51
|
Keshari D, Singh KS, Sharma R, Yadav S, Singh SK. MSMEG_5684 down-regulation in Mycobacterium smegmatis affects its permeability, survival under stress and persistence. Tuberculosis (Edinb) 2017; 103:61-70. [PMID: 28237035 DOI: 10.1016/j.tube.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
Abstract
The Mycobacterium tuberculosis (Mtb) genome sequence and annotation details have been available for a long time; however physiological relevance of many ORFs remains poorly described. Mtb is a pathogenic strain; hence, surrogate strains such as Mycobacterium bovis BCG and Mycobacterium smegmatis (Msmeg) have also been studied to gain an understanding of mycobacterial physiology and metabolism. The Mycobacterium smegmatis mc2 155 ORF MSMEG_5684 is annotated as a part of serine biosynthetic pathway, however, its physiological significance remains to be established experimentally. To understand the relevance of SerC for Msmeg physiology we developed a recombinant Mycobacterium smegmatis with SerC knockdown (KD) and also complemented it with serC over-expressing construct (KDC). The KD showed reduced growth compared to wild-type (WT) and complemented strain on glycerol as carbon source. The growth of KD was restored after supplementation of serine. The survival studies with WT and KD under oxidative, nitrosative and detergent stresses showed increased susceptibility of KD. The KD also showed increased susceptibility to antimycobacterial agents and poor ability for in vitro persistence. Also, the serC transcript profiling showed increased expression under stress. The complementation studies with Msmeg serC showed growth restoration of E. coli-ΔserC in minimal medium.
Collapse
Affiliation(s)
- Deepa Keshari
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Kumar Sachin Singh
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rishabh Sharma
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shailendra Yadav
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
52
|
Abstract
The convergence of competitive fitness experiments and phenotypic screening would seem to be an auspicious beginning for validation of an antibacterial target. IMPDH was already identified an essential protein in Mycobacterium tuberculosis when not one, but two, groups discovered inhibitors with promising antitubercular activity. A new target appeared to be born. Surprisingly, the two groups came to completely different conclusions about the vulnerability of IMPDH and its future as a drug target. This viewpoint discusses these papers and how to resolve this conundrum.
Collapse
Affiliation(s)
- Lizbeth Hedstrom
- Departments of Biology and
Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453-9110, United States
| |
Collapse
|
53
|
Dyer JO, Dutta A, Gogol M, Weake VM, Dialynas G, Wu X, Seidel C, Zhang Y, Florens L, Washburn MP, Abmayr SM, Workman JL. Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression. J Mol Biol 2016; 429:2093-2107. [PMID: 27984043 DOI: 10.1016/j.jmb.2016.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022]
Abstract
Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription.
Collapse
Affiliation(s)
- Jamie O Dyer
- Department of Biology, Rockhurst University, Kansas City, MO 64110, USA
| | - Arnob Dutta
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - George Dialynas
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Xilan Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
54
|
Liu JL. The Cytoophidium and Its Kind: Filamentation and Compartmentation of Metabolic Enzymes. Annu Rev Cell Dev Biol 2016; 32:349-372. [DOI: 10.1146/annurev-cellbio-111315-124907] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji-Long Liu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| |
Collapse
|
55
|
van Kuilenburg AB, Meinsma R. The pivotal role of uridine-cytidine kinases in pyrimidine metabolism and activation of cytotoxic nucleoside analogues in neuroblastoma. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1504-12. [DOI: 10.1016/j.bbadis.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
|
56
|
Pan H, Hu Q, Wang J, Liu Z, Wu D, Lu W, Huang J. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun 2016; 477:915-922. [PMID: 27378425 DOI: 10.1016/j.bbrc.2016.06.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023]
Abstract
Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity.
