51
|
Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J Virol 2014; 88:13759-68. [PMID: 25231318 DOI: 10.1128/jvi.02166-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) is the most common cause of viral hemorrhagic fever, and it may lead to life-threating dengue hemorrhagic fever and shock syndrome (DHF/DSS). Because most cases of DHF/DSS occur in patients with secondary DENV infection, anti-DENV antibodies are generally considered to play a role in the pathogenesis of DHF/DSS. Previously, we have found that antithrombin antibodies (ATAs) with both antithrombotic and profibrinolytic activities are present in the sera of dengue patients. However, the mechanism by which these autoantibodies are induced is unclear. In this study, we demonstrated that antibodies induced by DENV immunization in mice and rabbits could bind to DENV antigens as well as to human thrombin and plasminogen (Plg). The binding of anti-DENV antibodies to thrombin and Plg was inhibited by preadsorption with DENV nonstructural protein 1. In addition, affinity-purified ATAs from DENV-immunized rabbit sera could inhibit thrombin activity and enhance Plg activation both in vitro and in vivo. Taken together, our results suggest that molecular mimicry between DENV and coagulation factors can induce the production of autoantibodies with biological effects similar to those of ATAs found in dengue patients. These coagulation-factor cross-reactive anti-DENV antibodies can interfere with the balance of coagulation and fibrinolysis, which may lead to the tendency of DHF/DSS patients to bleed. IMPORTANCE Dengue virus (DENV) infection is the most common mosquito-borne viral disease in tropical and subtropical areas. Over 50 million DENV infection cases develop each year, and more than 2.5 billion people are at risk of dengue-induced hemorrhagic fever and shock syndrome. Currently, there is no vaccine or drug treatment for DENV. In the present study, we demonstrated that DENV immunization could induce thrombin and plasminogen (Plg) cross-reactive antibodies, which were able to inhibit thrombin activity and enhance Plg activation. These results suggest that molecular mimicry between DENV antigens, thrombin, and Plg may elicit antibodies that disturb hemostasis. The selection of appropriate candidate antigens for use in DENV vaccines should prevent these potentially dangerous autoimmune responses.
Collapse
|
52
|
Omokoko MD, Pambudi S, Phanthanawiboon S, Masrinoul P, Setthapramote C, Sasaki T, Kuhara M, Ramasoota P, Yamashita A, Hirai I, Ikuta K, Kurosu T. A highly conserved region between amino acids 221 and 266 of dengue virus non-structural protein 1 is a major epitope region in infected patients. Am J Trop Med Hyg 2014; 91:146-55. [PMID: 24778195 DOI: 10.4269/ajtmh.13-0624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immune response to dengue virus (DENV) infection generates high levels of antibodies (Abs) against the DENV non-structural protein 1 (NS1), particularly in cases of secondary infection. Therefore, anti-NS1 Abs may play a role in severe dengue infections, possibly by interacting (directly or indirectly) with host factors or regulating virus production. If it does play a role, NS1 may contain epitopes that mimic those epitopes of host molecules. Previous attempts to map immunogenic regions within DENV-NS1 were undertaken using mouse monoclonal Abs (MAbs). The aim of this study was to characterize the epitope regions of nine anti-NS1 human monoclonal Abs (HuMAbs) derived from six patients secondarily infected with DENV-2. These anti-NS1 HuMAbs were cross-reactive with DENV-1, -2, and -3 but not DENV-4. All HuMAbs bound a common epitope region located between amino acids 221 and 266 of NS1. This study is the first report to map a DENV-NS1 epitope region using anti-DENV MAbs derived from patients.
