCID: PMC3895905 DOI: 10.1038/srep03664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 12/23/2022] Open
Abstract
Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.
Collapse
Affiliation(s)
- Vladimir Gelev
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Janice M Zabolotny
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Martin Lange
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Makoto Hiromura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sang Wook Yoo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Orlando
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anna Kushnir
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nobuo Horikoshi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Paquet
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Dimcho Bachvarov
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Priscilla A Schaffer
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anny Usheva
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
55
|
Singh BN, Hampsey M. Detection of short-range chromatin interactions by chromosome conformation capture (3C) in yeast. Methods Mol Biol 2014; 1205:209-18. [PMID: 25213247 DOI: 10.1007/978-1-4939-1363-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a modified 3C ("chromosome conformation capture") protocol for detection of transient, short-range chromatin interactions in the yeast Saccharomyces cerevisiae. 3C was initially described by Job Dekker and involves formaldehyde cross-linking to stabilize transient chromatin interactions, followed by restriction digestion, ligation, and locus-specific PCR. As such, 3C reveals complex three-dimensional interactions between distal genetic elements within intact cells at high resolution. Using a modified version of Dekker's protocol, we are able to detect gene loops that juxtapose promoter and terminator regions of yeast genes with ORFs as short as 1 kb. We are using this technique to define the cis- and trans-acting requirements for the formation and maintenance of gene loops, and to elucidate their physiological consequences. We anticipate that this method will be generally applicable to detect dynamic, short-range chromatin interactions, not limited to gene loops.
Collapse
Affiliation(s)
- Badri Nath Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, 638 Hoes Lane West, Piscataway, NJ, 08854, USA
| | | |
Collapse
|
56
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
57
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
58
|
Mercer TR, Mattick JS. Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Res 2013; 23:1081-8. [PMID: 23817049 PMCID: PMC3698501 DOI: 10.1101/gr.156612.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expansive functionality and complexity has been ascribed to the majority of the human genome that was unanticipated at the outset of the draft sequence and assembly a decade ago. We are now faced with the challenge of integrating and interpreting this complexity in order to achieve a coherent view of genome biology. We argue that the linear representation of the genome exacerbates this complexity and an understanding of its three-dimensional structure is central to interpreting the regulatory and transcriptional architecture of the genome. Chromatin conformation capture techniques and high-resolution microscopy have afforded an emergent global view of genome structure within the nucleus. Chromosomes fold into complex, territorialized three-dimensional domains in concert with specialized subnuclear bodies that harbor concentrations of transcription and splicing machinery. The signature of these folds is retained within the layered regulatory landscapes annotated by chromatin immunoprecipitation, and we propose that genome contacts are reflected in the organization and expression of interweaved networks of overlapping coding and noncoding transcripts. This pervasive impact of genome structure favors a preeminent role for the nucleoskeleton and RNA in regulating gene expression by organizing these folds and contacts. Accordingly, we propose that the local and global three-dimensional structure of the genome provides a consistent, integrated, and intuitive framework for interpreting and understanding the regulatory and transcriptional complexity of the human genome.
Collapse
Affiliation(s)
- Tim R Mercer
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
59
|
Abstract
Gene looping, defined as the physical interaction between the promoter and terminator regions of a RNA polymerase II-transcribed gene, is widespread in yeast and mammalian cells. Gene looping has been shown to play important roles in transcription. Gene-loop formation is dependent on regulatory proteins localized at the 5' and 3' ends of genes, such as TFIIB. However, whether other factors contribute to gene looping remains to be elucidated. Here, we investigated the contribution of intrinsic DNA and chromatin structures to gene looping. We found that Saccharomyces cerevisiae looped genes show high DNA bendability around middle and 3/4 regions in open reading frames (ORFs). This bendability pattern is conserved between yeast species, whereas the position of bendability peak varies substantially among species. Looped genes in human cells also show high DNA bendability. Nucleosome positioning around looped ORF middle regions is unstable. We also present evidence indicating that this unstable nucleosome positioning is involved in gene looping. These results suggest a mechanism by which DNA bendability and unstable nucleosome positioning could assist in the formation of gene loops.
