51
|
Abstract
A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm.
Collapse
Affiliation(s)
- Takeshi Kawabata
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
52
|
Martínez-Fernández V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2018; 5:63-74. [PMID: 31435513 PMCID: PMC6690254 DOI: 10.3934/genet.2018.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Rpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme. In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
53
|
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 2017; 551:653-657. [PMID: 29168508 PMCID: PMC5907806 DOI: 10.1038/nature24658] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation.
Collapse
|
54
|
TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat Struct Mol Biol 2017; 24:1139-1145. [PMID: 29106413 PMCID: PMC5741190 DOI: 10.1038/nsmb.3500] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022]
Abstract
Eukaryotic mRNA transcription initiation is directed by the formation of the megaDalton-sized pre-initiation complex (PIC). After PIC formation, double-stranded DNA is unwound to form a single-stranded DNA bubble and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2(XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase where downstream DNA is searched for optimal start-sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6 base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6 bp open complex which RNA polymerase II expands via NTP-dependent RNA transcription.
Collapse
|
55
|
Han Z, Porrua O. Helicases as transcription termination factors: Different solutions for a common problem. Transcription 2017; 9:152-158. [PMID: 28886303 DOI: 10.1080/21541264.2017.1361503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Helicases are enzymes that remodel nucleic acids or protein-nucleic acid complexes in an ATP-dependent manner. They are ubiquitous and can play many diverse functions related to the metabolism of nucleic acids. A few helicases from both the prokaryotic and the eukaryotic worlds have the ability to induce transcription termination. Here we discuss how the same biological function is achieved by different helicases with quite divergent structures and mechanisms of action.
Collapse
Affiliation(s)
- Zhong Han
- a Institut Jacques Monod, Centre Nationale pour la Recherche Scientifique (CNRS), UMR 7592, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Université Paris-Saclay , Gif sur Yvette , France
| | - Odil Porrua
- a Institut Jacques Monod, Centre Nationale pour la Recherche Scientifique (CNRS), UMR 7592, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
56
|
Han Z, Libri D, Porrua O. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucleic Acids Res 2017; 45:1355-1370. [PMID: 28180347 PMCID: PMC5388409 DOI: 10.1093/nar/gkw1230] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
Pervasive transcription is widespread and needs to be controlled in order to avoid interference with gene expression. In Saccharomyces cerevisiae, the highly conserved helicase Sen1 plays a key role in restricting pervasive transcription by eliciting early termination of non-coding transcription. However, many aspects of the mechanism of termination remain unclear. In this study we characterize the biochemical activities of Sen1 and their role in termination. First, we demonstrate that the helicase domain (HD) is sufficient to dissociate the elongation complex (EC) in vitro. Both full-length Sen1 and its HD can translocate along single-stranded RNA and DNA in the 5΄ to 3΄ direction. Surprisingly, however, we show that Sen1 is a relatively poorly processive enzyme, implying that it must be recruited in close proximity to the RNA polymerase II (RNAPII) for efficient termination. We present evidence that Sen1 can promote forward translocation of stalled polymerases by acting on the nascent transcript. In addition, we find that dissociation of the EC by Sen1 is favoured by the reannealing of the DNA upstream of RNAPII. Taken together, our results provide new clues to understand the mechanism of Sen1-dependent transcription termination and a rationale for the kinetic competition between elongation and termination.
Collapse
Affiliation(s)
- Zhong Han
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Domenico Libri
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Odil Porrua
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
57
|
Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat Struct Mol Biol 2017; 24:809-815. [PMID: 28892040 DOI: 10.1038/nsmb.3465] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
During transcription, RNA polymerase II (Pol II) associates with the conserved elongation factor DSIF. DSIF renders the elongation complex stable and functions during Pol II pausing and RNA processing. We combined cryo-EM and X-ray crystallography to determine the structure of the mammalian Pol II-DSIF elongation complex at a nominal resolution of 3.4 Å. Human DSIF has a modular structure with two domains forming a DNA clamp, two domains forming an RNA clamp, and one domain buttressing the RNA clamp. The clamps maintain the transcription bubble, position upstream DNA, and retain the RNA transcript in the exit tunnel. The mobile C-terminal region of DSIF is located near exiting RNA, where it can recruit factors for RNA processing. The structure provides insight into the roles of DSIF during mRNA synthesis.