Collapse
Affiliation(s)
- Magot Diata Omokoko
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Sabar Pambudi
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Supranee Phanthanawiboon
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Promsin Masrinoul
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Chayanee Setthapramote
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Tadahiro Sasaki
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Motoki Kuhara
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Pongrama Ramasoota
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Akifumi Yamashita
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Itaru Hirai
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan; Center of Excellence for Antibody Research (CEAR), Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; Medical and Biological Laboratories Co., Ltd., Ina, Nagano, Japan; National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyu, Okinawa, Japan
| |
Collapse
|
53
|
Wan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One 2014; 9:e92495. [PMID: 24658118 PMCID: PMC3962419 DOI: 10.1371/journal.pone.0092495] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Infection with dengue virus (DENV) may cause life-threatening disease with thrombocytopenia and vascular leakage which are related to dysfunction of platelets and endothelial cells. We previously showed that antibodies (Abs) against DENV nonstructural protein 1 (NS1) cross-react with human platelets and endothelial cells, leading to functional disturbances. Based on sequence homology analysis, the C-terminal region of DENV NS1 protein contains cross-reactive epitopes. For safety in vaccine development, the cross-reactive epitopes of DENV NS1 protein should be deleted or modified. METHODOLOGY/PRINCIPAL FINDINGS We tested the protective effects of Abs against full-length DENV NS1, NS1 lacking the C-terminal amino acids (a.a.) 271-352 (designated ΔC NS1), and chimeric DJ NS1 consisting of N-terminal DENV NS1 (a.a. 1-270) and C-terminal Japanese encephalitis virus NS1 (a.a. 271-352). The anti-ΔC NS1 and anti-DJ NS1 Abs showed a lower binding activity to endothelial cells and platelets than that of anti-DENV NS1 Abs. Passive immunization with anti-ΔC NS1 and anti-DJ NS1 Abs reduced DENV-induced prolonged mouse tail bleeding time. Treatment with anti-DENV NS1, anti-ΔC NS1 and anti-DJ NS1 Abs reduced local skin hemorrhage, controlled the viral load of DENV infection in vivo, synergized with complement to inhibit viral replication in vitro, as well as abolished DENV-induced macrophage infiltration to the site of skin inoculation. Moreover, active immunization with modified NS1 protein, but not with unmodified DENV NS1 protein, reduced DENV-induced prolonged bleeding time, local skin hemorrhage, and viral load. CONCLUSIONS/SIGNIFICANCE These results support the idea that modified NS1 proteins may represent an improved strategy for safe and effective vaccine development against DENV infection.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tien Lu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hsiao-Sheng Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Yen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Betty A. Wu-Hsieh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (BAWH); (YSL)
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (BAWH); (YSL)
| |
Collapse
|
54
|
The dengue virus non-structural 1 protein: Risks and benefits. Virus Res 2014; 181:53-60. [DOI: 10.1016/j.virusres.2014.01.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 11/21/2022]
|
55
|
|
56
|
Clark KB, Onlamoon N, Hsiao HM, Perng GC, Villinger F. Can non-human primates serve as models for investigating dengue disease pathogenesis? Front Microbiol 2013; 4:305. [PMID: 24130557 PMCID: PMC3795305 DOI: 10.3389/fmicb.2013.00305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022] Open
Abstract
Dengue Virus (DV) infects between 50 and 100 million people globally, with public health costs totaling in the billions. It is the causative agent of dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), vector-borne diseases that initially predominated in the tropics. Due to the expansion of its mosquito vector, Aedes spp., DV is increasingly becoming a global problem. Infected individuals may present with a wide spectrum of symptoms, spanning from a mild febrile to a life-threatening illness, which may include thrombocytopenia, leucopenia, hepatomegaly, hemorrhaging, plasma leakage and shock. Deciphering the underlining mechanisms responsible for these symptoms has been hindered by the limited availability of animal models that can induce classic human pathology. Currently, several permissive non-human primate (NHP) species and mouse breeds susceptible to adapted DV strains are available. Though virus replication occurs in these animals, none of them recapitulate the cardinal features of human symptomatology, with disease only occasionally observed in NHPs. Recently our group established a DV serotype 2 intravenous infection model with the Indian rhesus macaque, which reliably produced cutaneous hemorrhages after primary virus exposure. Further manipulation of experimental parameters (virus strain, immune cell expansion, depletion, etc.) can refine this model and expand its relevance to human DF. Future goals include applying this model to elucidate the role of pre-existing immunity upon secondary infection and immunopathogenesis. Of note, virus titers in primates in vivo and in vitro, even with our model, have been consistently 1000-fold lower than those found in humans. We submit that an improved model, capable of demonstrating severe pathogenesis may only be achieved with higher virus loads. Nonetheless, our DV coagulopathy disease model is valuable for the study of select pathomechanisms and testing DV drug and vaccine candidates.