Collapse
Affiliation(s)
- Zhiming Dai
- Department of Electronics and Communication Engineering, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou, China
| | | | | |
Collapse
|
60
|
Wagner LM, DeLuca NA. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One 2013; 8:e78242. [PMID: 24147125 PMCID: PMC3795685 DOI: 10.1371/journal.pone.0078242] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate early protein, ICP4, participates in the regulation of viral gene expression by both activating and repressing RNA polII transcription. We used affinity purification of ICP4 expressed in infected cells followed by mass spectrometry and western blot analysis to determine the composition of cellular complexes associated with ICP4 throughout infection. ICP4 was associated with TFIID complexes containing a distinct set of TAFs. These complexes were most abundant early, but were detected throughout infection, whereas Mediator was found in ICP4 containing complexes later in infection, indicating a temporal pattern for the utilization of these complexes for the transcription of the viral genome. The form of Mediator copurifying with ICP4 was enriched for the kinase domain and also lacked the activator-specific component, Med26, suggesting that Mediator-ICP4 interactions may be involved in repression of viral transcription. The N-terminal 774 amino acids of ICP4, which retains partial function, were sufficient to form complexes with TFIID and Mediator, although these interactions were not as strong as with full-length ICP4. Additionally, components involved in transcription elongation, chromatin remodeling, and mRNA processing were isolated with ICP4. Together our data indicate that ICP4 plays a more integrated role in mediating HSV transcription, possibly affecting multiple steps in transcription and gene expression.
Collapse
Affiliation(s)
- Lauren M. Wagner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neal A. DeLuca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
61
|
Rodríguez-Torres AM, Lamas-Maceiras M, García-Díaz R, Freire-Picos MA. Structurally conserved and functionally divergent yeast Ssu72 phosphatases. FEBS Lett 2013; 587:2617-22. [PMID: 23831060 DOI: 10.1016/j.febslet.2013.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/25/2022]
Abstract
The eukaryotic Ssu72 factor is involved in several RNA biogenesis processes. It has phosphatase activity on the carboxy-terminal domain (CTD) of the major subunit of RNA polymerase II. The Kluyveromyces lactis Ssu72 (KlSsu72) shows in vitro phosphatase activity for the pNPP substrate, and this activity is inhibited by ortho-vanadate. The expression of KlSsu72 in Saccharomyces cerevisiae shows defective CTD serine5-P phosphatase activity and reveals the importance of Ssu72 for the normal CTD serine5-P levels at two growth states. The divergence is emphasised by the remarkable changes in RNA14 alternative 3'-end RNA processing, which are independent of the CTD serine5-P levels.
Collapse
|
62
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
63
|
Hebenstreit D. Are gene loops the cause of transcriptional noise? Trends Genet 2013; 29:333-8. [PMID: 23663933 DOI: 10.1016/j.tig.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/14/2022]
Abstract
Expression levels of the same mRNA or protein vary significantly among the cells of an otherwise identical population. Such biological noise has great functional implications and is largely due to transcriptional bursting, the episodic production of mRNAs in short, intense bursts, interspersed by periods of transcriptional inactivity. Bursting has been demonstrated in a wide range of pro- and eukaryotic species, attesting to its universal importance. However, the mechanistic origins of bursting remain elusive. A different type of phenomenon, which has also been suggested to be widespread, is the physical interaction between the promoter and 3' end of a gene. Several functional roles have been proposed for such gene loops, including the facilitation of transcriptional reinitiation. Here, I discuss the most recent findings related to these subjects and argue that gene loops are a likely cause of transcriptional bursting and, thus, biological noise.
Collapse
Affiliation(s)
- Daniel Hebenstreit
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
64
|
Mukundan B, Ansari A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J Biol Chem 2013; 288:11384-94. [PMID: 23476016 PMCID: PMC3630880 DOI: 10.1074/jbc.m112.446773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
We have earlier demonstrated the involvement of Mediator subunit Srb5/Med18 in the termination of transcription for a subset of genes in yeast. Srb5/Med18 could affect termination either indirectly by modulating CTD-Ser(2) phosphorylation near the 3' end of a gene or directly by physically interacting with the cleavage and polyadenylation factor or cleavage factor 1 (CF1) complex and facilitating their recruitment to the terminator region. Here, we show that the CTD-Ser(2) phosphorylation pattern on Srb5/Med18-dependent genes remains unchanged in the absence of Srb5 in cells. Coimmunoprecipitation analysis revealed the physical interaction of Srb5/Med18 with the CF1 complex. No such interaction of Srb5/Med18 with the cleavage and polyadenylation factor complex, however, could be detected. The Srb5/Med18-CF1 interaction was not observed in the looping defective sua7-1 strain. Srb5/Med18 cross-linking to the 3' end of genes was also abolished in the sua7-1 strain. Chromosome conformation capture analysis revealed that the looped architecture of Srb5/Med18-dependent genes was abrogated in srb5(-) cells. Furthermore, Srb5-dependent termination of transcription was compromised in the looping defective sua7-1 cells. The overall conclusion of these results is that gene looping plays a crucial role in Srb5/Med18 facilitated termination of transcription, and the looped gene architecture may have a general role in termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Banupriya Mukundan
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Athar Ansari
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
65
|
DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 2013; 50:93-103. [PMID: 23478442 DOI: 10.1016/j.molcel.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/15/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here, we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a mechanism for the recruitment of a chromatin remodeling enzyme and define a function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes.