Collapse
|
58
|
Malik I, Qiu C, Snavely T, Kaplan CD. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo. Nucleic Acids Res 2017; 45:4431-4451. [PMID: 28119420 PMCID: PMC5416818 DOI: 10.1093/nar/gkx037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023] Open
Abstract
Here we employ a set of RNA Polymerase II (Pol II) activity mutants to determine the consequences of increased or decreased Pol II catalysis on gene expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, either fast or slow, leads to decreased Pol II occupancy and apparent reduction in elongation rate in vivo. However, we also find that determination of elongation rate in vivo by chromatin immunoprecipitation can be confounded by the kinetics and conditions of transcriptional shutoff in the assay. We identify promoter and template-specific effects on severity of gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the magnitude of half-life changes correlate both with mutants' growth and reporter expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells to nucleotide depletion. In contrast to model predictions, mutated Pol II retains normal sensitivity to altered nucleotide levels. Our experiments establish a framework for understanding the diversity of transcription defects derived from altered Pol II activity mutants, essential for their use as probes of transcription mechanisms.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
59
|
Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas Č, Siksnys V. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition. Mol Cell 2017; 62:295-306. [PMID: 27105119 DOI: 10.1016/j.molcel.2016.03.024] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 12/26/2022]
Abstract
Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA.
Collapse
Affiliation(s)
- Migle Kazlauskiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania.
| | - Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania.
| |
Collapse
|
60
|
Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Müller CW. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J 2017; 36:2698-2709. [PMID: 28739580 PMCID: PMC5599796 DOI: 10.15252/embj.201796958] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre‐rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi‐subunit pre‐initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo‐EM structure of the 18‐subunit yeast Pol I PIC bound to a transcription scaffold. The cryo‐EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB‐related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.
Collapse
Affiliation(s)
- Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Lucas Tafur
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arjen J Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Hamburg, Germany
| | - Rene Wetzel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Katarzyna Buczak
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Wim Jh Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
61
|
Abstract
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Collapse
Affiliation(s)
- Alexandra M Gehring
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| | - Thomas J Santangelo
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
62
|
Xu Y, Bernecky C, Lee CT, Maier KC, Schwalb B, Tegunov D, Plitzko JM, Urlaub H, Cramer P. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat Commun 2017; 8:15741. [PMID: 28585565 PMCID: PMC5467213 DOI: 10.1038/ncomms15741] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
The conserved polymerase-associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin.
Collapse
Affiliation(s)
- Youwei Xu
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Carrie Bernecky
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Max Planck Society, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
63
|
Wang B, Sexton RE, Feig M. Kinetics of nucleotide entry into RNA polymerase active site provides mechanism for efficiency and fidelity. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:482-490. [PMID: 28242207 PMCID: PMC5393355 DOI: 10.1016/j.bbagrm.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
During transcription, RNA polymerase II elongates RNA by adding nucleotide triphosphates (NTPs) complementary to a DNA template. Structural studies have suggested that NTPs enter and exit the active site via the narrow secondary pore but details have remained unclear. A kinetic model is presented that integrates molecular dynamics simulations with experimental data. Previous simulations of trigger loop dynamics and the dynamics of matched and mismatched NTPs in and near the active site were combined with new simulations describing NTP exit from the active site via the secondary pore. Markov state analysis was applied to identify major states and estimate kinetic rates for transitions between those states. The kinetic model predicts elongation and misincorporation rates in close agreement with experiment and provides mechanistic hypotheses for how NTP entry and exit via the secondary pore is feasible and a key feature for achieving high elongation and low misincorporation rates during RNA elongation.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Rachel E Sexton
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
64
|
Park KH, An Y, Jung TY, Baek IY, Noh H, Ahn WC, Hebert H, Song JJ, Kim JH, Oh BH, Woo EJ. RNA activation-independent DNA targeting of the Type III CRISPR-Cas system by a Csm complex. EMBO Rep 2017; 18:826-840. [PMID: 28364023 DOI: 10.15252/embr.201643700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/19/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system is an adaptive and heritable immune response that destroys invading foreign nucleic acids. The effector complex of the Type III CRISPR-Cas system targets RNA and DNA in a transcription-coupled manner, but the exact mechanism of DNA targeting by this complex remains elusive. In this study, an effector Csm holocomplex derived from Thermococcus onnurineus is reconstituted with a minimalistic combination of Csm1121334151, and shows RNA targeting and RNA-activated single-stranded DNA (ssDNA) targeting activities. Unexpectedly, in the absence of an RNA transcript, it cleaves ssDNA containing a sequence complementary to the bound crRNA guide region in a manner dependent on the HD domain of the Csm1 subunit. This nuclease activity is blocked by a repeat tag found in the host CRISPR loci. The specific cleavage of ssDNA without a target RNA suggests a novel ssDNA targeting mechanism of the Type III system, which could facilitate the efficient and complete degradation of foreign nucleic acids.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yan An
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Yang Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Institute for the BioCentury, Daejeon, South Korea.,Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.,School of Technology and Health, KTH Royal Institute of Technology, Huddinge, Sweden
| | - In-Young Baek
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haemin Noh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Institute for the BioCentury, Daejeon, South Korea
| | - Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Institute for the BioCentury, Daejeon, South Korea
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.,School of Technology and Health, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Institute for the BioCentury, Daejeon, South Korea
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) Institute for the BioCentury, Daejeon, South Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea .,Department of Analytical Bioscience, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
65
|
Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I, Knutson BA, He Y. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. eLife 2017; 6:e27414. [PMID: 28623663 PMCID: PMC5489313 DOI: 10.7554/elife.27414] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022] Open
Abstract
Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.