Collapse
Affiliation(s)
- Kristina B Clark
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
57
|
Masrinoul P, Omokoko MD, Pambudi S, Ikuta K, Kurosu T. Serotype-Specific Anti-Dengue Virus NS1 Mouse Antibodies Cross-React with prM and Are Potentially Involved in Virus Production. Viral Immunol 2013; 26:250-8. [DOI: 10.1089/vim.2012.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Promsin Masrinoul
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Present Address: Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Magot Diata Omokoko
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sabar Pambudi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
58
|
Henriques HR, Rampazo EV, Gonçalves AJS, Vicentin ECM, Amorim JH, Panatieri RH, Amorim KNS, Yamamoto MM, Ferreira LCS, Alves AMB, Boscardin SB. Targeting the non-structural protein 1 from dengue virus to a dendritic cell population confers protective immunity to lethal virus challenge. PLoS Negl Trop Dis 2013; 7:e2330. [PMID: 23875054 PMCID: PMC3715404 DOI: 10.1371/journal.pntd.0002330] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/12/2013] [Indexed: 12/20/2022] Open
Abstract
Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4+ and CD8+ T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205+ DC population with poly (I:C) opens perspectives for dengue vaccine development. Dengue is one of the most prevalent viral infections. It affects millions of people every year and can be life-threatening if left untreated. The development of a dengue vaccine is a public health priority. In the present study, we decided to use a dengue virus derived protein, named non-structural protein 1 (NS1) in an immunization protocol that targets the antigen to dendritic cells (DCs). DCs are central for the induction of immunity against pathogens and there are a few DC populations already described. NS1 was engineered in fusion with two distinct monoclonal antibodies that are capable of binding two different receptors present on the surface of these cells. NS1 targeting to one DC population (known as DEC205+) was able to induce anti-NS1 immune responses and confer protection to mice challenged with serotype 2 dengue virus.
Collapse
Affiliation(s)
- Hugo R. Henriques
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Eline V. Rampazo
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Antonio J. S. Gonçalves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elaine C. M. Vicentin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Jaime H. Amorim
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Raquel H. Panatieri
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Kelly N. S. Amorim
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Marcio M. Yamamoto
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Luís C. S. Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, São Paulo, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, Brazil
| | - Ada M. B. Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, Brazil
| | - Silvia B. Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, University of São Paulo, São Paulo, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
59
|
Chuang YC, Wang SY, Lin YS, Chen HR, Yeh TM. Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci 2013; 20:42. [PMID: 23806052 PMCID: PMC3704815 DOI: 10.1186/1423-0127-20-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS.
Collapse
Affiliation(s)
- Yung-Chun Chuang
- Center of Infectious Disease and Signaling Research, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
60
|
Chuang YC, Lin YS, Liu HS, Wang JR, Yeh TM. Antibodies against thrombin in dengue patients contain both anti-thrombotic and pro-fibrinolytic activities. Thromb Haemost 2013; 110:358-65. [PMID: 23740201 DOI: 10.1160/th13-02-0149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 11/05/2022]
Abstract
Dengue virus (DENV) infection may result in severe life-threatening Dengue haemorrhagic fever (DHF). The mechanisms causing haemorrhage in those with DHF are unclear. In this study, we demonstrated that antibodies against human thrombin were increased in the sera of Dengue patients but not in that of patients infected with other viruses. To further characterise the properties of these antibodies, affinity-purified anti-thrombin antibodies (ATAs) were collected from Dengue patient sera by thrombin and protein A/L affinity columns. Most of the ATAs belonged to the IgG class and recognized DENV nonstructural protein 1 (NS1). In addition, we found that dengue patient ATAs also cross-reacted with human plasminogen (Plg). Functional studies in vitro indicated that Dengue patient ATAs could inhibit thrombin activity and enhance Plg activation. Taken together, these results suggest that DENV NS1-induced thrombin and Plg cross-reactive antibodies may contribute to the development of haemorrhage in patients with DHF by interfering with coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
61
|
Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 2013; 158:1523-31. [PMID: 23456422 DOI: 10.1007/s00705-013-1639-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.