Collapse
Affiliation(s)
- Huiling Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Qian Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Zehui Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|
57
|
Heits N, Heinze T, Bernsmeier A, Kerber J, Hauser C, Becker T, Kalthoff H, Egberts JH, Braun F. Influence of mTOR-inhibitors and mycophenolic acid on human cholangiocellular carcinoma and cancer associated fibroblasts. BMC Cancer 2016; 16:322. [PMID: 27206490 PMCID: PMC4875636 DOI: 10.1186/s12885-016-2360-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background The incidence of Cholangiocellular Carcinoma (CCA) is increasing in the western world. The tumour has a high proportion of desmoplastic stroma and is correlated with a worse prognosis when cancer associated myofibroblasts (CAFs) are present. Recent studies showed promising results after liver transplantation (LTx) in non-resectable early stage CCA. Mycophenolic acid (MPA) and the mTor inhibitor Everolimus are used to prevent organ rejection but recently were shown to exhibit an antiproliferative effect on CCA-cells. Little is known about the influence of immunosuppressive drugs on tumour cell proliferation and migration after paracrine stimulation by CAFs. Moreover, it is still unknown, which signaling pathways are activated following these specific cell-cell interactions. Methods CCA cell lines HuCCT1 and TFK1 were utilized for the study. CAFs were derived from resected CCA cancer tissue. Cell viability was measured by the crystal violet assay and tumour cell invasion was quantified using a modified co-culture transmigration assay. Semiquantitative cytokine-expression was measured using a cytokine-array. Protein expression and phosphorylation of ERK, STAT3 and AKT was determined by Western-blot analysis. Results CCA cells treated with MPA exhibited a dose related decrease in cell viability in contrast to Cyclosporine A (CSA) treatment which had no effect on cell viability. Everolimus significantly inhibited proliferation at very low concentrations. The pro-invasive effect of CAFs in co-culture transmigration assay was significantly reduced by Everolimus at a concentration of 1nM (p = 0.047). In contrast, MPA and CSA showed no effect on tumour cell invasion. Treatment of CAFs with 1nM Everolimus showed a significant reduction in the expression of IL 8, IL 13, MCP1, MIF and Serpin E1. CCA-cells showed significant increases in phosphorylation of ERK, STAT3 and AKT under the influence of conditioned CAF-media. This effect was suppressed by Everolimus. Conclusions The secretion of proinflammatory cytokines by CAFs may lead to increased activation of JAK/STAT3-, ERK- and AKT-signaling and increased migration of CCA-cells. Everolimus abrogates this effect and inhibits proliferation of CCA-cells even at low concentrations. LTx for non-resectable early stage CCA is currently performed in several clinical studies. Consistent with a role for common immunosuppressants in inhibiting tumour cell-proliferation and -invasion, our study indicates that a combination of standard therapies with Everolimus and MPA is a promising therapy option to treat CCA following LTx.
Collapse
Affiliation(s)
- Nils Heits
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany.
| | - Tillmann Heinze
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany.,Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Alexander Bernsmeier
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Jannik Kerber
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Charlotte Hauser
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| |
Collapse
|
58
|
Abstract
Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease.
Collapse
Affiliation(s)
- Gabriel N Aughey
- a MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics , University of Oxford , Oxford , UK
| | - Ji-Long Liu
- a MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics , University of Oxford , Oxford , UK
| |
Collapse
|
59
|
The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster. PLoS One 2016; 11:e0150910. [PMID: 26942456 PMCID: PMC4778902 DOI: 10.1371/journal.pone.0150910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/17/2022] Open
Abstract
Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid.
Collapse
|
60
|
Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 2015; 6:8923. [PMID: 26558346 PMCID: PMC4660370 DOI: 10.1038/ncomms9923] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. IMP dehydrogenase (IMPDH) plays essential roles in purine metabolism and cell proliferation. Here Buey et al. describe a guanine nucleotides regulated molecular mechanism for allosteric communication between the regulatory and catalytic domains of IMPDH.
