51
|
Bridges LR. Replicating RNA as a component of scrapie fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553578. [PMID: 37645951 PMCID: PMC10462133 DOI: 10.1101/2023.08.17.553578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recently, electron cryo-microscopy (cryo-EM) maps of fibrils from the brains of mice and hamsters with five infectious scrapie strains have been published1-5 and deposited in the electron microscopy data bank (EMDB)6. This represents long-awaited near-atomic level structural evidence, widely expected to confirm the protein-only prion hypothesis7,8. Instead, the maps reveal a second component, other than protein. The aim of the present study was to identify the nature of this second component, in the published maps1-5, using an in silico approach. Extra densities (EDs) containing this component were continuous, straight, axial, at right angles to protein rungs and within hydrogen-bonding distance of protein, consistent with a role as guide and support in fibril construction. EDs co-located with strips of basic residues, notably lysines, and formed a conspicuous cladding over parts of the N-terminal lobe of the protein. In one ED, there was evidence of a Y-shaped polymer forming two antiparallel chains, consistent with replicating RNA. Although the protein-only prion hypothesis7 is still popular, convincing counter-evidence for an essential role of RNA as a cofactor has amassed in the last 20 years8. The present findings go beyond this in providing evidence for RNA as the genetic element of scrapie. To reflect the monotonous nature of the protein interface, it is suggested that the RNA may be a tandem repeat. This is against the protein-only prion hypothesis and in favour of a more orthodox agent, more akin to a virus. Fibrils from brains of patients with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and other neurodegenerations also contain EDs9 and may be of a similar aetiology.
Collapse
Affiliation(s)
- Leslie R Bridges
- Neuropathology, Cellular Pathology, South West London Pathology, St George's Hospital, St George's University Hospitals NHS Foundation Trust, London, UK and Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
52
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
53
|
Concha-Marambio L, Wang F, Armijo E, Gorski D, Ramirez F, Scowcroft A, Pritzkow S, Soto C. Development of a methodology for large-scale production of prions for biological and structural studies. Front Mol Biosci 2023; 10:1184029. [PMID: 37635939 PMCID: PMC10449461 DOI: 10.3389/fmolb.2023.1184029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases produced by the conversion of the normal prion protein (PrPC) into the disease-associated form (PrPSc). Extensive evidence indicate that the main or sole component of the infectious agent is PrPSc, which can replicate in affected individuals in the absence of nucleic acids. However, the mechanism of PrPC-to-PrPSc conversion remains elusive, which has been attributed to the lack of sufficient structural information of infectious PrPSc and a reliable system to study prion replication in vitro. In this article we adapted the Protein Misfolding Cyclic Amplification (PMCA) technology for rapid and efficient generation of highly infectious prions in large-scale. Murine prions of the RML strain were efficiently propagated in volumes up to 1,000-fold larger than conventional PMCA. The large-scale PMCA (LS-PMCA) procedure enabled to produce highly infectious prions, which maintain the strain properties of the seed used to begin the reaction. LS-PMCA was shown to work with various species and strains of prions, including mouse RML and 301C strains, hamster Hyper prion, cervid CWD prions, including a rare Norwegian CWD prion, and human CJD prions. We further improved the LS-PMCA into a bioreactor format that can operate under industry-mimicking conditions for continuous and unlimited production of PrPSc without the need to keep adding brain-derived prions. In our estimation, this bioreactor can produce in 1d an amount of prions equivalent to that present in 25 infected animals at the terminal stage of the disease. Our LS-PMCA technology may provide a valuable tool to produce large quantities of well-defined and homogeneous infectious prions for biological and structural studies.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| | - Fei Wang
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Enrique Armijo
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Damian Gorski
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Andrew Scowcroft
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
- Amprion Inc., San Diego, CA, United States
| |
Collapse
|
54
|
Shoup D, Priola SA. Full-length prion protein incorporated into prion aggregates is a marker for prion strain-specific destabilization of aggregate structure following cellular uptake. J Biochem 2023; 174:165-181. [PMID: 37099550 PMCID: PMC10506170 DOI: 10.1093/jb/mvad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023] Open
Abstract
Accumulation of insoluble aggregates of infectious, partially protease-resistant prion protein (PrPD) generated via the misfolding of protease sensitive prion protein (PrPC) into the same infectious conformer, is a hallmark of prion diseases. Aggregated PrPD is taken up and degraded by cells, a process likely involving changes in aggregate structure that can be monitored by accessibility of the N-terminus of full-length PrPD to cellular proteases. We therefore tracked the protease sensitivity of full-length PrPD before and after cellular uptake for two murine prion strains, 22L and 87V. For both strains, PrPD aggregates were less stable following cellular uptake with increased accessibility of the N-terminus to cellular proteases across most aggregate sizes. However, a limited size range of aggregates was able to better protect the N-termini of full-length PrPD, with the N-terminus of 22L-derived PrPD more protected than that of 87V. Interestingly, changes in aggregate structure were associated with minimal changes to the protease-resistant core of PrPD. Our data show that cells destabilize the aggregate quaternary structure protecting PrPD from proteases in a strain-dependent manner, with structural changes exposing protease sensitive PrPD having little effect on the protease-resistant core, and thus conformation, of aggregated PrPD.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 S. 4th Str, Hamilton, MT 59840 USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 S. 4th Str, Hamilton, MT 59840 USA
| |
Collapse
|
55
|
Baiardi S, Mammana A, Capellari S, Parchi P. Human prion disease: molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin Ther Targets 2023; 27:1271-1284. [PMID: 37334903 DOI: 10.1080/14728222.2023.2199923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Human prion diseases are heterogeneous, and often rapidly progressive, transmissible neurodegenerative disorders associated with misfolded prion protein (PrP) aggregation and self-propagation. Despite their rarity, prion diseases comprise a broad spectrum of phenotypic variants determined at the molecular level by different conformers of misfolded PrP and host genotype variability. Moreover, they uniquely occur in idiopathic, genetically determined, and acquired forms with distinct etiologies. AREA COVERED This review provides an up-to-date overview of potential therapeutic targets in prion diseases and the main results obtained in cell and animal models and human trials. The open issues and challenges associated with developing effective therapies and informative clinical trials are also discussed. EXPERT OPINION Currently tested therapeutic strategies target the cellular PrP to prevent the formation of misfolded PrP or to favor its elimination. Among them, passive immunization and gene therapy with antisense oligonucleotides against prion protein mRNA are the most promising. However, the disease's rarity, heterogeneity, and rapid progression profoundly frustrate the successful undertaking of well-powered therapeutic trials and patient identification in the asymptomatic or early stage before the development of significant brain damage. Thus, the most promising therapeutic goal to date is preventing or delaying phenoconversion in carriers of pathogenic mutations by lowering prion protein expression.