Collapse
Affiliation(s)
- Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Vega-Almeida TO, Salas-Benito M, De Nova-Ocampo MA, del Angel RM, Salas-Benito JS. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol 2013; 158:1189-207. [DOI: 10.1007/s00705-012-1596-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/27/2012] [Indexed: 01/21/2023]
|
63
|
Immenschuh S, Rahayu P, Bayat B, Saragih H, Rachman A, Santoso S. Antibodies against dengue virus nonstructural protein-1 induce heme oxygenase-1 via a redox-dependent pathway in human endothelial cells. Free Radic Biol Med 2013; 54:85-92. [PMID: 23103292 DOI: 10.1016/j.freeradbiomed.2012.10.551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 11/24/2022]
Abstract
Heme oxygenase (HO)-1, the inducible isoform of the first and rate-limiting enzyme of heme degradation, affords anti-inflammatory protection via its cell-type-specific effects in endothelial cells (ECs). In dengue hemorrhagic fever (DHF), which is the life-threatening form of dengue virus (DV) infection, endothelial interactions of cross-reactive antibodies against the DV nonstructural glycoprotein-1 (NS1) are associated with endothelial dysfunction. In this study, we investigated whether anti-NS1 antibodies might regulate HO-1 gene expression in human ECs. Serum from DHF patients with high anti-NS1 titers and a monoclonal anti-NS1 antibody upregulated HO-1 gene expression in human umbilical vein ECs, which was blocked by purified NS1 antigen. Immunoprecipitation studies showed that anti-NS1 antibodies specifically bound to the oxidoreductase protein disulfide isomerase (PDI) on ECs. Moreover, anti-NS1-mediated HO-1 induction was reduced by inhibition of PDI enzyme activity. Reactive oxygen species, which were generated by NADPH oxidase and in turn activated the phosphatidylinositol 3-kinase (PI3K)/Akt cascade, were involved in this upregulation of HO-1 gene expression. Finally, apoptosis of ECs caused by anti-NS1 antibodies was increased by pharmacological inhibition of HO-1 enzyme activity. In conclusion, HO-1 gene expression is upregulated by anti-NS1 antibodies via activation of a redox-dependent PDI/PI3K/Akt-mediated pathway in human ECs.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
64
|
Wan SW, Lin CF, Yeh TM, Liu CC, Liu HS, Wang S, Ling P, Anderson R, Lei HY, Lin YS. Autoimmunity in dengue pathogenesis. J Formos Med Assoc 2012; 112:3-11. [PMID: 23332423 DOI: 10.1016/j.jfma.2012.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022] Open
Abstract
Dengue is one of the most important vector-borne viral diseases. With climate change and the convenience of travel, dengue is spreading beyond its usual tropical and subtropical boundaries. Infection with dengue virus (DENV) causes diseases ranging widely in severity, from self-limited dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Vascular leakage, thrombocytopenia, and hemorrhage are the major clinical manifestations associated with severe DENV infection, yet the mechanisms remain unclear. Besides the direct effects of the virus, immunopathogenesis is also involved in the development of dengue disease. Antibody-dependent enhancement increases the efficiency of virus infection and may suppress type I interferon-mediated antiviral responses. Aberrant activation of T cells and overproduction of soluble factors cause an increase in vascular permeability. DENV-induced autoantibodies against endothelial cells, platelets, and coagulatory molecules lead to their abnormal activation or dysfunction. Molecular mimicry between DENV proteins and host proteins may explain the cross-reactivity of DENV-induced autoantibodies. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development. For the development of a safe and effective dengue vaccine, the immunopathogenic complications of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, 1 University Road,Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Expression, purification, and evaluation of diagnostic potential and immunogenicity of a recombinant NS3 protein from all serotypes of dengue virus. J Trop Med 2012; 2012:956875. [PMID: 23258983 PMCID: PMC3518973 DOI: 10.1155/2012/956875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/14/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022] Open
Abstract
Dengue is one of the major public health concerns in the world. Since all the four serotypes are actively circulating in Mexico, there is a need to develop an efficient diagnosis system to improve case management of the patients. There exist few studies evaluating the use of the NS3 protein as a protective antigen against dengue virus (DENV). In this paper we show the expression of a recombinant NS3 protein from all serotypes of dengue virus (GST-DVNS3-1-4) and report a reliable "in-house detection system" for the diagnosis of dengue infection which was field-tested in a small village (Tezonapa) in the state of Veracruz, Mexico. The fusion proteins were immunogenic, inducing antibodies to be able to recognize to antigens up to a 1 : 3200 dilution. The purified proteins were used to develop an in-house detection system (ELISA) and were further tested with a panel of 239 serum samples. The in-house results were in excellent agreement with the commercial kits with κ = 0.934 ± 0.064 (95% CI = 0.808-1.061), and κ = 0.872 ± 0.048 (95% CI = 0.779-0.965) for IgM and IgG, respectively. The agreement between the NS1 antigen detection versus the rNS3 ELISA, κ = 0.837 ± 0.066 (95% CI = 0.708-0.966), was very good. Thus, these results demonstrate that recombinant NS3 proteins have potential in early diagnosis of dengue infections.