Collapse
|
61
|
Chen K, Cao W, Li J, Sprengers D, Hernanda PY, Kong X, van der Laan LJW, Man K, Kwekkeboom J, Metselaar HJ, Peppelenbosch MP, Pan Q. Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid. Mol Med 2015; 21:792-802. [PMID: 26467706 DOI: 10.2119/molmed.2015.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023] Open
Abstract
As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector-based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Juan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pratika Y Hernanda
- Laboratory of Medical Genetics, Biomolecular Research Center, Wijaya Kusuma University, Surabaya, Indonesia
| | - Xiangdong Kong
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Luc J W van der Laan
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kwan Man
- Department of Surgery, Hong Kong University, Hong Kong, China
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
62
|
Labesse G, Alexandre T, Gelin M, Haouz A, Munier-Lehmann H. Crystallographic studies of two variants ofPseudomonas aeruginosaIMPDH with impaired allosteric regulation. ACTA ACUST UNITED AC 2015; 71:1890-9. [DOI: 10.1107/s1399004715013115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Inosine-5′-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation ofPseudomonas aeruginosaIMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer–tetramer interface with the active site and show significant modification upon substrate binding.
Collapse
|
63
|
Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, Lu G, Tzoneva G, Ma X, Wu T, Li W, Lu H, Ding L, Liang H, Huang X, Yang M, Jin L, Kang H, Chen S, Du A, Shen S, Ding J, Chen H, Chen J, von Stackelberg A, Gu L, Zhang J, Ferrando A, Tang J, Wang S, Zhou BBS. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med 2015; 21:563-71. [PMID: 25962120 DOI: 10.1038/nm.3840] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
Relapse is the leading cause of mortality in children with acute lymphoblastic leukemia (ALL). Among chemotherapeutics, thiopurines are key drugs in ALL combination therapy. Using whole-exome sequencing, we identified relapse-specific mutations in the phosphoribosyl pyrophosphate synthetase 1 gene (PRPS1), which encodes a rate-limiting purine biosynthesis enzyme, in 24/358 (6.7%) relapsed childhood B cell ALL (B-ALL) cases. All individuals who harbored PRPS1 mutations relapsed early during treatment, and mutated ALL clones expanded exponentially before clinical relapse. Our functional analyses of PRPS1 mutants uncovered a new chemotherapy-resistance mechanism involving reduced feedback inhibition of de novo purine biosynthesis and competitive inhibition of thiopurine activation. Notably, the de novo purine synthesis inhibitor lometrexol effectively abrogated PRPS1 mutant-driven drug resistance. These results highlight the importance of constitutive activation of the de novo purine synthesis pathway in thiopurine resistance, and they offer therapeutic strategies for the treatment of relapsed and thiopurine-resistant ALL.
Collapse
Affiliation(s)
- Benshang Li
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China. [3] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [3] Department of Pharmacology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Bai
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Renate Kirschner-Schwabe
- 1] Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany. [2] German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jun J Yang
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yao Chen
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Lu
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Gannie Tzoneva
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Xiaotu Ma
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tongmin Wu
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [3] Department of Pharmacology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Li
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | - Lixia Ding
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Liang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohang Huang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjun Yang
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Lei Jin
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Hui Kang
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Shuting Chen
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | | | - Shuhong Shen
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Ding
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhuan Chen
- 1] Department of Pharmacology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Collaborative Innovation Center of Systems Biomedicine, National Research Center for Translational Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Longjun Gu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghui Zhang
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Jingyan Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- 1] Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China. [2] Collaborative Innovation Center of Systems Biomedicine, National Research Center for Translational Medicine, Shanghai, China
| | - Bin-Bing S Zhou
- 1] Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [2] Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [3] Department of Pharmacology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China. [4] Collaborative Innovation Center of Systems Biomedicine, National Research Center for Translational Medicine, Shanghai, China
| |
Collapse
|
64
|
Orotic Acid, More Than Just an Intermediate of Pyrimidine de novo Synthesis. J Genet Genomics 2015; 42:207-19. [DOI: 10.1016/j.jgg.2015.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 01/21/2023]
|
65
|
Alexandre T, Rayna B, Munier-Lehmann H. Two classes of bacterial IMPDHs according to their quaternary structures and catalytic properties. PLoS One 2015; 10:e0116578. [PMID: 25706619 PMCID: PMC4338043 DOI: 10.1371/journal.pone.0116578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) occupies a key position in purine nucleotide metabolism. In this study, we have performed the biochemical and physico-chemical characterization of eight bacterial IMPDHs, among which six were totally unexplored. This study led to a classification of bacterial IMPDHs according to the regulation of their catalytic properties and their quaternary structures. Class I IMPDHs are cooperative enzymes for IMP, which are activated by MgATP and are octameric in all tested conditions. On the other hand, class II IMPDHs behave as Michaelis-Menten enzymes for both substrates and are tetramers in their apo state or in the presence of IMP, which are shifted to octamers in the presence of NAD or MgATP. Our work provides new insights into the IMPDH functional regulation and a model for the quaternary structure modulation is proposed.
