51
|
Schmitt P, de Lorgeril J, Gueguen Y, Destoumieux-Garzón D, Bachère E. Expression, tissue localization and synergy of antimicrobial peptides and proteins in the immune response of the oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:363-370. [PMID: 22327168 DOI: 10.1016/j.dci.2012.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 05/31/2023]
Abstract
Diverse families of antimicrobial peptides and proteins have been described in oysters. We investigated here how antimicrobials are involved in the immune response against a pathogenic strain of Vibrio splendidus. Oyster antimicrobials were shown to display a wide variety of expression profiles in hemocyte populations and tissues. Oyster defensins are constitutively expressed in specific tissues such as mantle (Cg-Defm) or hemocytes (Cg-Defhs), while Cg-BPI is inducible and Cg-Prp appears down-regulated in hemocytes upon infection. The migratory behavior of hemocytes that express the different antimicrobials was found to be involved in the oyster response to a pathogenic Vibrio infection. Indeed, it contributes to colocalize several antimicrobials that were shown here to have synergistic activities. We propose that such a synergy, which was evidenced both within and between families of antimicrobials, might compensate for the low concentration of antimicrobials in oyster tissues.
Collapse
Affiliation(s)
- Paulina Schmitt
- Ifremer, UMR5119 Écologie des Systèmes Marins Côtiers, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
52
|
Jiang Y, Yi X, Li M, Wang T, Qi T, She X. Antimicrobial activities of recombinant mouse β-defensin 3 and its synergy with antibiotics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1723-1728. [PMID: 22528077 DOI: 10.1007/s10856-012-4645-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
Mammalian β-defensins are small cationic peptides of approximately 2-6 kDa that have been implicated in mediating innate immune defenses against microbial infection. This present study investigated the activity of mouse β-defensin 3 (MBD3) against bacterial and yeast drug-resistant strains in vitro, and whether this molecule acts in synergy with antibiotics. Minimum inhibitory concentrations (MICs) and minimum bactericidal/fungicidal concentrations (MBC/MFC) of recombinant MBD3 (rMBD3) were determined by microdilution assays against different strains of Staphylococcus aureus and Candida albicans. rMBD3 inhibited the growth of S. aureus (MIC, 25 μg/ml) and C. albicans (MIC, 25 μg/ml), and showed fungicidal activity against this yeast (MFC, 100 μg/ml). The influences of rMBD3 on S. aureus and C. albicans cells were examined using electron microscopy. Cells treated with rMBD3 showed morphological and structural changes, including delamination and perforation of the peripheral cell walls, porosity, and inanition of the cytoplasmic contents. Synergistic activities of rMBD3 with different antibiotics were assessed using checkerboard tests. Interestingly, the anti-methicillin-resistant S. aureus activity of rMBD3 in combination with ampicillin was synergistic; however, this was not the case against S. aureus (ATCC 25923). Combinations of rMBD3 with itraconazole, amphotericin or 5-fluorocytosine were synergistic against the two tested C. albicans strains. These results support the interest devoted to defensins as a novel class of antimicrobial agents, and highlight their abilities to potentiate the activities of conventional antibiotics.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Microbiology, Guiyang Medical College, Guiyang, 550004, China.
| | | | | | | | | | | |
Collapse
|
53
|
Schmitt P, Rosa RD, Duperthuy M, de Lorgeril J, Bachère E, Destoumieux-Garzón D. The Antimicrobial Defense of the Pacific Oyster, Crassostrea gigas. How Diversity may Compensate for Scarcity in the Regulation of Resident/Pathogenic Microflora. Front Microbiol 2012; 3:160. [PMID: 22783227 PMCID: PMC3390580 DOI: 10.3389/fmicb.2012.00160] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022] Open
Abstract
Healthy oysters are inhabited by abundant microbial communities that vary with environmental conditions and coexist with immunocompetent cells in the circulatory system. In Crassostrea gigas oysters, the antimicrobial response, which is believed to control pathogens and commensals, relies on potent oxygen-dependent reactions and on antimicrobial peptides/proteins (AMPs) produced at low concentrations by epithelial cells and/or circulating hemocytes. In non-diseased oysters, hemocytes express basal levels of defensins (Cg-Defs) and proline-rich peptides (Cg-Prps). When the bacterial load dramatically increases in oyster tissues, both AMP families are driven to sites of infection by major hemocyte movements, together with bactericidal permeability/increasing proteins (Cg-BPIs) and given forms of big defensins (Cg-BigDef), whose expression in hemocytes is induced by infection. Co-localization of AMPs at sites of infection could be determinant in limiting invasion as synergies take place between peptide families, a phenomenon which is potentiated by the considerable diversity of AMP sequences. Besides, diversity occurs at the level of oyster AMP mechanisms of action, which range from membrane lysis for Cg-BPI to inhibition of metabolic pathways for Cg-Defs. The combination of such different mechanisms of action may account for the synergistic activities observed and compensate for the low peptide concentrations in C. gigas cells and tissues. To overcome the oyster antimicrobial response, oyster pathogens have developed subtle mechanisms of resistance and evasion. Thus, some Vibrio strains pathogenic for oysters are equipped with AMP-sensing systems that trigger resistance. More generally, the known oyster pathogenic vibrios have evolved strategies to evade intracellular killing through phagocytosis and the associated oxidative burst.