Collapse
|
66
|
Andersen PK, Jensen TH, Lykke-Andersen S. Making ends meet: coordination between RNA 3'-end processing and transcription initiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:233-46. [PMID: 23450686 DOI: 10.1002/wrna.1156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
67
|
Stress-Mediated Alterations in Chromatin Architecture Correlate with Down-Regulation of a Gene Encoding 60S rpL32 in Rice. ACTA ACUST UNITED AC 2013; 54:528-40. [DOI: 10.1093/pcp/pct012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Henriques T, Ji Z, Tan-Wong SM, Carmo AM, Tian B, Proudfoot NJ, Moreira A. Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster. Transcription 2013; 3:198-212. [PMID: 22992452 PMCID: PMC3654770 DOI: 10.4161/trns.21967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.
Collapse
Affiliation(s)
- Telmo Henriques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Upon binding to a promoter, RNA polymerase II can synthesize either a coding mRNA or a divergently transcribed noncoding RNA. In a recent issue of Science, Tan-Wong et al. (2012) find that intragenic looping increases the proper orientation of RNA polymerase II, reducing the production of divergent noncoding transcripts.
Collapse
|
70
|
El Kaderi B, Medler S, Ansari A. Analysis of interactions between genomic loci through Chromosome Conformation Capture (3C). CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 22:Unit22.15. [PMID: 22968842 DOI: 10.1002/0471143030.cb2215s56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genome architecture plays a significant role in the regulation of DNA-based cellular processes such as transcription and recombination. The successful accomplishment of these processes involves coordinated interaction of DNA elements located at a distance from each other. The 'Chromosome Conformation Capture' (3C) assay is a convenient tool for identification of physical association between spatially separated DNA elements in a cell under physiological conditions. The principle of 3C is to convert physical chromosomal interactions into specific DNA ligation products, which are then detected by PCR. The 3C protocol was originally used to identify long-range, stable chromosomal interactions in yeast. Here we describe a modified 3C procedure that can detect transient, short-range interactions of DNA elements separated by a distance of less than 700 bp. This method has been successfully used to detect dynamic interaction of transcription regulatory elements in yeast and can be used for detecting similar interactions of other genomic regions.
Collapse
Affiliation(s)
- Belal El Kaderi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
71
|
Crevillén P, Sonmez C, Wu Z, Dean C. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 2012; 32:140-8. [PMID: 23222483 DOI: 10.1038/emboj.2012.324] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Gene activation in eukaryotes frequently involves interactions between chromosomal regions. We have investigated whether higher-order chromatin structures are involved in the regulation of the Arabidopsis floral repressor gene FLC, a target of several chromatin regulatory pathways. Here, we identify a gene loop involving the physical interaction of the 5' and 3' flanking regions of the FLC locus using chromosome conformation capture. The FLC loop is unaffected by mutations disrupting conserved chromatin regulatory pathways leading to very different expression states. However, the loop is disrupted during vernalization, the cold-induced, Polycomb-dependent epigenetic silencing of FLC. Loop disruption parallels timing of the cold-induced FLC transcriptional shut-down and upregulation of FLC antisense transcripts, but does not need a cold-induced PHD protein required for the epigenetic silencing. We suggest that gene loop disruption is an early step in the switch from an expressed to a Polycomb-silenced state.