Collapse
Affiliation(s)
- Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, United States,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, United States
| | | | - Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, United States,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, United States
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States, (BAK)
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, United States, (YHe)
| |
Collapse
|
66
|
RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes. Proc Natl Acad Sci U S A 2016; 113:14994-14999. [PMID: 27956639 DOI: 10.1073/pnas.1613673114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.
Collapse
|
67
|
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genet 2016; 12:e1006321. [PMID: 27898685 PMCID: PMC5127505 DOI: 10.1371/journal.pgen.1006321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins. Proper regulation of Pol II transcription, the first step of gene expression, is essential for life. Extensive evidence has revealed a widely conserved and dynamic polymerase active site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity while possibly allowing control of transcription elongation. Coupling high-throughput sequencing with our previously established genetic system, we are able to assess the in vivo phenotypes for almost all possible single substitution Pol II TL mutants in the budding yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting and linker regions widely confer dominant and severe growth defects. Clustering of TL mutants’ transcription-related and general stress phenotypes reveals three main classes of TL mutants, including previously identified fast and slow elongating mutants. Comprehensive analyses of the distribution of fast and slow elongation mutants in light of existing Pol II crystal structures reveal critical regions contributing to proper TL dynamics and function. Evidence is presented linking a previously observed hydrophobic pocket to NTP substrate-induced TL closing, the mechanism critical for correct substrates selection and transcription fidelity. Finally, we assess the functional interplay between TL and its proximal domains, and their presumptive roles in the function and evolution of the TL. Utilizing the Pol II TL as a case study, we present a structural genetics approach that reveals insights into a complex, multi-functional, and essential domain in yeast.
Collapse
|
68
|
Tafur L, Sadian Y, Hoffmann NA, Jakobi AJ, Wetzel R, Hagen WJH, Sachse C, Müller CW. Molecular Structures of Transcribing RNA Polymerase I. Mol Cell 2016; 64:1135-1143. [PMID: 27867008 PMCID: PMC5179497 DOI: 10.1016/j.molcel.2016.11.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 01/22/2023]
Abstract
RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle. Pol I gradually closes its DNA-binding cleft during elongation complex formation Pol I bridge helix folds into a conformation similar to that in other RNA polymerases During elongation, the Pol I A12.2 C-terminal domain is excluded from the cleft A49 tandem winged helix domain contacts upstream DNA, similar to TFIIE
Collapse
Affiliation(s)
- Lucas Tafur
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Niklas A Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Arjen J Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rene Wetzel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wim J H Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
69
|
Lai WKM, Pugh BF. Genome-wide uniformity of human 'open' pre-initiation complexes. Genome Res 2016; 27:15-26. [PMID: 27927716 PMCID: PMC5204339 DOI: 10.1101/gr.210955.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
Transcription of protein-coding and noncoding DNA occurs pervasively throughout the mammalian genome. Their sites of initiation are generally inferred from transcript 5' ends and are thought to be either locally dispersed or focused. How these two modes of initiation relate is unclear. Here, we apply permanganate treatment and chromatin immunoprecipitation (PIP-seq) of initiation factors to identify the precise location of melted DNA separately associated with the preinitiation complex (PIC) and the adjacent paused complex (PC). This approach revealed the two known modes of transcription initiation. However, in contrast to prevailing views, they co-occurred within the same promoter region: initiation originating from a focused PIC, and broad nucleosome-linked initiation. PIP-seq allowed transcriptional orientation of Pol II to be determined, which may be useful near promoters where sufficient sense/anti-sense transcript mapping information is lacking. PIP-seq detected divergently oriented Pol II at both coding and noncoding promoters, as well as at enhancers. Their occupancy levels were not necessarily coupled in the two orientations. DNA sequence and shape analysis of initiation complex sites suggest that both sequence and shape contribute to specificity, but in a context-restricted manner. That is, initiation sites have the locally "best" initiator (INR) sequence and/or shape. These findings reveal a common core to pervasive Pol II initiation throughout the human genome.