Collapse
Affiliation(s)
- Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
56
|
Bayazid R, Orru' C, Aslam R, Cohen Y, Silva-Rohwer A, Lee SK, Occhipinti R, Kong Q, Shetty S, Cohen ML, Caughey B, Schonberger LB, Appleby BS, Cali I. A novel subtype of sporadic Creutzfeldt-Jakob disease with PRNP codon 129MM genotype and PrP plaques. Acta Neuropathol 2023; 146:121-143. [PMID: 37156880 PMCID: PMC10166463 DOI: 10.1007/s00401-023-02581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The presence of amyloid kuru plaques is a pathological hallmark of sporadic Creutzfeldt-Jakob disease (sCJD) of the MV2K subtype. Recently, PrP plaques (p) have been described in the white matter of a small group of CJD (p-CJD) cases with the 129MM genotype and carrying resPrPD type 1 (T1). Despite the different histopathological phenotype, the gel mobility and molecular features of p-CJD resPrPD T1 mimic those of sCJDMM1, the most common human prion disease. Here, we describe the clinical features, histopathology, and molecular properties of two distinct PrP plaque phenotypes affecting the gray matter (pGM) or the white matter (pWM) of sCJD cases with the PrP 129MM genotype (sCJDMM). Prevalence of pGM- and pWM-CJD proved comparable and was estimated to be ~ 0.6% among sporadic prion diseases and ~ 1.1% among the sCJDMM group. Mean age at onset (61 and 68 years) and disease duration (~ 7 months) of pWM- and pGM-CJD did not differ significantly. PrP plaques were mostly confined to the cerebellar cortex in pGM-CJD, but were ubiquitous in pWM-CJD. Typing of resPrPD T1 showed an unglycosylated fragment of ~ 20 kDa (T120) in pGM-CJD and sCJDMM1 patients, while a doublet of ~ 21-20 kDa (T121-20) was a molecular signature of pWM-CJD in subcortical regions. In addition, conformational characteristics of pWM-CJD resPrPD T1 differed from those of pGM-CJD and sCJDMM1. Inoculation of pWM-CJD and sCJDMM1 brain extracts to transgenic mice expressing human PrP reproduced the histotype with PrP plaques only in mice challenged with pWM-CJD. Furthermore, T120 of pWM-CJD, but not T121, was propagated in mice. These data suggest that T121 and T120 of pWM-CJD, and T120 of sCJDMM1 are distinct prion strains. Further studies are required to shed light on the etiology of p-CJD cases, particularly those of T120 of the novel pGM-CJD subtype.
Collapse
Affiliation(s)
- Rabeah Bayazid
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Orru'
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Rabail Aslam
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amelia Silva-Rohwer
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Seong-Ki Lee
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Shashirekha Shetty
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian S Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA.
| |
Collapse
|
57
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
58
|
L P Hosszu L, Sangar D, Batchelor M, Risse E, Hounslow AM, Collinge J, Waltho JP, Bieschke J. Loss of residues 119 - 136, including the first β-strand of human prion protein, generates an aggregation-competent partially "open" form. J Mol Biol 2023:168158. [PMID: 37244570 DOI: 10.1016/j.jmb.2023.168158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Emmanuel Risse
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
59
|
Wickner RB, Edskes HK, Wu S, Gregg K. Prions are the greatest protein misfolding problem, and yeast has several solutions. PLoS Pathog 2023; 19:e1011333. [PMID: 37141188 PMCID: PMC10159183 DOI: 10.1371/journal.ppat.1011333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Songsong Wu
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristen Gregg
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
60
|
Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. A structural basis for prion strain diversity. Nat Chem Biol 2023; 19:607-613. [PMID: 36646960 PMCID: PMC10154210 DOI: 10.1038/s41589-022-01229-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 01/17/2023]
Abstract
Recent cryogenic electron microscopy (cryo-EM) studies of infectious, ex vivo, prion fibrils from hamster 263K and mouse RML prion strains revealed a similar, parallel in-register intermolecular β-sheet (PIRIBS) amyloid architecture. Rungs of the fibrils are composed of individual prion protein (PrP) monomers that fold to create distinct N-terminal and C-terminal lobes. However, disparity in the hamster/mouse PrP sequence precludes understanding of how divergent prion strains emerge from an identical PrP substrate. In this study, we determined the near-atomic resolution cryo-EM structure of infectious, ex vivo mouse prion fibrils from the ME7 prion strain and compared this with the RML fibril structure. This structural comparison of two biologically distinct mouse-adapted prion strains suggests defined folding subdomains of PrP rungs and the way in which they are interrelated, providing a structural definition of intra-species prion strain-specific conformations.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK.
| |
Collapse
|
61
|
Napper S, Schatzl HM. Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations. Front Immunol 2023; 14:1156451. [PMID: 37122761 PMCID: PMC10140515 DOI: 10.3389/fimmu.2023.1156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
62
|
Sun Y, Jack K, Ercolani T, Sangar D, Hosszu L, Collinge J, Bieschke J. Direct Observation of Competing Prion Protein Fibril Populations with Distinct Structures and Kinetics. ACS NANO 2023; 17:6575-6588. [PMID: 36802500 PMCID: PMC10100569 DOI: 10.1021/acsnano.2c12009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In prion diseases, fibrillar assemblies of misfolded prion protein (PrP) self-propagate by incorporating PrP monomers. These assemblies can evolve to adapt to changing environments and hosts, but the mechanism of prion evolution is poorly understood. We show that PrP fibrils exist as a population of competing conformers, which are selectively amplified under different conditions and can "mutate" during elongation. Prion replication therefore possesses the steps necessary for molecular evolution analogous to the quasispecies concept of genetic organisms. We monitored structure and growth of single PrP fibrils by total internal reflection and transient amyloid binding super-resolution microscopy and detected at least two main fibril populations, which emerged from seemingly homogeneous PrP seeds. All PrP fibrils elongated in a preferred direction by an intermittent "stop-and-go" mechanism, but each population possessed distinct elongation mechanisms that incorporated either unfolded or partially folded monomers. Elongation of RML and ME7 prion rods likewise exhibited distinct kinetic features. The discovery of polymorphic fibril populations growing in competition, which were previously hidden in ensemble measurements, suggests that prions and other amyloid replicating by prion-like mechanisms may represent quasispecies of structural isomorphs that can evolve to adapt to new hosts and conceivably could evade therapeutic intervention.