Collapse
Affiliation(s)
- Pedro Crevillén
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
72
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
73
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
74
|
Tan-Wong SM, Zaugg JB, Camblong J, Xu Z, Zhang DW, Mischo HE, Ansari AZ, Luscombe NM, Steinmetz LM, Proudfoot NJ. Gene loops enhance transcriptional directionality. Science 2012; 338:671-5. [PMID: 23019609 PMCID: PMC3563069 DOI: 10.1126/science.1224350] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic genomes are extensively transcribed, forming both messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). ncRNAs made by RNA polymerase II often initiate from bidirectional promoters (nucleosome-depleted chromatin) that synthesize mRNA and ncRNA in opposite directions. We demonstrate that, by adopting a gene-loop conformation, actively transcribed mRNA encoding genes restrict divergent transcription of ncRNAs. Because gene-loop formation depends on a protein factor (Ssu72) that coassociates with both the promoter and the terminator, the inactivation of Ssu72 leads to increased synthesis of promoter-associated divergent ncRNAs, referred to as Ssu72-restricted transcripts (SRTs). Similarly, inactivation of individual gene loops by gene mutation enhances SRT synthesis. We demonstrate that gene-loop conformation enforces transcriptional directionality on otherwise bidirectional promoters.
Collapse
MESH Headings
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Genes, Fungal
- Genome, Fungal
- Mutation
- Nucleic Acid Conformation
- Phosphoprotein Phosphatases/metabolism
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic
- mRNA Cleavage and Polyadenylation Factors/metabolism
Collapse
Affiliation(s)
- Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
TFIIB dephosphorylation links transcription inhibition with the p53-dependent DNA damage response. Proc Natl Acad Sci U S A 2012; 109:18797-802. [PMID: 23115335 DOI: 10.1073/pnas.1207483109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The general transcription factor II B (TFIIB) plays a central role in both the assembly of the transcription complex at gene promoters and also in the events that lead to transcription initiation. TFIIB is phosphorylated at serine-65 at the promoters of several endogenous genes, and this modification is required to drive the formation of gene promoter-3' processing site contacts through the cleavage stimulation factor 3' (CstF 3')-processing complex. Here we demonstrate that TFIIB phosphorylation is dispensable for the transcription of genes activated by the p53 tumor suppressor. We find that the kinase activity of TFIIH is critical for the phosphorylation of TFIIB serine-65, but it is also dispensable for the transcriptional activation of p53-target genes. Moreover, we demonstrate that p53 directly interacts with CstF independent of TFIIB phosphorylation, providing an alternative route to the recruitment of 3'-processing complexes to the gene promoter. Finally, we show that DNA damage leads to a reduction in the level of phospho-ser65 TFIIB that leaves the p53 transcriptional response intact, but attenuates transcription at other genes. Our data reveal a mode of phospho-TFIIB-independent transcriptional regulation that prioritizes the transcription of p53-target genes during cellular stress.
Collapse
|
76
|
Strick TR, Hernandez N. Eeny meeny miny moe, catch a transcript by the toe, or how to enumerate eukaryotic transcripts. Genes Dev 2012; 26:1643-7. [PMID: 22855826 DOI: 10.1101/gad.199349.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Genes & Development, Revyakin and colleagues (pp. 1691-1702) measure the relation between individual RNA polymerase II transcription events and transcription factor assembly by counting RNA transcripts retained on the template DNA using single-molecule fluorescence.
Collapse
Affiliation(s)
- Terence R Strick
- Institut Jacques Monod, CNRS UMR, University of Paris-Diderot, France.
| | | |
Collapse
|
77
|
García A, Collin A, Calvo O. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. Mol Biol Cell 2012; 23:4297-312. [PMID: 22973055 PMCID: PMC3484106 DOI: 10.1091/mbc.e12-04-0331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3'-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5-Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5-Rpb1 complex levels and consequently transcription elongation rate.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
78
|
Luse DS. Promoter clearance by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:63-8. [PMID: 22982364 DOI: 10.1016/j.bbagrm.2012.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance. Once the transcript elongation complex has reached a point where its properties are indistinguishable from those of complexes with much longer transcripts, promoter clearance is complete. The clearance process for pol II consists of a number of steps and it extends for a surprisingly long distance downstream of transcription start. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
79
|
Knutson BA, Hahn S. TFIIB-related factors in RNA polymerase I transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:265-73. [PMID: 22960599 DOI: 10.1016/j.bbagrm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023]
Abstract
Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Bruce A Knutson
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Ave. N, P.O. Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.
| | | |
Collapse
|
80
|
Le May N, Fradin D, Iltis I, Bougnères P, Egly JM. XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes. Mol Cell 2012; 47:622-32. [PMID: 22771116 DOI: 10.1016/j.molcel.2012.05.050] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Nucleotide excision repair factors, initially characterized as part of DNA repair, have been shown to participate in the transcriptional process in the absence of genotoxic attack. However, their molecular function when recruited at the promoters of activated genes together with the transcription machinery remained obscure. Here we show that the NER factors XPG and XPF are essential for establishing CTCF-dependent chromatin looping between the promoter and terminator of the activated RARβ2 gene. Silencing XPG and/or XPF endonucleases, or mutations in their catalytic sites, prevents CTCF recruitment, chromatin loop formation, and optimal transcription of RARβ2. We demonstrated that XPG endonuclease promotes DNA breaks and DNA demethylation at promoters allowing the recruitment of CTCF and gene looping, which is further stabilized by XPF. Our results highlight a timely orchestrated activity of the NER factors XPG and XPF in the formation of the active chromatin hub that controls gene expression.