Collapse
Affiliation(s)
- Paulina Schmitt
- Ecology of Coastal Marine Systems, UMR 5119, CNRS, Université Montpellier 2, IRD, Ifremer, and Université Montpellier 1, Place Eugène Bataillon Montpellier, France
| | | | | | | | | | | |
Collapse
|
54
|
Identification and expression of immune genes in the flat oyster Ostrea edulis in response to bonamiosis. Gene 2012; 492:81-93. [DOI: 10.1016/j.gene.2011.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/26/2022]
|
55
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
56
|
Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS One 2011; 6:e25594. [PMID: 21980497 PMCID: PMC3182236 DOI: 10.1371/journal.pone.0025594] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background Big defensin is an antimicrobial peptide composed of a highly hydrophobic N-terminal region and a cationic C-terminal region containing six cysteine residues involved in three internal disulfide bridges. While big defensin sequences have been reported in various mollusk species, few studies have been devoted to their sequence diversity, gene organization and their expression in response to microbial infections. Findings Using the high-throughput Digital Gene Expression approach, we have identified in Crassostrea gigas oysters several sequences coding for big defensins induced in response to a Vibrio infection. We showed that the oyster big defensin family is composed of three members (named Cg-BigDef1, Cg-BigDef2 and Cg-BigDef3) that are encoded by distinct genomic sequences. All Cg-BigDefs contain a hydrophobic N-terminal domain and a cationic C-terminal domain that resembles vertebrate β-defensins. Both domains are encoded by separate exons. We found that big defensins form a group predominantly present in mollusks and closer to vertebrate defensins than to invertebrate and fungi CSαβ-containing defensins. Moreover, we showed that Cg-BigDefs are expressed in oyster hemocytes only and follow different patterns of gene expression. While Cg-BigDef3 is non-regulated, both Cg-BigDef1 and Cg-BigDef2 transcripts are strongly induced in response to bacterial challenge. Induction was dependent on pathogen associated molecular patterns but not damage-dependent. The inducibility of Cg-BigDef1 was confirmed by HPLC and mass spectrometry, since ions with a molecular mass compatible with mature Cg-BigDef1 (10.7 kDa) were present in immune-challenged oysters only. From our biochemical data, native Cg-BigDef1 would result from the elimination of a prepropeptide sequence and the cyclization of the resulting N-terminal glutamine residue into a pyroglutamic acid. Conclusions We provide here the first report showing that big defensins form a family of antimicrobial peptides diverse not only in terms of sequences but also in terms of genomic organization and regulation of gene expression.
Collapse
|
57
|
de Lorgeril J, Zenagui R, Rosa RD, Piquemal D, Bachère E. Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis. PLoS One 2011; 6:e23142. [PMID: 21829707 PMCID: PMC3150398 DOI: 10.1371/journal.pone.0023142] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/13/2011] [Indexed: 01/09/2023] Open
Abstract
The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE), we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41) compared to an avirulent one, V. tasmaniensis LMG 20012(T). For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality.