Collapse
Affiliation(s)
- William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
70
|
Nucleosomal arrangement affects single-molecule transcription dynamics. Proc Natl Acad Sci U S A 2016; 113:12733-12738. [PMID: 27791062 DOI: 10.1073/pnas.1602764113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.
Collapse
|
71
|
Turtola M, Belogurov GA. NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble. eLife 2016; 5. [PMID: 27697152 PMCID: PMC5100998 DOI: 10.7554/elife.18096] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Universally conserved factors from NusG family bind at the upstream fork junction of transcription elongation complexes and modulate RNA synthesis in response to translation, processing, and folding of the nascent RNA. Escherichia coli NusG enhances transcription elongation in vitro by a poorly understood mechanism. Here we report that E. coli NusG slows Gre factor-stimulated cleavage of the nascent RNA, but does not measurably change the rates of single nucleotide addition and translocation by a non-paused RNA polymerase. We demonstrate that NusG slows RNA cleavage by inhibiting backtracking. This activity is abolished by mismatches in the upstream DNA and is independent of the gate and rudder loops, but is partially dependent on the lid loop. Our comprehensive mapping of the upstream fork junction by base analogue fluorescence and nucleic acids crosslinking suggests that NusG inhibits backtracking by stabilizing the minimal transcription bubble. DOI:http://dx.doi.org/10.7554/eLife.18096.001 Cells decode genes in two steps. First, they synthesize a molecule similar to DNA, called RNA, which is a complementary copy of the gene. This process, known as transcription, creates an intermediate RNA molecule that is turned into protein in the second step. RNA polymerase is an enzyme that carries out transcription; it separates the two strands of the DNA helix so that the RNA can be synthesized from the DNA template. By opening up the DNA downstream of where active copying is taking place, and re-annealing it upstream, RNA polymerase maintains a structure called a "transcription bubble". RNA polymerases do not copy continuously but oscillate back and forth along the DNA. Sometimes larger backwards oscillations, known as backtracking, temporarily block the production of the RNA molecule and slow down the transcription process. A protein called NusG helps to couple transcription to the other related processes that happen at the same time. One end of the protein, the N-terminal domain, anchors it to RNA polymerase and stimulates transcription elongation. The other end, the C-terminal domain, interacts with other proteins involved in the related processes and can positively or negatively control transcription elongation. Nevertheless it was poorly understood how NusG carries out these roles. Turtola and Belogurov investigated how NusG from the bacterium Escherichia coli affects the individual steps of transcription elongation. A simple experimental system was used, consisting of short pieces of DNA and RNA, an RNA polymerase and NusG. A transcription bubble resembles an opening in a zipper with two sliders; and rather than affecting the synthesis of RNA, NusG affected the part that corresponds to the “slider” located at the rear edge of the bubble. NusG helped this slider-like element to bring the DNA strands at this edge of the bubble back together and modified it so that it behaved as a ratchet that inhibited RNA polymerase from backtracking. This did not affect the smaller backwards and forwards oscillations of RNA polymerase. Turtola and Belogurov suggest that these newly discovered effects play a key role in regulating transcription; NusG’s N-terminal domain makes the RNA polymerase more efficient, whilst the C-terminal domain makes it amenable to control by other proteins. Future studies will investigate whether these effects are seen in more complex experimental systems, which include proteins that interact with NusG. DOI:http://dx.doi.org/10.7554/eLife.18096.002
Collapse
Affiliation(s)
- Matti Turtola
- Department of Biochemistry, University of Turku, Turku, Finland
| | | |
Collapse
|
72
|
Abstract
During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.