Collapse
Affiliation(s)
- Nicolas Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Inserm/ULP, BP163, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | | | | | | | | |
Collapse
|
81
|
Abstract
Eukaryotic genomic DNA is combined with histones, nonhistone proteins, and RNA to form chromatin, which is extensively packaged hierarchically to fit inside a cell's nucleus. The nucleosome-comprising a histone octamer with 147 base pairs of DNA wrapped around it-is the initial level and the repeating unit of chromatin packaging, which electron microscopy first made visible to the human eye as "beads on a string" nearly four decades ago. The mechanism and nature of chromatin packaging are still under intense research. Recently, classic methods like chromatin immunoprecipitation and digestion with deoxyribonuclease and micrococcal nuclease have been combined with high-throughput sequencing to provide detailed nucleosome occupancy maps, and chromosome conformation capture and its variants have revealed that higher-order chromatin structure involves long-range loop formation between distant genomic elements. This review discusses the methods for identifying higher-order chromatin structure and the information they have provided on this important topic.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Medicine, Division of Human Genetics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
82
|
Abstract
We analyzed three human genes that were >200 kbp in length as they are switched on rapidly and synchronously by tumor necrosis factor alpha and obtained new insights into the transcription cycle that are difficult to obtain using continuously active, short, genes. First, a preexisting "whole-gene" loop in one gene disappears on stimulation; it is stabilized by CCCTC-binding factor and TFIIB and poises the gene for a prompt response. Second, "subgene" loops (detected using chromosome conformation capture) develop and enlarge, a result that is simply explained if elongating polymerases become immobilized in transcription factories, where they reel in their templates. Third, high-resolution localization confirms that relevant nascent transcripts (detected using RNA fluorescence in situ hybridization) lie close enough to be present on the surface of one factory. These dynamics underscore the complex transitions between the poised, initiating, and elongating transcriptional states.
Collapse
|
83
|
Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci U S A 2012; 109:8505-10. [PMID: 22586116 DOI: 10.1073/pnas.1112400109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in INO1, which is a nonintronic gene, and deleted the intron from ASC1, which contains a natural intron. We then compared transcription of INO1 and ASC1 genes in the presence and absence of an intron. Transcription of both genes was significantly stimulated by the intron. The introns have a direct role in enhancing transcription of INO1 and ASC1 because there was a marked increase in nascent transcripts from these genes in the presence of an intron. Intron-mediated enhancement of transcription required a splicing competent intron. Interestingly, both INO1 and ASC1 were in a looped configuration when their genes contained an intron. Intron-dependent gene looping involved a physical interaction of the promoter and the terminator regions. In addition, the promoter region interacted with the 5' splice site and the terminator with the 3' splice site. Intron-mediated enhancement of transcription was completely abolished in the looping defective sua7-1 strain. No effect on splicing, however, was observed in sua7-1 strain. On the basis of these results, we propose a role for gene looping in intron-mediated transcriptional activation of genes in yeast.