Collapse
Affiliation(s)
- Yuanzi Sun
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Kezia Jack
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Tiziana Ercolani
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Daljit Sangar
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Laszlo Hosszu
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - John Collinge
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Jan Bieschke
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| |
Collapse
|
63
|
Arshad H, Patel Z, Amano G, Li LY, Al-Azzawi ZAM, Supattapone S, Schmitt-Ulms G, Watts JC. A single protective polymorphism in the prion protein blocks cross-species prion replication in cultured cells. J Neurochem 2023; 165:230-245. [PMID: 36511154 DOI: 10.1111/jnc.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The bank vole (BV) prion protein (PrP) can function as a universal acceptor of prions. However, the molecular details of BVPrP's promiscuity for replicating a diverse range of prion strains remain obscure. To develop a cultured cell paradigm capable of interrogating the unique properties of BVPrP, we generated monoclonal lines of CAD5 cells lacking endogenous PrP but stably expressing either hamster (Ha), mouse (Mo), or BVPrP (M109 or I109 polymorphic variants) and then challenged them with various strains of mouse or hamster prions. Cells expressing BVPrP were susceptible to both mouse and hamster prions, whereas cells expressing MoPrP or HaPrP could only be infected with species-matched prions. Propagation of mouse and hamster prions in cells expressing BVPrP resulted in strain adaptation in several instances, as evidenced by alterations in conformational stability, glycosylation, susceptibility to anti-prion small molecules, and the inability of BVPrP-adapted mouse prion strains to infect cells expressing MoPrP. Interestingly, cells expressing BVPrP containing the G127V prion gene variant, identified in individuals resistant to kuru, were unable to become infected with prions. Moreover, the G127V polymorphic variant impeded the spontaneous aggregation of recombinant BVPrP. These results demonstrate that BVPrP can facilitate cross-species prion replication in cultured cells and that a single amino acid change can override the prion-permissive nature of BVPrP. This cellular paradigm will be useful for dissecting the molecular features of BVPrP that allow it to function as a universal prion acceptor.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Le Yao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
64
|
Šulskis D, Šneiderienė G, Žiaunys M, Smirnovas V. The seeding barrier between human and Syrian hamster prion protein amyloid fibrils is determined by β2-α2 loop sequence elements. Int J Biol Macromol 2023; 238:124038. [PMID: 36921824 DOI: 10.1016/j.ijbiomac.2023.124038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Transmissive spongiform encephalopathies (TSE) are a group of neurodegenerative diseases caused by infectious protein particles, known as prions. Prions are formed from cellular prion proteins (PrP) and can be transmitted between different mammalian species. Subsequently, the host's PrPs are then converted to prions, followed by the onset of TSE. Interspecies prion infectivity is governed by the amino acid sequence differences of PrPs and prions' inability to replicate in a host is termed a species barrier. Here, we investigated the amino acid sequence determinants of species barrier between recombinant human (rHuPrP) and hamster (rShaPrP) prion protein amyloid fibrils. We discovered that a unidirectional species barrier between rShaPrP and rHuPrP amyloid fibrils exists. This barrier stems from the difference of amino acid sequences in the conserved β2-α2 loop region. Our results revealed that individual amino acids in the β2-α2 loop region are critical for overcoming the barrier between human and hamster prion protein amyloid fibrils in vitro. Furthermore, the barrier was only possible to observe through aggregation kinetics, as the secondary structure rHuPrP fibrils was not affected by the cross-seeding. Overall, we demonstrated the mechanistic pathway behind this interspecies barrier phenomenon, which increases our understanding of prion-related disease development.
Collapse
Affiliation(s)
- Darius Šulskis
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.
| | - Greta Šneiderienė
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Mantas Žiaunys
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Amyloid Research Sector, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
65
|
Prion Propagation is Dependent on Key Amino Acids in Charge Cluster 2 within the Prion Protein. J Mol Biol 2023; 435:167925. [PMID: 36535427 DOI: 10.1016/j.jmb.2022.167925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
To dissect the N-terminal residues within the cellular prion protein (PrPC) that are critical for efficient prion propagation, we generated a library of point, double, or triple alanine replacements within residues 23-111 of PrP, stably expressed them in cells silenced for endogenous mouse PrPC and challenged the reconstituted cells with four common but biologically diverse mouse prion strains. Amino acids (aa) 105-111 of Charge Cluster 2 (CC2), which is disordered in PrPC, were found to be required for propagation of all four prion strains; other residues had no effect or exhibited strain-specific effects. Replacements in CC2, including aa105-111, dominantly inhibited prion propagation in the presence of endogenous wild type PrPC whilst other changes were not inhibitory. Single alanine replacements within aa105-111 identified leucine 108 and valine 111 or the cluster of lysine 105, threonine 106 and asparagine 107 as critical for prion propagation. These residues mediate specific ordering of unstructured CC2 into β-sheets in the infectious prion fibrils from Rocky Mountain Laboratory (RML) and ME7 mouse prion strains.
Collapse
|
66
|
Biasini E, Faccioli P. Functional, pathogenic, and pharmacological roles of protein folding intermediates. Proteins 2023. [PMID: 36779817 DOI: 10.1002/prot.26479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Protein expression and function in eukaryotic cells are tightly harmonized processes modulated by the combination of different layers of regulation, including transcription, processing, stability, and translation of messenger RNA, as well as assembly, maturation, sorting, recycling, and degradation of polypeptides. Integrating all these pathways and the protein quality control machinery, deputed to avoid the production and accumulation of aberrantly folded proteins, determines protein homeostasis. Over the last decade, the combined development of accurate time-resolved experimental techniques and efficient computer simulations has opened the possibility of investigating biological mechanisms at atomic resolution with physics-based models. A meaningful example is the reconstruction of protein folding pathways at atomic resolution, which has enabled the characterization of the folding kinetics of biologically relevant globular proteins consisting of a few hundred amino acids. Combining these innovative computational technologies with rigorous experimental approaches reveals the existence of non-native metastable states transiently appearing along the folding process of such proteins. Here, we review the primary evidence indicating that these protein folding intermediates could play roles in disparate biological processes, from the posttranslational regulation of protein expression to disease-relevant protein misfolding mechanisms. Finally, we discuss how the information encoded into protein folding pathways could be exploited to design an entirely new generation of pharmacological agents capable of promoting the selective degradation of protein targets.
Collapse
Affiliation(s)
- Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Pietro Faccioli
- Department of Physics, University of Trento, Trento, Italy
- Trento Institute for Fundamental Physics and Applications, Italian Institute for Nuclear Physics, Trento, Italy
| |
Collapse
|
67
|
Sun JL, Kim S, Crowell J, Webster BK, Raisley EK, Lowe DC, Bian J, Korpenfelt SL, Benestad SL, Telling GC. Novel Prion Strain as Cause of Chronic Wasting Disease in a Moose, Finland. Emerg Infect Dis 2023; 29:323-332. [PMID: 36692340 PMCID: PMC9881765 DOI: 10.3201/eid2902.220882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our previous studies using gene-targeted mouse models of chronic wasting disease (CWD) demonstrated that Norway and North America cervids are infected with distinct prion strains that respond differently to naturally occurring amino acid variation at residue 226 of the prion protein. Here we performed transmissions in gene-targeted mice to investigate the properties of prions causing newly emergent CWD in moose in Finland. Although CWD prions from Finland and Norway moose had comparable responses to primary structural differences at residue 226, other distinctive criteria, including transmission kinetics, patterns of neuronal degeneration, and conformational features of prions generated in the brains of diseased mice, demonstrated that the strain properties of Finland moose CWD prions are different from those previously characterized in Norway CWD. Our findings add to a growing body of evidence for a diverse portfolio of emergent strains in Nordic countries that are etiologically distinct from the comparatively consistent strain profile of North America CWD.