Collapse
Affiliation(s)
- Thomas Alexandre
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Bertrand Rayna
- Institut Pasteur, Proteopole, Plateforme de biophysique des macromolecules et de leurs interactions, 25 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3528, F-75015, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
| |
Collapse
|
66
|
Rauner G, Barash I. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation. Exp Cell Res 2014; 328:186-196. [DOI: 10.1016/j.yexcr.2014.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/01/2014] [Accepted: 06/22/2014] [Indexed: 12/31/2022]
|
67
|
Simultaneous quantification of IMPDH activity and purine bases in lymphocytes using LC-MS/MS: assessment of biomarker responses to mycophenolic acid. Ther Drug Monit 2014; 36:108-18. [PMID: 24061448 DOI: 10.1097/ftd.0b013e3182a13900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The development of biomarkers describing the individual responses to the immunosuppressant mycophenolic acid (MPA) has focused on the target enzyme activity [inosine 5'-monophosphate dehydrogenase (IMPDH)]. An extended strategy is to quantify the metabolic consequences of IMPDH inhibition. The aim of this study was to develop an assay for quantification of IMPDH activity and related purine bases and to provide preliminary data on the behavior of these biomarkers during clinical exposure to MPA. METHODS Liquid chromatography-mass spectrometry was used to determine xanthine (IMPDH activity in incubated cell lysate), hypoxanthine, guanine, and adenine derived from free nucleotides in lymphocytes. Analytical performance was assessed, and the biomarkers were examined in CD4⁺ cells from 2 groups: Healthy individuals in a single-dose MPA study (n = 5) and liver transplant recipients on MPA therapy (n = 15). RESULTS Coefficients of variation between series were below 10% and 15% for measurement of the purines and IMPDH activity, respectively. Although IMPDH was inhibited, the purine levels increased in response to MPA in 3 of the 5 healthy individuals, and this positive response seemed to be associated with IMPDH1 c.579 + 119 G/G and c.580 - 106 G/G. In the liver transplant study, guanine was not reduced in response to the transient drop in IMPDH activity after MPA dosing. However, there were trends toward decrease in guanine and elevation of hypoxanthine during prolonged MPA therapy. The guanine/hypoxanthine ratio (median) was 37% lower and the adenine level was 21% lower at day 17 compared with day 4 after transplantation. CONCLUSIONS The assay allows precise quantification of IMPDH activity, hypoxanthine, guanine, and adenine in lymphocytes. Some individuals may possess a counteracting purine response to the MPA-mediated inhibition of IMPDH. Reduction of the guanine/hypoxanthine ratio may be related to prolonged inhibition of IMPDH and seems as an intriguing pharmacodynamic biomarker for MPA.