Collapse
|
84
|
The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:391-400. [DOI: 10.1016/j.bbagrm.2012.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 01/03/2023]
|
85
|
Abstract
Transcription of protein-coding genes by RNA polymerase II is a repetitive, cyclic process that enables synthesis of multiple RNA molecules from the same template. The transcription cycle consists of three main stages, initiation, elongation and termination. Each of these phases is intimately coupled to a specific step in pre-mRNA processing; 5´ capping, splicing and 3´-end formation, respectively. In this article, we discuss the recent concept that cotranscriptional checkpoints operate during mRNA biogenesis to ensure that nonfunctional mRNAs with potentially deleterious effects for the cell are not produced or exported to the cytoplasm for translation.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
86
|
Affiliation(s)
- Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
87
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
88
|
Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483:295-301. [PMID: 22258509 PMCID: PMC3306527 DOI: 10.1038/nature10799] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023]
Abstract
The structural and positional organization of transcription pre-initiation complexes (PICs) across eukaryotic genomes is unknown. We employed ChIP-exo to precisely examine ~6,000 PICs in Saccharomyces. PICs, including RNA polymerase II and general factors TFIIA, -B, -D/TBP, -E, -F, -H, and -K were positioned within promoters and excluded from coding regions. Exonuclease patterns agreed with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged +1 nucleosomes. At TATA box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may afford greater latitude in start site selection. Our genomic localization of mRNA and noncoding RNA PICs reveal that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona-fide genes from transcriptional noise.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
89
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
90
|
Murray SC, Serra Barros A, Brown DA, Dudek P, Ayling J, Mellor J. A pre-initiation complex at the 3'-end of genes drives antisense transcription independent of divergent sense transcription. Nucleic Acids Res 2011; 40:2432-44. [PMID: 22123739 PMCID: PMC3315312 DOI: 10.1093/nar/gkr1121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The precise nature of antisense transcripts in eukaryotes such as Saccharomyces cerevisiae remains elusive. Here we show that the 3' regions of genes possess a promoter architecture, including a pre-initiation complex (PIC), which mirrors that at the 5' region and which is much more pronounced at genes with a defined antisense transcript. Remarkably, for genes with an antisense transcript, average levels of PIC components at the 3' region are ∼60% of those at the 5' region. Moreover, at these genes, average levels of nascent antisense transcription are ∼45% of sense transcription. We find that this 3' promoter architecture persists for highly transcribed antisense transcripts where there are only low levels of transcription in the divergent sense direction, suggesting that the 3' regions of genes can drive antisense transcription independent of divergent sense transcription. To validate this, we insert short 3' regions into the middle of other genes and find that they are capable of both initiating antisense transcripts and terminating sense transcripts. Our results suggest that antisense transcription can be regulated independently of divergent sense transcription in a PIC-dependent manner and we propose that regulated production of antisense transcripts represents a fundamental and widespread component of gene regulation.
Collapse
Affiliation(s)
- Struan C Murray
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
91
|
Throwing transcription for a loop: expression of the genome in the 3D nucleus. Chromosoma 2011; 121:107-16. [PMID: 22094989 DOI: 10.1007/s00412-011-0352-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
The functional output of the genome is closely dependent on its organization within the nucleus, which ranges from the 10-nm chromatin fiber to the three-dimensional arrangement of this fiber in the nuclear space. Recent observations suggest that intra- and inter-chromosomal interactions between distant sequences underlie several aspects of transcription regulatory processes. These contacts can bring enhancers close to their target genes or prevent inappropriate interactions between regulatory sequences via insulators. In addition, intra- and inter-chromosomal interactions can bring co-activated or co-repressed genes to the same nuclear location. Recent technological advances have made it possible to map long-range cis and trans interactions at relatively high resolution. This information is being used to develop three-dimensional maps of the arrangement of the genome in the nucleus and to understand causal relationships between nuclear structure and function.
Collapse
|
92
|
Goel S, Krishnamurthy S, Hampsey M. Mechanism of start site selection by RNA polymerase II: interplay between TFIIB and Ssl2/XPB helicase subunit of TFIIH. J Biol Chem 2011; 287:557-567. [PMID: 22081613 DOI: 10.1074/jbc.m111.281576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIB is essential for transcription initiation by RNA polymerase II. TFIIB also cross-links to terminator regions and is required for gene loops that juxtapose promoter-terminator elements in a transcription-dependent manner. The Saccharomyces cerevisiae sua7-1 mutation encodes an altered form of TFIIB (E62K) that is defective for both start site selection and gene looping. Here we report the isolation of an ssl2 mutant, encoding an altered form of TFIIH, as a suppressor of the cold-sensitive growth defect of the sua7-1 mutation. Ssl2 (Rad25) is orthologous to human XPB and is a member of the SF2 family of ATP-dependent DNA helicases. The ssl2 suppressor allele encodes an arginine replacement of the conserved histidine residue (H508R) located within the DEVH-containing helicase domain. In addition to suppressing the TFIIB E62K growth defect, Ssl2 H508R partially restores both normal start site selection and gene looping. Moreover, Ssl2, like TFIIB, associates with promoter and terminator regions, and the diminished association of TFIIB E62K with the PMA1 terminator is restored by the Ssl2 H508R suppressor. These results define a novel, functional interaction between TFIIB and Ssl2 that affects start site selection and gene looping.