Collapse
|
68
|
Block AJ, York TC, Benedict R, Ma J, Bartz JC. Prion protein amino acid sequence influences formation of authentic synthetic PrP Sc. Sci Rep 2023; 13:441. [PMID: 36624174 PMCID: PMC9829857 DOI: 10.1038/s41598-022-26300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Synthetic prions, generated de novo from minimal, non-infectious components, cause bona fide prion disease in animals. Transmission of synthetic prions to hosts expressing syngeneic PrPC results in extended, variable incubation periods and incomplete attack rates. In contrast, murine synthetic prions (MSP) generated via PMCA with minimal cofactors readily infected mice and hamsters and rapidly adapted to both species. To investigate if hamster synthetic prions (HSP) generated under the same conditions as the MSP are also highly infectious, we inoculated hamsters with HSP generated with either hamster wild type or mutant (ΔG54, ΔG54/M139I, M139I/I205M) recombinant PrP. None of the inoculated hamsters developed clinical signs of prion disease, however, brain homogenate from HSPWT- and HSPΔG54-infected hamsters contained PrPSc, indicating subclinical infection. Serial passage in hamsters resulted in clinical disease at second passage accompanied by changes in incubation period and PrPSc conformational stability between second and third passage. These data suggest the HSP, in contrast to the MSP, are not comprised of PrPSc, and instead generate authentic PrPSc via deformed templating. Differences in infectivity between the MSP and HSP suggest that, under similar generation conditions, the amino acid sequence of PrP influences generation of authentic PrPSc.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Taylor C York
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Romilly Benedict
- Department of Plant, Soil, and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Jiyan Ma
- Van Andel Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
69
|
Jheng CP, Lee CI. Combination of structure-based virtual screening, molecular docking and molecular dynamics approaches for the discovery of anti-prion fibril flavonoids. Front Mol Biosci 2023; 9:1088733. [PMID: 36685276 PMCID: PMC9849400 DOI: 10.3389/fmolb.2022.1088733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Prion diseases are a group of rare neurodegenerative diseases caused by the structural conversion of cellular prion into Scrapie prion resulting aggregated fibrils. Therapy of prion diseases has been developed for several decades, especially drug designs based on the structure of prion monomers. Unfortunately, none of the designed anti-prion drugs function well clinically. To fight against prion fibrils, a drug design based on the precise structure of mammalian prion fibrils is highly required. Fortunately, based on the advantage of newly advanced cryo-electron microscopy (cryo-EM) in the deconvolution of large complexes, three prion fibril structures were resolved in the last 2 years. Based on the cryo-EM solved prion fibril structures, we are able to find some molecules fighting against prion fibrils. Quercetin, one flavonoid molecule in the polyphenol group, has been found to disaggregate the prion fibrils in vitro. In this study, we performed the molecular docking and molecular dynamics simulation on quercetin-like molecules possessing pharmacological properties to evaluate the anti-prion ability of tested molecules. As a result, four quercetin-like molecules interact with prion fibril and decrease the β-strand content by converting some β-strands into loop and helical structures to disintegrate the existing fibril structure. The results of this study are significant in the treatment of prion diseases, and the approaches used in this study are applicable to other amyloid diseases.
Collapse
Affiliation(s)
- Cheng-Ping Jheng
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Cheng-I Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan,Center for Nano Bio-Detections, National Chung Cheng University, Chia-Yi, Taiwan,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chia-Yi, Taiwan,*Correspondence: Cheng-I Lee,
| |
Collapse
|
70
|
Walsh DJ, Schwind AM, Noble GP, Supattapone S. Conformational diversity in purified prions produced in vitro. PLoS Pathog 2023; 19:e1011083. [PMID: 36626391 PMCID: PMC9870145 DOI: 10.1371/journal.ppat.1011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Prion diseases are caused by misfolding of either wild-type or mutant forms of the prion protein (PrP) into self-propagating, pathogenic conformers, collectively termed PrPSc. Both wild-type and mutant PrPSc molecules exhibit conformational diversity in vivo, but purified prions generated by the serial protein misfolding cyclic amplification (sPMCA) technique do not display this same diversity in vitro. This discrepancy has left a gap in our understanding of how conformational diversity arises at the molecular level in both types of prions. Here, we use continuous shaking instead of sPMCA to generate conformationally diverse purified prions in vitro. Using this approach, we show for the first time that wild type prions initially seeded by different native strains can propagate as metastable PrPSc conformers with distinguishable strain properties in purified reactions containing a single active cofactor. Propagation of these metastable PrPSc conformers requires appropriate shaking conditions, and changes in these conditions cause all the different PrPSc conformers to converge irreversibly into the same single conformer as that produced in sPMCA reactions. We also use continuous shaking to show that two mutant PrP molecules with different pathogenic point mutations (D177N and E199K) adopt distinguishable PrPSc conformations in reactions containing pure protein substrate without cofactors. Unlike wild-type prions, the conformations of mutant prions appear to be dictated by substrate sequence rather than seed conformation. Overall, our studies using purified substrates in shaking reactions show that wild-type and mutant prions use fundamentally different mechanisms to generate conformational diversity at the molecular level.
Collapse
Affiliation(s)
- Daniel J. Walsh
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Abigail M. Schwind
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Geoffrey P. Noble
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
71
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
72
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
73
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
74
|
Mollica L, Giachin G. Recognition Mechanisms between a Nanobody and Disordered Epitopes of the Human Prion Protein: An Integrative Molecular Dynamics Study. J Chem Inf Model 2022; 63:531-545. [PMID: 36580661 PMCID: PMC9875307 DOI: 10.1021/acs.jcim.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy using antibodies to target the aggregation of flexible proteins holds promise for therapeutic interventions in neurodegenerative diseases caused by protein misfolding. Prions or PrPSc, the causal agents of transmissible spongiform encephalopathies (TSE), represent a model target for immunotherapies as TSE are prototypical protein misfolding diseases. The X-ray crystal structure of the wild-type (WT) human prion protein (HuPrP) bound to a camelid antibody fragment, denoted as Nanobody 484 (Nb484), has been previously solved. Nb484 was found to inhibit prion aggregation in vitro through a unique mechanism of structural stabilization of two disordered epitopes, that is, the palindromic motif (residues 113-120) and the β2-α2 loop region (residues 164-185). The study of the structural basis for antibody recognition of flexible proteins requires appropriate sampling techniques for the identification of conformational states occurring in disordered epitopes. To elucidate the Nb484-HuPrP recognition mechanisms, here we applied molecular dynamics (MD) simulations complemented with available NMR and X-ray crystallography data collected on the WT HuPrP to describe the conformational spaces occurring on HuPrP prior to Nb484 binding. We observe the experimentally determined binding competent conformations within the ensembles of pre-existing conformational states in solution before binding. We also described the Nb484 recognition mechanisms in two HuPrP carrying a polymorphism (E219K) and a TSE-causing mutation (V210I). Our hybrid approaches allow the identification of dynamic conformational landscapes existing on HuPrP and highly characterized by molecular disorder to identify physiologically relevant and druggable transitions.