Collapse
|
68
|
Proteomic analysis of the response to NaCl stress of Lactobacillus bulgaricus. Biotechnol Lett 2014; 36:2263-9. [DOI: 10.1007/s10529-014-1601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
69
|
Juda P, Smigová J, Kováčik L, Bártová E, Raška I. Ultrastructure of cytoplasmic and nuclear inosine-5'-monophosphate dehydrogenase 2 "rods and rings" inclusions. J Histochem Cytochem 2014; 62:739-50. [PMID: 24980853 DOI: 10.1369/0022155414543853] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inosine-5'-monophosphate dehydrogenase catalyzes the critical step in the de novo synthesis of guanosine nucleotides: the oxidation of inosine monophosphate to xanthosine monophosphate. This reaction can be inhibited by specific inhibitors, such as ribavirin or mycophenolic acid, which are widely used in clinical treatment when required to inhibit the proliferation of viruses or cells. However, it was recently found that such an inhibition affects the cells, leading to a redistribution of IMPDH2 and the appearance of IMPDH2 inclusions in the cytoplasm. According to their shape, these inclusions have been termed "Rods and Rings" (R&R). In this work, we focused on the subcellular localization of IMPDH2 protein and the ultrastructure of R&R inclusions. Using microscopy and western blot analysis, we show the presence of nuclear IMPDH2 in human cells. We also show that the nuclear pool has an ability to form Rod structures after inhibition by ribavirin. Concerning the ultrastructure, we observed that R&R inclusions in cellulo correspond to the accumulation of fibrous material that is not surrounded by a biological membrane. The individual fibers are composed of regularly repeating subunits with a length of approximately 11 nm. Together, our findings describe the localization of IMPDH2 inside the nucleus of human cells as well as the ultrastructure of R&R inclusions.
Collapse
Affiliation(s)
- Pavel Juda
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Czech Republic (PJ, JS, LK, IR)Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic (EB)
| | - Jana Smigová
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Czech Republic (PJ, JS, LK, IR)Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic (EB)
| | - Lubomír Kováčik
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Czech Republic (PJ, JS, LK, IR)Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic (EB)
| | - Eva Bártová
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Czech Republic (PJ, JS, LK, IR)Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic (EB)
| | - Ivan Raška
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Czech Republic (PJ, JS, LK, IR)Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic (EB)
| |
Collapse
|
70
|
Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, Kitagawa T, Nakamura K. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis 2014; 35:2195-202. [PMID: 24532130 DOI: 10.1002/elps.201300497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 11/11/2022]
Abstract
Lactoylglutathione lyase (GLO1), a ubiquitously expressed methylglyoxal (MG) detoxification enzyme, is implicated in the progression of various human malignant diseases. However, the role of GLO1 in the development or progression of murine fibrosarcoma is still unclear. We performed proteomic analysis to identify differences in the intracellular proteins of the regressive tumor cell line QR-32 and the inflammatory cell-promoting progressive tumor cell line QRsP-11 of murine fibrosarcoma by 2DE combined with MS. Seven upregulated proteins were identified in QRsP-11 compared to QR-32 cells, namely, GLO1, annexin A1, adenylate kinase isoenzyme 1, transcription factor BTF3, myosin light polypeptide 6, low molecular weight phosphotyrosine protein phosphatase and nucleoside diphosphate kinase B. Heat shock protein beta-1 (HspB1), a methylglyoxal-adducted protein, is concomitantly over-expressed in QRsP-11 as compared to QR-32 cells. We also found out that GLO1 is translocated into the nucleus to a higher extent in QRsP-11 compared to QR-32 cells, which can be reversed by using a MEK inhibitor (U0126). Moreover, U0126 and GLO1 siRNA can inhibit cell proliferation and migration in QRsP-11 cells. Our data suggest that overexpression and nuclear translocation of GLO1 might be associated with tumor progression in murine fibrosarcoma.
Collapse
Affiliation(s)
- Yufeng Wang
- Departments of Biochemistry and Functional Proteomics Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Reddy BA, van der Knaap JA, Bot AGM, Mohd-Sarip A, Dekkers DHW, Timmermans MA, Martens JWM, Demmers JAA, Verrijzer CP. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell 2014; 53:458-70. [PMID: 24462112 DOI: 10.1016/j.molcel.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
Nucleotide biosynthesis is fundamental to normal cell proliferation as well as to oncogenesis. Tumor suppressor p53, which prevents aberrant cell proliferation, is destabilized through ubiquitylation by MDM2. Ubiquitin-specific protease 7 (USP7) plays a dualistic role in p53 regulation and has been proposed to deubiquitylate either p53 or MDM2. Here, we show that guanosine 5'-monophosphate synthase (GMPS) is required for USP7-mediated stabilization of p53. Normally, most GMPS is sequestered in the cytoplasm, separated from nuclear USP7 and p53. In response to genotoxic stress or nucleotide deprivation, GMPS becomes nuclear and facilitates p53 stabilization by promoting its transfer from MDM2 to a GMPS-USP7 deubiquitylation complex. Intriguingly, cytoplasmic sequestration of GMPS requires ubiquitylation by TRIM21, a ubiquitin ligase associated with autoimmune disease. These results implicate a classic nucleotide biosynthetic enzyme and a ubiquitin ligase, better known for its role in autoimmune disease, in p53 control.