Collapse
Affiliation(s)
- Shivani Goel
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | - Michael Hampsey
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
93
|
Erokhin M, Davydova A, Kyrchanova O, Parshikov A, Georgiev P, Chetverina D. Insulators form gene loops by interacting with promoters in Drosophila. Development 2011; 138:4097-106. [PMID: 21862564 DOI: 10.1242/dev.062836] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.
Collapse
Affiliation(s)
- Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334 Russia
| | | | | | | | | | | |
Collapse
|
94
|
Mukundan B, Ansari A. Novel role for mediator complex subunit Srb5/Med18 in termination of transcription. J Biol Chem 2011; 286:37053-7. [PMID: 21921038 PMCID: PMC3199451 DOI: 10.1074/jbc.c111.295915] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/13/2011] [Indexed: 11/06/2022] Open
Abstract
Mediator complex functions at the recruitment as well as the post-recruitment steps of transcription. Here we provide evidence for a novel role of Mediator in termination of transcription. Mediator subunit Srb5/Med18 cross-links to the 5' and 3' ends of INO1 and CHA1. In srb5(-) cells, recruitment of TATA-binding protein (TBP) and transcription factor IIB (TFIIB) onto the promoter of these genes remained unaffected, but cross-linking of the cleavage-polyadenylation factors Rna15 and Pta1 toward the 3' end of genes was compromised. In these cells, RNA polymerase II accumulated near the 3' end of genes and beyond. Transcription run-on analysis confirmed a transcription readthrough phenotype in the absence of Srb5/Med18. These results strongly suggest that Mediator subunit Srb5/Med18 is required for proper termination of transcription of a subset of genes in budding yeast.
Collapse
Affiliation(s)
- Banupriya Mukundan
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Athar Ansari
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
95
|
Ghazy MA, Gordon JMB, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C. The interaction of Pcf11 and Clp1 is needed for mRNA 3'-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Res 2011; 40:1214-25. [PMID: 21993299 PMCID: PMC3273803 DOI: 10.1093/nar/gkr801] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained enigmatic. We show that Clp1 interacts with the Cleavage–Polyadenylation Factor (CPF) through its N-terminal and central domains, and thus provides cross-factor connections within the processing complex. Clp1 is known to bind ATP, consistent with the reported RNA kinase activity of human Clp1. However, substitution of conserved amino acids in the ATP-binding site did not affect cell growth, suggesting that the essential function of yeast Clp1 does not involve ATP hydrolysis. Surprisingly, non-viable mutations predicted to displace ATP did not affect ATP binding but disturbed the Clp1–Pcf11 interaction. In support of the importance of this interaction, a mutation in Pcf11 that disrupts the Clp1 contact caused defects in growth, 3′-end processing and transcription termination. These results define Clp1 as a bridge between CF IA and CPF and indicate that the Clp1–Pcf11 interaction is modulated by amino acids in the conserved ATP-binding site of Clp1.
Collapse
Affiliation(s)
- Mohamed A Ghazy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Transcription factor TFIIF is not required for initiation by RNA polymerase II, but it is essential to stabilize transcription factor TFIIB in early elongation complexes. Proc Natl Acad Sci U S A 2011; 108:15786-91. [PMID: 21896726 DOI: 10.1073/pnas.1104591108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription factors TFIIB and TFIIF are both required for RNA polymerase II preinitiation complex (PIC) assembly, but their roles at and downstream of initiation are not clear. We now show that TFIIF phosphorylated by casein kinase 2 remains competent to support PIC assembly but is not stably retained in the PIC. PICs completely lacking TFIIF are not defective in initiation or subsequent promoter clearance, demonstrating that TFIIF is not required for initiation or clearance. Lack of TFIIF in the PIC reduces transcription levels at some promoters, coincident with reduced retention of TFIIB. TFIIB is normally associated with the early elongation complex and is only destabilized at +12 to +13. However, if TFIIF is not retained in the PIC, TFIIB can be lost immediately after initiation. TFIIF therefore has an important role in stabilizing TFIIB within the PIC and after transcription initiates.