Collapse
Affiliation(s)
- Luca Mollica
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, 20090 Milan, Italy,
| | - Gabriele Giachin
- Department
of Chemical Sciences (DiSC), University
of Padua, 35131 Padova, Italy,
| |
Collapse
|
75
|
Tarozzi M, Baiardi S, Sala C, Bartoletti-Stella A, Parchi P, Capellari S, Castellani G. Genomic, transcriptomic and RNA editing analysis of human MM1 and VV2 sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2022; 10:181. [PMID: 36517866 PMCID: PMC9749175 DOI: 10.1186/s40478-022-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multi-omics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson's disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson's disease and providing preliminary evidence of RNA editing modifications in human sCJD.
Collapse
Affiliation(s)
- Martina Tarozzi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy ,grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Claudia Sala
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Anna Bartoletti-Stella
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| | - Piero Parchi
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Sabina Capellari
- grid.492077.fProgramma di Neuropatologia delle Malattie, Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Gastone Castellani
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
76
|
Cortez LM, Morrison AJ, Garen CR, Patterson S, Uyesugi T, Petrosyan R, Sekar RV, Harms MJ, Woodside MT, Sim VL. Probing the origin of prion protein misfolding via reconstruction of ancestral proteins. Protein Sci 2022; 31:e4477. [PMID: 36254680 PMCID: PMC9667828 DOI: 10.1002/pro.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/13/2022]
Abstract
Prion diseases are fatal neurodegenerative diseases caused by pathogenic misfolding of the prion protein, PrP. They are transmissible between hosts, and sometimes between different species, as with transmission of bovine spongiform encephalopathy to humans. Although PrP is found in a wide range of vertebrates, prion diseases are seen only in certain mammals, suggesting that infectious misfolding was a recent evolutionary development. To explore when PrP acquired the ability to misfold infectiously, we reconstructed the sequences of ancestral versions of PrP from the last common primate, primate-rodent, artiodactyl, placental, bird, and amniote. Recombinant ancestral PrPs were then tested for their ability to form β-sheet aggregates, either spontaneously or when seeded with infectious prion strains from human, cervid, or rodent species. The ability to aggregate developed after the oldest ancestor (last common amniote), and aggregation capabilities diverged along evolutionary pathways consistent with modern-day susceptibilities. Ancestral bird PrP could not be seeded with modern-day prions, just as modern-day birds are resistant to prion disease. Computational modeling of structures suggested that differences in helix 2 could account for the resistance of ancestral bird PrP to seeding. Interestingly, ancestral primate PrP could be converted by all prion seeds, including both human and cervid prions, raising the possibility that species descended from an ancestral primate have retained the susceptibility to conversion by cervid prions. More generally, the results suggest that susceptibility to prion disease emerged prior to ~100 million years ago, with placental mammals possibly being generally susceptible to disease.
Collapse
Affiliation(s)
- Leonardo M. Cortez
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Anneliese J. Morrison
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Craig R. Garen
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Sawyer Patterson
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
| | - Toshi Uyesugi
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Rafayel Petrosyan
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Zaven & Sonia Akian College of Science and EngineeringAmerican University of ArmeniaYerevanArmenia
| | | | - Michael J. Harms
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Michael T. Woodside
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
77
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA, Barrall E, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena N, Aslam S, Saqi A, Marin A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.18.512708. [PMID: 36299428 DOI: 10.1101/2022.12.07.519389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
UNLABELLED We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.
Collapse
|
78
|
Schulte T, Chaves-Sanjuan A, Mazzini G, Speranzini V, Lavatelli F, Ferri F, Palizzotto C, Mazza M, Milani P, Nuvolone M, Vogt AC, Vogel M, Palladini G, Merlini G, Bolognesi M, Ferro S, Zini E, Ricagno S. Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter. Nat Commun 2022; 13:7041. [PMID: 36396658 PMCID: PMC9672049 DOI: 10.1038/s41467-022-34743-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Filippo Ferri
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, S.C. Diagnostica Specialistica, Via Bologna 148, 10154, Torino, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anne-Cathrine Vogt
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Monique Vogel
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, 35020, Legnaro, Padua, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
79
|
Jack K, Jackson GS, Bieschke J. Essential Components of Synthetic Infectious Prion Formation De Novo. Biomolecules 2022; 12:1694. [PMID: 36421708 PMCID: PMC9687555 DOI: 10.3390/biom12111694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024] Open
Abstract
Prion diseases are a class of neurodegenerative diseases that are uniquely infectious. Whilst their general replication mechanism is well understood, the components required for the formation and propagation of highly infectious prions are poorly characterized. The protein-only hypothesis posits that the prion protein (PrP) is the only component of the prion; however, additional co-factors are required for its assembly into infectious prions. These can be provided by brain homogenate, but synthetic lipids and non-coding RNA have also been used in vitro. Here, we review a range of experimental approaches, which generate PrP amyloid assemblies de novo. These synthetic PrP assemblies share some, but not necessarily all, properties of genuine infectious prions. We will discuss the different experimental approaches, how a prion is defined, the non-protein requirements of a prion, and provide an overview of the current state of prion amplification and generation in vitro.
Collapse
Affiliation(s)
| | | | - Jan Bieschke
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33, Cleveland Street, London W1W 7FF, UK
| |
Collapse
|
80
|
Lövestam S, Scheres SHW. High-throughput cryo-EM structure determination of amyloids. Faraday Discuss 2022; 240:243-260. [PMID: 35913272 PMCID: PMC9642048 DOI: 10.1039/d2fd00034b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The formation of amyloid filaments is characteristic of various degenerative diseases. Recent breakthroughs in electron cryo-microscopy (cryo-EM) have led to atomic structure determination of multiple amyloid filaments, both of filaments assembled in vitro from recombinant proteins, and of filaments extracted from diseased tissue. These observations revealed that a single protein may adopt multiple different amyloid folds, and that in vitro assembly does not necessarily lead to the same filaments as those observed in disease. In order to develop relevant model systems for disease, and ultimately to better understand the molecular mechanisms of disease, it will be important to determine which factors determine the formation of distinct amyloid folds. High-throughput cryo-EM, in which structure determination becomes a tool rather than a project in itself, will facilitate the screening of large numbers of in vitro assembly conditions. To this end, we describe a new filament picking algorithm based on the Topaz approach, and we outline image processing strategies in Relion that enable atomic structure determination of amyloids within days.