Collapse
Affiliation(s)
- B Ashok Reddy
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Jan A van der Knaap
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Alice G M Bot
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Adone Mohd-Sarip
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Centre, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Centre, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.
| |
Collapse
|
72
|
Guglielmi B, La Rochelle N, Tjian R. Gene-specific transcriptional mechanisms at the histone gene cluster revealed by single-cell imaging. Mol Cell 2013; 51:480-92. [PMID: 23973376 DOI: 10.1016/j.molcel.2013.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/20/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
To bridge the gap between in vivo and in vitro molecular mechanisms, we dissected the transcriptional control of the endogenous histone gene cluster (His-C) by single-cell imaging. A combination of quantitative immunofluorescence, RNA FISH, and FRAP measurements revealed atypical promoter recognition complexes and differential transcription kinetics directing histone H1 versus core histone gene expression. While H1 is transcribed throughout S phase, core histones are only transcribed in a short pulse during early S phase. Surprisingly, no TFIIB or TFIID was detectable or functionally required at the initiation complexes of these promoters. Instead, a highly stable, preloaded TBP/TFIIA "pioneer" complex primes the rapid initiation of His-C transcription during early S phase. These results provide mechanistic insights for the role of gene-specific core promoter factors and implications for cell cycle-regulated gene expression.
Collapse
Affiliation(s)
- Benjamin Guglielmi
- Howard Hughes Medical Institute, Department of Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Cellular to animal to human studies are shedding light on metabolic pathways that contribute to sustaining lymphomagenesis. Old players with new metabolic tricks and new metabolic players come into the scene. The purpose of this review is to discuss the recent advances made in the field of lymphoma metabolism with special focus on the metabolic modulation of tumor promoting and suppressing pathways and, conversely, on the effect of these pathways on metabolite addiction. RECENT FINDINGS The basis for the high glucose uptake and glycolytic activity in lymphoma cells is now beginning to be understood. Recent findings suggest a greater role of nucleotide biosynthesis as a major driving force for glycolysis, especially during proliferation and cellular stress conditions. There is new evidence for an increasing contribution of glycine-folate metabolism deregulation in nucleotide biosynthesis, genome integrity and epigenetic maintenance. Expanding roles for MYC, PI3K and TP53 in regulating reactive oxygen production, glycolysis and glutaminolysis in lymphoma cells have been described. The identification of novel pathways has allowed the emergence of new 'antimetabolite' strategies to increase the therapeutic efficacy of current approaches. SUMMARY Metabolism in lymphomas must fulfill the general demands from cell proliferation and those specific to lymphomagenesis. Data emerging from preclinical studies are elucidating the metabolic pathways that contribute to maintaining the malignant phenotype in lymphomas. This has resulted in identification of novel pathways, some of which may have a clinical impact in the diagnosis, characterization and treatment of lymphoma subtypes.
Collapse
|
74
|
|
75
|
Roy P, Kumar B, Shende A, Singh A, Meena A, Ghosal R, Ranganathan M, Bandyopadhyay A. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes. PLoS One 2013; 8:e63670. [PMID: 23717462 PMCID: PMC3661535 DOI: 10.1371/journal.pone.0063670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/04/2013] [Indexed: 01/07/2023] Open
Abstract
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.