Collapse
|
97
|
Medler S, Al Husini N, Raghunayakula S, Mukundan B, Aldea A, Ansari A. Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping. J Biol Chem 2011; 286:33709-18. [PMID: 21835917 DOI: 10.1074/jbc.m110.193870] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene looping, defined as the interaction of the promoter and the terminator regions of a gene during transcription, requires transcription factor IIB (TFIIB). We have earlier demonstrated association of TFIIB with the distal ends of a gene in an activator-dependent manner (El Kaderi, B., Medler, S., Raghunayakula, S., and Ansari, A. (2009) J. Biol. Chem. 284, 25015-25025). The presence of TFIIB at the 3' end of a gene required its interaction with cleavage factor 1 (CF1) 3' end processing complex subunit Rna15. Here, employing affinity chromatography and glycerol gradient centrifugation, we show that TFIIB associates with poly(A) polymerase and the entire CF1 complex in yeast cells. The factors required for general transcription such as TATA-binding protein, RNA polymerase II, and TFIIH are not a component of the TFIIB complex. This holo-TFIIB complex was resistant to MNase digestion. The complex was observed only in the looping-competent strains, but not in the looping-defective sua7-1 strain. The requirement of Rna15 in gene looping has been demonstrated earlier. Here we provide evidence that poly(A) polymerase (Pap1) as well as CF1 subunits Rna14 and Pcf11 are also required for loop formation of MET16 and INO1 genes. Accordingly, cross-linking of TFIIB to the 3' end of genes was abolished in the mutants of Pap1, Rna14, and Pcf11. We further show that in sua7-1 cells, where holo-TFIIB complex is not formed, the kinetics of activated transcription is altered. These results suggest that a complex of TFIIB, CF1 subunits, and Pap1 exists in yeast cells. Furthermore, TFIIB interaction with the CF1 complex and Pap1 is crucial for gene looping and transcriptional regulation.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biological Science, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
98
|
Kramer JM, Kochinke K, Oortveld MAW, Marks H, Kramer D, de Jong EK, Asztalos Z, Westwood JT, Stunnenberg HG, Sokolowski MB, Keleman K, Zhou H, van Bokhoven H, Schenck A. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol 2011; 9:e1000569. [PMID: 21245904 PMCID: PMC3014924 DOI: 10.1371/journal.pbio.1000569] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the "writers" of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9). EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells, which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT mutants occurs at 5% of the euchromatic genome and is enriched at the 5' and 3' ends of distinct classes of genes that control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel insights into the epigenetic control of cognition in health and disease.
Collapse
Affiliation(s)
- Jamie M. Kramer
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Korinna Kochinke
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Merel A. W. Oortveld
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hendrik Marks
- Radboud University Nijmegen, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Nijmegen, The Netherlands
| | - Daniela Kramer
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Eiko K. de Jong
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Zoltan Asztalos
- Aktogen Ltd., Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute of Biochemistry, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Hendrik G. Stunnenberg
- Radboud University Nijmegen, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Nijmegen, The Netherlands
| | | | | | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behavior; Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (AS); (HvB)
| | - Annette Schenck
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (AS); (HvB)
| |
Collapse
|
99
|
Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 2010; 286:5717-26. [PMID: 21159777 DOI: 10.1074/jbc.m110.197129] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P)(5) CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P)(5)-Pro(6) motif in the cis configuration. We show that the cis-Ser(P)(5)-Pro(6) isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology.
Collapse
Affiliation(s)
- Jon W Werner-Allen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. Crosstalk between mRNA 3' end processing and transcription initiation. Mol Cell 2010; 40:410-22. [PMID: 21070967 DOI: 10.1016/j.molcel.2010.10.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/11/2010] [Accepted: 08/23/2010] [Indexed: 11/24/2022]
Abstract
Transcription and mRNA maturation are interdependent events. Although stimulatory connections between these processes within the same round of transcription are well described, functional coupling between separate transcription cycles remains elusive. Comparing time-resolved transcription profiles of single-copy integrated β-globin gene variants, we demonstrate that a polyadenylation site mutation decreases transcription initiation of the same gene. Upon depletion of the 3' end processing and transcription termination factor PCF11, endogenous genes exhibit a similar phenotype. Readthrough RNA polymerase II (RNAPII) engaged on polyadenylation site-mutated transcription units sequester the transcription initiation/elongation factors TBP, TFIIB and CDK9, leading to their depletion at the promoter. Additionally, high levels of TBP and TFIIB appear inside the gene body, and Ser2-phosphorylated RNAPII accumulates at the promoter. Our data demonstrate that 3' end formation stimulates transcription initiation and suggest that coordinated recycling of factors from a gene terminator back to the promoter is essential for sustaining continued transcription.
Collapse
Affiliation(s)
- Christophe K Mapendano
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|