Collapse
Affiliation(s)
- Yuhong Zuo
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Thomas A Steitz
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute , New Haven , CT , USA.,c Department of Chemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
73
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
74
|
Kaster BC, Knippa KC, Kaplan CD, Peterson DO. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9. J Biol Chem 2016; 291:14883-95. [PMID: 27226557 DOI: 10.1074/jbc.m116.714394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Rpb9 is a conserved RNA polymerase II (pol II) subunit, the absence of which confers alterations to pol II enzymatic properties and transcription fidelity. It has been suggested previously that Rpb9 affects mobility of the trigger loop (TL), a structural element of Rpb1 that moves in and out of the active site with each elongation cycle. However, a biochemical mechanism for this effect has not been defined. We find that the mushroom toxin α-amanitin, which inhibits TL mobility, suppresses the effect of Rpb9 on NTP misincorporation, consistent with a role for Rpb9 in this process. Furthermore, we have identified missense alleles of RPB9 in yeast that suppress the severe growth defect caused by rpb1-G730D, a substitution within Rpb1 α-helix 21 (α21). These alleles suggest a model in which Rpb9 indirectly affects TL mobility by anchoring the position of α21, with which the TL directly interacts during opening and closing. Amino acid substitutions in Rpb9 or Rpb1 that disrupt proposed anchoring interactions resulted in phenotypes shared by rpb9Δ strains, including increased elongation rate in vitro Combinations of rpb9Δ with the fast rpb1 alleles that we identified did not result in significantly faster in vitro misincorporation rates than those resulting from rpb9Δ alone, and this epistasis is consistent with the idea that defects caused by the rpb1 alleles are related mechanistically to the defects caused by rpb9Δ. We conclude that Rpb9 supports intra-pol II interactions that modulate TL function and thus pol II enzymatic properties.
Collapse
Affiliation(s)
- Benjamin C Kaster
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Kevin C Knippa
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Craig D Kaplan
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - David O Peterson
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
75
|
Hindman R, Gollnick P. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5' to 3' Translocase in Transcription Termination of Vaccinia Early Genes. J Biol Chem 2016; 291:14826-38. [PMID: 27189950 DOI: 10.1074/jbc.m116.730135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5' to 3' translocase on single-stranded DNA.
Collapse
Affiliation(s)
- Ryan Hindman
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| |
Collapse
|
76
|
Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue. Nat Commun 2016; 7:11244. [PMID: 27091704 PMCID: PMC4838855 DOI: 10.1038/ncomms11244] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation. RNA Polymerase II can detect and cleave mis-incorporated nucleotides by a proofreading mechanism that requires backtracking of the enzyme. Here the authors show that Pol II backtracking occurs in a stepwise mode that involves two intermediate states where the fraying of the terminal RNA nucleotide is a prerequisite.
Collapse
|
77
|
Zhang L, Pardo-Avila F, Unarta IC, Cheung PPH, Wang G, Wang D, Huang X. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models. Acc Chem Res 2016; 49:687-94. [PMID: 26991064 DOI: 10.1021/acs.accounts.5b00536] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II (Pol II) is an essential enzyme that catalyzes transcription with high efficiency and fidelity in eukaryotic cells. During transcription elongation, Pol II catalyzes the nucleotide addition cycle (NAC) to synthesize mRNA using DNA as the template. The transitions between the states of the NAC require conformational changes of both the protein and nucleotides. Although X-ray structures are available for most of these states, the dynamics of the transitions between states are largely unknown. Molecular dynamics (MD) simulations can predict structure-based molecular details and shed light on the mechanisms of these dynamic transitions. However, the employment of MD simulations on a macromolecule (tens to hundreds of nanoseconds) such as Pol II is challenging due to the difficulty of reaching biologically relevant timescales (tens of microseconds or even longer). For this challenge to be overcome, kinetic network models (KNMs), such as Markov State Models (MSMs), have become a popular approach to access long-timescale conformational changes using many short MD simulations. We describe here our application of KNMs to characterize the molecular mechanisms of the NAC of Pol II. First, we introduce the general background of MSMs and further explain procedures for the construction and validation of MSMs by providing some technical details. Next, we review our previous studies in which we applied MSMs to investigate the individual steps of the NAC, including translocation and pyrophosphate ion release. In particular, we describe in detail how we prepared the initial conformations of Pol II elongation complex, performed MD simulations, extracted MD conformations to construct MSMs, and further validated them. We also summarize our major findings on molecular mechanisms of Pol II elongation based on these MSMs. In addition, we have included discussions regarding various key points and challenges for applications of MSMs to systems as large as the Pol II elongation complex. Finally, to study the overall NAC, we combine the individual steps of the NAC into a five-state KNM based on a nonbranched Brownian ratchet scheme to explain the single-molecule optical tweezers experimental data. The studies complement experimental observations and provide molecular mechanisms for the transcription elongation cycle. In the long term, incorporation of sequence-dependent kinetic parameters into KNMs has great potential for identifying error-prone sequences and predicting transcription dynamics in genome-wide transcriptomes.