Collapse
Affiliation(s)
- Priti Roy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Brijesh Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Akhilesh Shende
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Anupama Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Anil Meena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Ritika Ghosal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Madhav Ranganathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, U.P., India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., India
- * E-mail:
| |
Collapse
|
76
|
MgATP regulates allostery and fiber formation in IMPDHs. Structure 2013; 21:975-85. [PMID: 23643948 DOI: 10.1016/j.str.2013.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/22/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in nucleotide biosynthesis studied as an important therapeutic target and its complex functioning in vivo is still puzzling and debated. Here, we highlight the structural basis for the regulation of IMPDHs by MgATP. Our results demonstrate the essential role of the CBS tandem, conserved among almost all IMPDHs. We found that Pseudomonas aeruginosa IMPDH is an octameric enzyme allosterically regulated by MgATP and showed that this octameric organization is widely conserved in the crystal structures of other IMPDHs. We also demonstrated that human IMPDH1 adopts two types of complementary octamers that can pile up into isolated fibers in the presence of MgATP. The aggregation of such fibers in the autosomal dominant mutant, D226N, could explain the onset of the retinopathy adRP10. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or macromolecular assembly.
Collapse
|
77
|
Azzam G, Liu JL. Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet 2013; 9:e1003256. [PMID: 23459760 PMCID: PMC3573105 DOI: 10.1371/journal.pgen.1003256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
CTP synthase is an essential enzyme that plays a key role in energy metabolism. Several independent studies have demonstrated that CTP synthase can form an evolutionarily conserved subcellular structure termed cytoophidium. In budding yeast, there are two isoforms of CTP synthase and both isoforms localize in cytoophidium. However, little is known about the distribution of CTP synthase isoforms in Drosophila melanogaster. Here, we report that three transcripts generated at the CTP synthase gene locus exhibit different expression profiles, and three isoforms encoded by this gene locus show a distinct subcellular distribution. While isoform A localizes in the nucleus, isoform B distributes diffusely in the cytoplasm, and only isoform C forms the cytoophidium. In the two isoform C-specific mutants, cytoophidia disappear in the germline cells. Although isoform A does not localize to the cytoophidium, a mutation disrupting mostly isoform A expression results in the disassembly of cytoophidia. Overexpression of isoform C can induce the growth of the cytoophidium in a cell-autonomous manner. Ectopic expression of the cytoophidium-forming isoform does not cause any defect in the embryos. In addition, we identify that a small segment at the amino terminus of isoform C is necessary but not sufficient for cytoophidium formation. Finally, we demonstrate that an excess of the synthetase domain of CTP synthase disrupts cytoophidium formation. Thus, the study of multiple isoforms of CTP synthase in Drosophila provides a good opportunity to dissect the biogenesis and function of the cytoophidum in a genetically tractable organism. DNA and RNA are made up from basic building blocks called nucleotides. Those nucleotides also play essential roles in many other biological processes. To separate biological processes within a cell is an important feature of all cell types. For example, mitochondria are specialized structures that contain ATP synthase, the enzyme that makes the nucleotide ATP. While mitochondria and ATP synthase have been studied for about 100 years, it was only very recently that we realized that there are specialized subcellular structures that contain CTP synthase, the enzyme that makes up another basic nucleotide CTP. Several independent studies have shown that CTP synthase molecules can form a filamentous structure called the cytoophidium (meaning “cellular snake” in Greek) or CTP synthase filament in bacteria, budding yeasts, fruit flies, and rat and human cells. In budding yeast, there are two isoforms of CTP synthase and both isoforms localize in the cytoophidium. Here, we report that three CTP synthase isoforms in fruit flies show a distinct subcellular distribution and only one isoform forms the cytoophidium. Thus, the study of multiple isoforms of CTP synthase in the fruit fly gives us a good way to begin to learn how and why CTP synthase molecules form this snake-like structure.
Collapse
Affiliation(s)
- Ghows Azzam
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, Whitehead JP. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One 2012; 7:e51096. [PMID: 23236438 PMCID: PMC3517587 DOI: 10.1371/journal.pone.0051096] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.
Collapse
Affiliation(s)
- Elaine C. Thomas
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| | - Jennifer H. Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Julie A. Webster
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Viola Oorschot
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Jonathan P. Whitehead
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| |
Collapse
|
79
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|