Collapse
Affiliation(s)
- Sofia Lövestam
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridge Biomedical CampusCB2 0QHCambridgeUK
| | - Sjors H. W. Scheres
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridge Biomedical CampusCB2 0QHCambridgeUK
| |
Collapse
|
81
|
Hoyt F, Alam P, Artikis E, Schwartz CL, Hughson AG, Race B, Baune C, Raymond GJ, Baron GS, Kraus A, Caughey B. Cryo-EM of prion strains from the same genotype of host identifies conformational determinants. PLoS Pathog 2022; 18:e1010947. [PMID: 36342968 PMCID: PMC9671466 DOI: 10.1371/journal.ppat.1010947] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Prion strains in a given type of mammalian host are distinguished by differences in clinical presentation, neuropathological lesions, survival time, and characteristics of the infecting prion protein (PrP) assemblies. Near-atomic structures of prions from two host species with different PrP sequences have been determined but comparisons of distinct prion strains of the same amino acid sequence are needed to identify purely conformational determinants of prion strain characteristics. Here we report a 3.2 Å resolution cryogenic electron microscopy-based structure of the 22L prion strain purified from the brains of mice engineered to express only PrP lacking glycophosphatidylinositol anchors [anchorless (a) 22L]. Comparison of this near-atomic structure to our recently determined structure of the aRML strain propagated in the same inbred mouse reveals that these two mouse prion strains have distinct conformational templates for growth via incorporation of PrP molecules of the same sequence. Both a22L and aRML are assembled as stacks of PrP molecules forming parallel in-register intermolecular β-sheets and intervening loops, with single monomers spanning the ordered fibril core. Each monomer shares an N-terminal steric zipper, three major arches, and an overall V-shape, but the details of these and other conformational features differ markedly. Thus, variations in shared conformational motifs within a parallel in-register β-stack fibril architecture provide a structural basis for prion strain differentiation within a single host genotype.
Collapse
Affiliation(s)
- Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Parvez Alam
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cindi L. Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gregory J. Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gerald S. Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
82
|
The Mutability of Yeast Prions. Viruses 2022; 14:v14112337. [PMID: 36366434 PMCID: PMC9696419 DOI: 10.3390/v14112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 02/01/2023] Open
Abstract
Prions replicate by a self-templating mechanism. Infidelity in the process can lead to the emergence of new infectious structures, referred to as variants or strains. The question of whether prions are prone to mis-templating is not completely answered. Our previous experiments with 23 variants of the yeast [PSI+] prion do not support broad mutability. However, it became clear recently that the heat shock protein Hsp104 can restrict [PSI+] strain variation. This raises the possibility that many transmutable variants of the prion may have been mistaken as faithful-propagating simply because the mutant structure was too sturdy or too frail to take root in the wild-type cell. Here, I alter the strength of Hsp104 in yeast, overexpressing wild-type Hsp104 or expressing the hypo-active Hsp104T160M mutant, and check if the new environments enable the variants to mutate. Two variants hitherto thought of as faithful-propagating are discovered to generate different structures, which are stabilized with the hypo-active chaperone. In contrast, most transmutable variants discovered in cells overexpressing Hsp104 have been correctly identified as such previously in wild-type cells without the overexpression. The majority of transmutable variants only mis-template the structure of VH, VK, or VL, which are the most frequently observed variants and do not spontaneously mutate. There are four additional variants that never give rise to different structures in all cell conditions tested. Therefore, quite a few [PSI+] variants are faithful-propagating, and even the transmutable ones do not freely evolve but can only change to limited structural types.
Collapse
|
83
|
Glynn C, Hernandez E, Gallagher-Jones M, Miao J, Sigurdson CJ, Rodriguez JA. Structural consequences of sequence variation in mammalian prion β2α2 loop segments. Front Neurosci 2022; 16:960322. [PMID: 36389229 PMCID: PMC9645039 DOI: 10.3389/fnins.2022.960322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence variation in the β2α2 loop, residues 165-175 of the mammalian prion protein (PrP), influences its structure. To better understand the consequences of sequence variation in this region of the protein, we biochemically and biophysically interrogate natural and artificial sequence variants of the β2α2 loop of mammalian PrP. Using microcrystal electron diffraction (MicroED), we determine atomic resolution structures of segments encompassing residues 168-176 from the β2α2 loop of PrP with sequences corresponding to human, mouse/cow, bank vole/hamster, rabbit/pig/guinea pig, and naked mole rat (elk-T174S) β2α2 loops, as well as synthetic β2α2 loop sequences. This collection of structures presents two dominant amyloid packing polymorphisms. In the first polymorph, denoted "clasped", side chains within a sheet form polar clasps by facing each other on the same strand, exemplified by the mouse/cow, human, and bank vole/hamster sequences. Because its stability is derived from within a strand and through polar ladders within a sheet, the sequence requirements for the mating strand are less restrictive. A second polymorph, denoted "interdigitated," has sidechains interdigitate across mating sheets, exemplified by the elk, naked mole rat (elk T174S), and rabbit sequences. The two types of packing present distinct networks of stabilizing hydrogen bonds. The identity of residue 174 appears to strongly influence the packing adopted in these peptides, but consideration of the overall sequence of a given segment is needed to understand the stability of its assemblies. Incorporation of these β2α2 loop sequences into an 85 residue recombinant segment encoding wild-type bank vole PrP94-178 demonstrates that even single residue substitutions could impact fibril morphology as evaluated by negative stain electron microscopy. This is in line with recent findings supporting the accessibility of different structural geometries by varied mammalian prion sequences, and indicates that sequence-specific polymorphisms may be influenced by residues in the β2α2 loop.
Collapse
Affiliation(s)
- Calina Glynn
- Department of Chemistry and Biochemistry, STROBE NSF Science and Technology Center, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Evelyn Hernandez
- Department of Chemistry and Biochemistry, STROBE NSF Science and Technology Center, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry, STROBE NSF Science and Technology Center, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jennifer Miao
- Department of Chemistry and Biochemistry, STROBE NSF Science and Technology Center, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christina J. Sigurdson
- Department of Pathology and Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, STROBE NSF Science and Technology Center, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
84
|
Emergence of CWD strains. Cell Tissue Res 2022; 392:135-148. [PMID: 36201049 PMCID: PMC10113326 DOI: 10.1007/s00441-022-03688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Chronic wasting disease (CWD) strains present a novel challenge to defining and mitigating this contagious prion disease of deer, elk, moose, and reindeer. Similar to strains of other prion diseases (bovine spongiform encephalopathy, sheep scrapie), CWD strains can affect biochemical and neuropathological properties of the infectious agent, and importantly interspecies transmission. To date, ten CWD strains have been characterized. The expanding range of CWD in North America and its presence in South Korea as well as Scandinavian countries will potentially result in millions of cervids infected with CWD; thus, novel strains will continue to emerge. In this review, we will summarize the characteristics of known CWD strains and describe the impact of prion protein gene polymorphisms on the generation of strains. We will also discuss the evidence that individual cervids can harbor more than one CWD strain, complicating strain analysis, and affecting selection and adaptation of strains in new hosts.