Collapse
Affiliation(s)
- Julien de Lorgeril
- Institut Français de Recherche pour l'Exploitation de la Mer, Centre National de la Recherche Scientifique, Montpellier, France
| | - Reda Zenagui
- Institut Français de Recherche pour l'Exploitation de la Mer, Centre National de la Recherche Scientifique, Montpellier, France
| | - Rafael D. Rosa
- Institut Français de Recherche pour l'Exploitation de la Mer, Centre National de la Recherche Scientifique, Montpellier, France
- Université Montpellier 2, and Institut de Recherche pour le Développement, UMR 5119 “Écologie des Systèmes Marins Côtiers”, Montpellier, France
| | - David Piquemal
- Skuld-Tech, Cap Delta, ZAC Euromedecine II, Grabels, France
| | - Evelyne Bachère
- Institut Français de Recherche pour l'Exploitation de la Mer, Centre National de la Recherche Scientifique, Montpellier, France
- * E-mail:
| |
Collapse
|
58
|
Scocchi M, Tossi A, Gennaro R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 2011; 68:2317-30. [PMID: 21594684 PMCID: PMC11114787 DOI: 10.1007/s00018-011-0721-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/24/2022]
Abstract
Proline-rich antimicrobial peptides are a group of cationic host defense peptides of vertebrates and invertebrates characterized by a high content of proline residues, often associated with arginine residues in repeated motifs. Those isolated from some mammalian and insect species, although not evolutionarily related, use a similar mechanism to selectively kill Gram-negative bacteria, with a low toxicity to animals. Unlike other types of antimicrobial peptides, their mode of action does not involve the lysis of bacterial membranes but entails penetration into susceptible cells, where they then act intracellularly. Some aspects of the transport system and cytoplasmic targets have been elucidated. These features make them attractive both as anti-infective lead compounds and as a new class of potential cell-penetrating peptides capable of internalising membrane-impermeant drugs into both bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Marco Scocchi
- Dipartimento di Scienze della Vita, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Tossi
- Dipartimento di Scienze della Vita, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Renato Gennaro
- Dipartimento di Scienze della Vita, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
59
|
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)(2) is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus.
Collapse
|
60
|
Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 2011; 29:519-30. [PMID: 21683779 DOI: 10.1016/j.biotechadv.2011.05.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
The emergence of pathogenic bacteria resistance to conventional antibiotics calls for an increased focus on the purification and characterization of antimicrobials with new mechanisms of actions. Antimicrobial peptides are promising candidates, because their initial interaction with microbes is through binding to lipids. The interference with such a fundamental cell structure is assumed to hamper resistance development. In the present review we discuss antimicrobial peptides isolated from marine invertebrates, emphasizing the isolation and activity of these natural antibiotics. The marine environment is relatively poorly explored in terms of potential pharmaceuticals, and it contains a tremendous species diversity which evolved in close proximity to microorganisms. As invertebrates rely purely on innate immunity, including antimicrobial peptides, to combat infectious agents, it is believed that immune effectors from these animals are efficient and rapid inhibitors of microbial growth.
Collapse
Affiliation(s)
- Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
61
|
Zahran E, Noga EJ. Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs. JOURNAL OF FISH DISEASES 2010; 33:995-1003. [PMID: 21091726 DOI: 10.1111/j.1365-2761.2010.01205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Piscidins are potent, broad-spectrum, host-produced antimicrobial peptides (AMPs) that appear to constitute the most common AMP family in teleost fish. Here, we show that piscidin 2 has potent activity against the water mould Saprolegnia, one of the most important pathogens of freshwater fish. The minimum oomyceticidal concentration (MOC₁₀₀) of piscidin 2 against zoospores of three pathogenic isolates of Saprolegnia ranged from 12.5 to 25.0 μg mL⁻¹. This piscidin concentration is well within levels that have been estimated to be present in at least some fish (1-32.5 μg mL⁻¹). In the presence of either copper or malachite green, two drugs commonly used to treat water moulds, there was evidence for partial synergism (PSYN) with piscidin 2. There was also evidence for PSYN after exposure of the ciliate parasite Tetrahymena pyriformis to piscidin 2 plus copper. Our data provide further evidence that piscidins may be an important host defence against skin and gill pathogens and that the piscidin levels in host tissue might influence the success of drug treatments.