Collapse
Affiliation(s)
- Lu Zhang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Fátima Pardo-Avila
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ilona Christy Unarta
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Peter Pak-Hang Cheung
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Guo Wang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Dong Wang
- Department
of Cellular and Molecular Medicine, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Xuhui Huang
- Department
of Chemistry and State Key Laboratory of Molecular Neuroscience, Center
for System Biology and Human Health, School of Science, and IAS, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
78
|
Liu B, Zuo Y, Steitz TA. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Proc Natl Acad Sci U S A 2016; 113:4051-6. [PMID: 27035955 PMCID: PMC4839411 DOI: 10.1073/pnas.1520555113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3'-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E coli transcription initiation complexes (TICs) containing the stress-responsive σ(S) factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σ(S)-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σ(S) factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the -10 element. In addition, σ(S)-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σ(S)-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation.
Collapse
Affiliation(s)
- Bin Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520; Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
79
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
80
|
Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 2016; 16:164-76. [PMID: 26898111 DOI: 10.1038/nri.2016.2] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As B cells engage in the immune response, they express activation-induced cytidine deaminase (AID) to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens. However, AID must be tightly controlled in B cells to minimize off-target mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the mechanisms of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity.
Collapse
|
81
|
The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 2016; 36:85-96. [PMID: 26827284 DOI: 10.1016/j.sbi.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
All cells must copy and express genes in accord with internal and external cues. The proper timing and response of such events relies on the active control of higher-order genomic organization. Cells use ATP-dependent molecular machines to alter the local and global topology of DNA so as to promote and counteract the persistent effects of transcription and replication. X-ray crystallography and electron microscopy, coupled with biochemical and single molecule methods are continuing to provide a wealth of mechanistic information on how DNA remodeling factors are employed to dynamically shape and organize the genome.
Collapse
|
82
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|
83
|
Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P. Structure of transcribing mammalian RNA polymerase II. Nature 2016; 529:551-4. [DOI: 10.1038/nature16482] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
|
84
|
Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J, Hagen WJH, Sachse C, Müller CW. Molecular structures of unbound and transcribing RNA polymerase III. Nature 2015; 528:231-6. [PMID: 26605533 PMCID: PMC4681132 DOI: 10.1038/nature16143] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.
Collapse
Affiliation(s)
- Niklas A. Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Arjen J. Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestr. 85, 22607 Hamburg, Germany
| | - Maria Moreno-Morcillo
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Glatt
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wim J. H. Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| | - Christoph W. Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| |
Collapse
|
85
|
Arimbasseri AG, Maraia RJ. A high density of cis-information terminates RNA Polymerase III on a 2-rail track. RNA Biol 2015; 13:166-71. [PMID: 26636900 DOI: 10.1080/15476286.2015.1116677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcription termination delineates the 3' ends of transcripts, prevents otherwise runaway RNA polymerase (RNAP) from intruding into downstream genes and regulatory elements, and enables release of the RNAP for recycling. While other eukaryotic RNAPs require complex cis-signals and/or accessory factors to achieve these activities, RNAP III does so autonomously with high efficiency and precision at a simple oligo(dT) stretch of 5-6 bp. A basis for this high density cis-information is that both template and nontemplate strands of the RNAP III terminator carry distinct signals for different stages of termination. High-density cis-information is a feature of the RNAP III system that is also reflected by dual functionalities of the tRNA promoters as both DNA and RNA elements. We review emerging developments in RNAP III termination and single strand nontemplate DNA use by other RNAPs. Use of nontemplate signals by RNAPs and associated transcription factors may be prevalent in gene regulation.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Richard J Maraia
- a Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA.,b Commissioned Corps, U. S. Public Health Service , Washington, DC
| |
Collapse
|