Collapse
|
85
|
Raspadori A, Vignali V, Murello A, Giachin G, Samorì B, Tanaka M, Bustamante C, Zuccheri G, Legname G. Evidence of Orientation-Dependent Early States of Prion Protein Misfolded Structures from Single Molecule Force Spectroscopy. BIOLOGY 2022; 11:1358. [PMID: 36138837 PMCID: PMC9495685 DOI: 10.3390/biology11091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Prion diseases are neurodegenerative disorders characterized by the presence of oligomers and amyloid fibrils. These are the result of protein aggregation processes of the cellular prion protein (PrPC) into amyloidal forms denoted as prions or PrPSc. We employed atomic force microscopy (AFM) for single molecule pulling (single molecule force spectroscopy, SMFS) experiments on the recombinant truncated murine prion protein (PrP) domain to characterize its conformations and potential initial oligomerization processes. Our AFM-SMFS results point to a complex scenario of structural heterogeneity of PrP at the monomeric and dimer level, like other amyloid proteins involved in similar pathologies. By applying this technique, we revealed that the PrP C-terminal domain unfolds in a two-state process. We used two dimeric constructs with different PrP reciprocal orientations: one construct with two sequential PrP in the N- to C-terminal orientation (N-C dimer) and a second one in the C- to C-terminal orientation (C-C dimer). The analysis revealed that the different behavior in terms of unfolding force, whereby the dimer placed C-C dimer unfolds at a higher force compared to the N-C orientation. We propose that the C-C dimer orientation may represent a building block of amyloid fibril formation.
Collapse
Affiliation(s)
- Andrea Raspadori
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Valentina Vignali
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy
| | - Anna Murello
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131 Padova, Italy
| | - Bruno Samorì
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Wako 351-0198, Saitama, Japan
| | - Carlos Bustamante
- QB3 Institute, University of California, 642 Stanley Hall #3220, Berkeley, CA 94720-3220, USA
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy
- S3 Center of the Institute of Nanoscience of the Italian National Research Council (CNR), 41125 Modena, Italy
- Interdepartmental Center for Industrial Research on Health Science and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34139 Trieste, Italy
| |
Collapse
|
86
|
Cryo-EM structure of disease-related prion fibrils provides insights into seeding barriers. Nat Struct Mol Biol 2022; 29:962-965. [PMID: 36097290 PMCID: PMC9639217 DOI: 10.1038/s41594-022-00833-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
One of the least understood aspects of prion diseases is the structure of infectious prion protein aggregates. Here we report a high-resolution cryo-EM structure of amyloid fibrils formed by human prion protein with the Y145Stop mutation that is associated with a familial prion disease. This structural insight allows us not only to explain previous biochemical findings, but also provides direct support for the conformational adaptability model of prion transmissibility barriers.
Collapse
|
87
|
Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS OMEGA 2022; 7:31271-31288. [PMID: 36092583 PMCID: PMC9453792 DOI: 10.1021/acsomega.2c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Prions are unconventional pathogens that encode the pathogenic information in conformations of the constituent abnormal isoform of prion protein (PrPSc), independently of the nucleotide genome. Therefore, conformational diversity of PrPSc underlies the existence of many prion strains and species barriers of prions, although the conformational information is extremely limited. Interestingly, differences between polymorphic or species-specific residues responsible for the species/strain barriers are often caused by conservative replacements between hydrophobic amino acids. This implies that subtle differences among hydrophobic amino acids are significant for PrPSc structures. Here we analyzed the influence of different hydrophobic residues on the structures of an in-register parallel β-sheet amyloid of α-synuclein (αSyn) using molecular dynamics (MD) simulation and applied the knowledge from the αSyn amyloid to modeling a local structure of human PrPSc encompassing residues 107-143. We found that mutations equivalent to polymorphisms that cause transmission barriers substantially affect the stabilities of the local structures; for example, the G127V mutation, which makes the host resistant to various human prion diseases, greatly destabilized the local structure of the model amyloid. Our study indicates that subtle differences among hydrophobic side chains can considerably affect the interaction network, including hydrogen bonds, and demonstrates specifically how and in what structures hydrophobic residues can exert unique effects on in-register parallel β-sheet amyloids.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center
for Bioinformatics and Molecular Medicine, Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuzuru Taguchi
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
88
|
Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, Li D, Jacobsen M, Doud EH, Mosley AL, Fernandez A, Garringer HJ, Jiang W, Ghetti B, Vidal R. Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease. Acta Neuropathol 2022; 144:509-520. [PMID: 35819518 PMCID: PMC9381446 DOI: 10.1007/s00401-022-02461-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
Abstract
Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-β spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short β-strands, with the β1 and β8 strands, as well as the β4 and β9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace I. Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Kadir A. Ozcan
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Md Rejaul Hoq
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Laura Cracco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Frank S. Vago
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Sakshibeedu R. Bharath
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Daoyi Li
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Emma H. Doud
- Center for Proteome Analysis and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Amber L. Mosley
- Center for Proteome Analysis and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Holly J. Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47906 USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
89
|
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022; 14:v14091940. [PMID: 36146746 PMCID: PMC9504972 DOI: 10.3390/v14091940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Generating a prion with exogenously produced recombinant prion protein is widely accepted as the ultimate proof of the prion hypothesis. Over the years, a plethora of misfolded recPrP conformers have been generated, but despite their seeding capability, many of them have failed to elicit a fatal neurodegenerative disorder in wild-type animals like a naturally occurring prion. The application of the protein misfolding cyclic amplification technique and the inclusion of non-protein cofactors in the reaction mixture have led to the generation of authentic recombinant prions that fully recapitulate the characteristics of native prions. Together, these studies reveal that recPrP can stably exist in a variety of misfolded conformations and when inoculated into wild-type animals, misfolded recPrP conformers cause a wide range of outcomes, from being completely innocuous to lethal. Since all these recPrP conformers possess seeding capabilities, these results clearly suggest that seeding activity alone is not equivalent to prion activity. Instead, authentic prions are those PrP conformers that are not only heritable (the ability to seed the conversion of normal PrP) but also pathogenic (the ability to cause fatal neurodegeneration). The knowledge gained from the studies of the recombinant prion is important for us to understand the pathogenesis of prion disease and the roles of misfolded proteins in other neurodegenerative disorders.
Collapse
|
90
|
Manka SW, Wenborn A, Collinge J, Wadsworth JDF. Prion strains viewed through the lens of cryo-EM. Cell Tissue Res 2022; 392:167-178. [PMID: 36028585 PMCID: PMC10113314 DOI: 10.1007/s00441-022-03676-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Mammalian prions are lethal transmissible pathogens that cause fatal neurodegenerative diseases in humans and animals. They consist of fibrils of misfolded, host-encoded prion protein (PrP) which propagate through templated protein polymerisation. Prion strains produce distinct clinicopathological phenotypes in the same host and appear to be encoded by distinct misfolded PrP conformations and assembly states. Despite fundamental advances in our understanding of prion biology, key knowledge gaps remain. These include precise delineation of prion replication mechanisms, detailed explanation of the molecular basis of prion strains and inter-species transmission barriers, and the structural definition of neurotoxic PrP species. Central to addressing these questions is the determination of prion structure. While high-resolution definition of ex vivo prion fibrils once seemed unlikely, recent advances in cryo-electron microscopy (cryo-EM) and computational methods for 3D reconstruction of amyloids have now made this possible. Recently, near-atomic resolution structures of highly infectious, ex vivo prion fibrils from hamster 263K and mouse RML prion strains were reported. The fibrils have a comparable parallel in-register intermolecular β-sheet (PIRIBS) architecture that now provides a structural foundation for understanding prion strain diversity in mammals. Here, we review these new findings and discuss directions for future research.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
91
|
Pauly T, Bolakhrif N, Kaiser J, Nagel-Steger L, Gremer L, Gohlke H, Willbold D. Met/Val129 polymorphism of the full-length human prion protein dictates distinct pathways of amyloid formation. J Biol Chem 2022; 298:102430. [PMID: 36037966 PMCID: PMC9513279 DOI: 10.1016/j.jbc.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt–Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23–230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.