Collapse
Affiliation(s)
- E Zahran
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
62
|
Itoh N, Okada Y, Takahashi KG, Osada M. Presence and characterization of multiple mantle lysozymes in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2010; 29:126-135. [PMID: 20211734 DOI: 10.1016/j.fsi.2010.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/24/2010] [Accepted: 02/28/2010] [Indexed: 05/28/2023]
Abstract
Mantle tissue extracts from the Pacific oyster, Crassostrea gigas, exhibited anti-Gram-positive bacterial and lysozyme activities over a wide pH range, suggesting that multiple defensive mantle lysozymes were present. Degenerated reverse-transcription PCR detected the expression of two mantle lysozymes, CGL-1 and a novel lysozyme CGL-3, confirming the presence of multiple lysozymes in the mantle. Since CGL-3 is a cognate protein of the digestive lysozyme CGL-2, it is assumed that CGL-3 has evolved specifically a defensive function. Functional assays using recombinant CGL-1 and CGL-3 suggested that CGL-1 and CGL-3 play a major defensive role in the mantle tissue, and that they are responsible for lysozyme activity under different pH, ionic strength and temperature conditions. Based on these observations, we conclude that multiple mantle lysozymes in the Pacific oyster are better for host-defense under broader conditions than a single lysozyme.
Collapse
Affiliation(s)
- Naoki Itoh
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiya-machi, Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | | | | | |
Collapse
|
63
|
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8:1213-62. [PMID: 20479976 PMCID: PMC2866484 DOI: 10.3390/md8041213] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | | |
Collapse
|
64
|
Ueno S, Kusaka K, Tamada Y, Zhang H, Minaba M, Kato Y. An enhancer peptide for membrane-disrupting antimicrobial peptides. BMC Microbiol 2010; 10:46. [PMID: 20152058 PMCID: PMC2834666 DOI: 10.1186/1471-2180-10-46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 02/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu --> Gln, and Asp --> Asn). RESULTS In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-alpha, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-alpha against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at CONCLUSIONS NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.
Collapse
Affiliation(s)
- Satoshi Ueno
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohtaro Kusaka
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasushi Tamada
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hong Zhang
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Masaomi Minaba
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Yusuke Kato
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
65
|
Schmitt P, Gueguen Y, Desmarais E, Bachère E, de Lorgeril J. Molecular diversity of antimicrobial effectors in the oyster Crassostrea gigas. BMC Evol Biol 2010; 10:23. [PMID: 20100329 PMCID: PMC2823732 DOI: 10.1186/1471-2148-10-23] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background To gain insight into the molecular diversity of antimicrobial peptides and proteins in the oyster Crassostrea gigas, we characterized and compared the sequence polymorphism of the antimicrobial peptides (AMPs), Cg-Defensins (Cg-Defs) and Cg-Proline Rich peptide (Cg-Prp), and of the bactericidal permeability increasing protein, Cg-BPI. For that, we analyzed genomic and transcript sequences obtained by specific PCR amplification and in silico searches. Results High diversification among the three antimicrobial effectors was evidenced by this polymorphism survey. On the basis of sequence phylogenies, each AMP aggregates into clearly defined groups of variants and is the product of a multigenic family displaying a variety of gene structures. In contrast, Cg-bpi forms a single group and is encoded by a single gene copy. Moreover, we identified for both AMPs several genetic mechanisms of diversification such as recombination, parallel mutations leading to phylogenetic homoplasy and indel events. In addition, the non synonymous to synonymous substitutions ratio by codon (dN/dS) revealed several negatively and positively selected sites for both AMPs, suggesting that directional selection pressures have shaped their sequence variations. Conclusions This study shows for the first time in a mollusc that antimicrobial peptides and proteins have been subject to distinct patterns of diversification and we evidence the existence of different evolutionary routes leading to such sequence variability.
Collapse
Affiliation(s)
- Paulina Schmitt
- Ifremer, CNRS, Université de Montpellier II, IRD, UMR 5119 Ecosystèmes Lagunaires, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | | | | | | | | |
Collapse
|
66
|
Duperthuy M, Binesse J, Le Roux F, Romestand B, Caro A, Got P, Givaudan A, Mazel D, Bachère E, Destoumieux-Garzón D. The major outer membrane protein OmpU of Vibrio splendidus contributes to host antimicrobial peptide resistance and is required for virulence in the oyster Crassostrea gigas. Environ Microbiol 2010; 12:951-63. [DOI: 10.1111/j.1462-2920.2009.02138.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
Linde A, Wachter B, Höner OP, Dib L, Ross C, Tamayo AR, Blecha F, Melgarejo T. Natural History of Innate Host Defense Peptides. Probiotics Antimicrob Proteins 2009; 1:97-112. [DOI: 10.1007/s12602-009-9031-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|