Collapse
Affiliation(s)
- Thomas Pauly
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Najoua Bolakhrif
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; John von Neumann Institute for Computing (NIC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center of Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
92
|
Wickner RB, Edskes HK, Son M, Wu S. Anti-Prion Systems Block Prion Transmission, Attenuate Prion Generation, Cure Most Prions as They Arise and Limit Prion-Induced Pathology in Saccharomyces cerevisiae. BIOLOGY 2022; 11:biology11091266. [PMID: 36138748 PMCID: PMC9495834 DOI: 10.3390/biology11091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Virus and bacterial infections are opposed by their hosts at many levels. Similarly, we find that infectious proteins (prions) are severely restricted by an array of host systems, acting independently to prevent infection, generation, propagation and the ill effects of yeast prions. These ‘anti-prion systems’ work in normal cells without the overproduction or deficiency of any components. DNA repair systems reverse the effects of DNA damage, with only a rare lesion propagated as a mutation. Similarly, the combined effects of several anti-prion systems cure and block the generation of all but 1 in about 5000 prions arising. We expect that application of our approach to mammalian cells will detect analogous or even homologous systems that will be useful in devising therapy for human amyloidoses, most of which are prions. Abstract All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.
Collapse
|
93
|
Lubecka EA, Hansmann UHE. Early Stages of RNA-Mediated Conversion of Human Prions. J Phys Chem B 2022; 126:6221-6230. [PMID: 35973105 PMCID: PMC9420815 DOI: 10.1021/acs.jpcb.2c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases are characterized by the conversion of prion proteins from a PrPC fold into a disease-causing PrPSC form that is self-replicating. A possible agent to trigger this conversion is polyadenosine RNA, but both mechanism and pathways of the conversion are poorly understood. Using coarse-grained molecular dynamic simulations we study the time evolution of PrPC over 600 μs. We find that both the D178N mutation and interacting with polyadenosine RNA reduce the helicity of the protein and encourage formation of segments with strand-like motifs. We conjecture that these transient β-strands nucleate the conversion of the protein to the scrapie conformation PrPSC.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,United States
| |
Collapse
|
94
|
Pasiana AD, Miyata H, Chida J, Hara H, Imamura M, Atarashi R, Sakaguchi S. Central Residues in Prion Protein PrP C Are Crucial for Its Conversion into the Pathogenic Isoform. J Biol Chem 2022; 298:102381. [PMID: 35973512 PMCID: PMC9478402 DOI: 10.1016/j.jbc.2022.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022] Open
Abstract
Conformational conversion of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases. However, the conversion mechanism remains to be elucidated. Here, we generated Tg(PrPΔ91-106)-8545/Prnp0/0 mice, which overexpress mouse PrP lacking residues 91-106. We showed that none of the mice became sick after intracerebral inoculation with RML, 22L, and FK-1 prion strains nor accumulated PrPScΔ91-106 in their brains except for a small amount of PrPScΔ91-106 detected in one 22L-inoculated mouse. However, they developed disease around 85 days after inoculation with bovine spongiform encephalopathy (BSE) prions with PrPScΔ91-106 in their brains. These results suggest that residues 91-106 are important for PrPC conversion into PrPSc in infection with RML, 22L, and FK-1 prions but not BSE prions. We then narrowed down the residues 91-106 by transducing various PrP deletional mutants into RML- and 22L-infected cells and identified that PrP mutants lacking residues 97-99 failed to convert into PrPSc in these cells. Our in vitro conversion assay also showed that RML, 22L, and FK-1 prions did not convert PrPΔ97-99 into PrPScΔ97-99, but BSE prions did. We further found that PrP mutants with proline residues at positions 97 to 99 or charged residues at positions 97 and 99 completely or almost completely lost their converting activity into PrPSc in RML- and 22L-infected cells. These results suggest that the structurally flexible and noncharged residues 97-99 could be important for PrPC conversion into PrPSc following infection with RML, 22L, and FK-1 prions but not BSE prions.
Collapse
Affiliation(s)
- Agriani Dini Pasiana
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Morikazu Imamura
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
95
|
Paciotti R, Storchi L, Marrone A. Homodimeric complexes of the 90-231 human prion: a multilayered computational study based on FMO/GRID-DRY approach. J Mol Model 2022; 28:241. [PMID: 35918494 PMCID: PMC9345805 DOI: 10.1007/s00894-022-05244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
The molecular interaction properties and aggregation capabilities disclosed by PrP-E200K, a pathogenic mutant of the human prion protein, were investigated in detail using multilayered computational approaches. In a previous work, we reported that the electrostatic complementarity between region1 (negative) and region3 (positive) has been assumed to lead to a head-to tail interaction between 120 and 231 PrP-E200K units and to initiation of the aggregation process. In this work, we extended the PrP-E200K structure by including the unstructured 90-120 segment which was found to assume different conformations. Plausible models of 90-231 PrP-E200K dimers were calculated and analyzed in depth to identify the nature of the involved protein-protein interactions. The unstructured 90-120 segment was found to extend the positively charged region3 involved in the association of PrP-E200K units which resulted to be driven by hydrophobic interactions. The combination of molecular dynamics, protein-protein docking, grid-based mapping, and fragment molecular orbital approaches allowed us to provide a plausible mechanism of the early state of 90-231 PrP-E200K aggregation, considered a preliminary step of amyloid conversion.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Loriano Storchi
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, UK
| | - Alessandro Marrone
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
96
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
97
|
Requena JR. Unlatching a window into the molecular landscape of prion toxicity. Nat Struct Mol Biol 2022; 29:733-735. [PMID: 35948769 DOI: 10.1038/s41594-022-00817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| |
Collapse
|
98
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
99
|
Chen EHL, Kao HW, Lee CH, Huang JYC, Wu KP, Chen RPY. 2.2 Å Cryo-EM Tetra-Protofilament Structure of the Hamster Prion 108-144 Fibril Reveals an Ordered Water Channel in the Center. J Am Chem Soc 2022; 144:13888-13894. [PMID: 35857020 DOI: 10.1021/jacs.2c05479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three β-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three β-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Hsi-Wen Kao
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Chih-Hsuan Lee
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jessica Y C Huang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| |
Collapse
|
100
|
A field-deployable diagnostic assay for the visual detection of misfolded prions. Sci Rep 2022; 12:12246. [PMID: 35851406 PMCID: PMC9293997 DOI: 10.1038/s41598-022-16323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.
Collapse
|