Collapse
|
66
|
Lin SW, Chuang YC, Lin YS, Lei HY, Liu HS, Yeh TM. Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect 2012; 64:325-34. [DOI: 10.1016/j.jinf.2011.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/15/2022]
|
67
|
Mishra K, Shweta, Diwaker D, Ganju L. Dengue virus infection induces upregulation of hn RNP-H and PDIA3 for its multiplication in the host cell. Virus Res 2012; 163:573-9. [DOI: 10.1016/j.virusres.2011.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
|
68
|
Abstract
Family Flaviviridae genus flavivirus contains numerous pathogenic viruses such as Japanese encephalitis virus, dengue virus, West Nile virus, etc, which cause public health problems in the world. Since many mammals and birds can act as amplifying hosts and reservoir hosts in nature and those viruses are transmitted by haematophagous mosquitoes or ticks, those viruses could not be eradicated from the nature. In the recent few decades, the viral replication mechanism and the ultrastructure of viral proteins as well as the viral immune evasion mechanism have been elucidated extensively, leading to develop novel types of antivirals and vaccines. In this review, the flavivirus nature and epidemiology, replication mechanism, immune response and immune evasion, and antivirals and vaccines against flaviviruses were described.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of Microbiology, Dokkyo Medical University School of Medicine.
| | | |
Collapse
|
69
|
Costa SM, Yorio AP, Gonçalves AJS, Vidale MM, Costa ECB, Mohana-Borges R, Motta MA, Freire MS, Alves AMB. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PLoS One 2011; 6:e25685. [PMID: 22031819 PMCID: PMC3198735 DOI: 10.1371/journal.pone.0025685] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022] Open
Abstract
The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.
Collapse
Affiliation(s)
- Simone M. Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Anna Paula Yorio
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Antônio J. S. Gonçalves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Mariana M. Vidale
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Emmerson C. B. Costa
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcia A. Motta
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Marcos S. Freire
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Ada M. B. Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
70
|
Hottz E, Tolley ND, Zimmerman GA, Weyrich AS, Bozza FA. Platelets in dengue infection. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.ddmec.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
71
|
Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, Liu HS, Liu CC, Anderson R, Lei HY. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood) 2011; 236:515-23. [PMID: 21502191 DOI: 10.1258/ebm.2011.010339] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Numerous infectious agents may trigger autoimmunity or even result in autoimmune diseases. Several mechanisms have been proposed for pathogen-triggered autoimmunity including molecular mimicry, cryptic antigens, epitope spreading, bystander activation and polyclonal activation. In the case of dengue virus infection which causes serious public health problems, the mechanisms regarding the pathogenesis of dengue hemorrhagic syndrome are not fully resolved. Our previous studies suggest a mechanism of molecular mimicry in which antibodies directed against dengue virus non-structural protein 1 (NS1) cross-react with human platelets and endothelial cells and cause their damage and dysfunction, which may be related to the clinical features of dengue disease. Several cell surface proteins recognized by patient serum samples and anti-NS1 antibodies have been identified. Based on proteomic studies and sequence analysis, the C-terminal region of dengue virus NS1 shows sequence homology with target proteins. In addition, different regions of dengue virus proteins including core, prM, E and NS1 proteins show sequence homology with different coagulatory molecules. As an example, the amino acid sequence 101-106 of E protein (WGNGCG) shows sequence homology with factors XI, X, IX, VII, II (thrombin), plasminogen and tissue plasminogen activator. Furthermore, single chain variable region against NS1 can interfere with fibrin formation, which leads to prolonged thrombin time. We hypothesize that molecular mimicry between dengue virus proteins and coagulatory molecules may induce cross-reactive autoantibodies that can interfere with coagulation activation. A molecular mimicry pathogenesis for dengue disease which involves cross-reactivity of dengue virus with human endothelial cells, platelets and coagulatory molecules is proposed.
Collapse
Affiliation(s)
- Yee-Shin Lin
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Mechanisms of neuroprotection by protein disulphide isomerase in amyotrophic lateral sclerosis. Neurol Res Int 2011; 2011:317340. [PMID: 21603027 PMCID: PMC3096316 DOI: 10.1155/2011/317340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/20/2011] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER) stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI), which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.
Collapse
|
73
|
Perng GC, Lei HY, Lin YS, Chokephaibulkit K. Dengue Vaccines: Challenge and Confrontation. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.14012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Lin CJ, Hsiao TH, Chung YS, Chang WN, Yeh TM, Chen BH, Fu TF. Zebrafish Sp1-like protein is structurally and functionally comparable to human Sp1. Protein Expr Purif 2010; 76:36-43. [PMID: 21040790 DOI: 10.1016/j.pep.2010.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
The transcription factor Sp1 is a regulator of TATA-less genes. It belongs to the Cys₂-His₂ zinc finger domain-containing family. A zebrafish cDNA encoding a peptide homologous to mammalian Sp1 was cloned and inserted into a pET43.1a vector and expressed in Escherichia coli Rosetta (DE3) cells as a Nus-His-tag fusion protein. After induction with isopropyl thiogalactoside, the protein was purified with a Ni-Sepharose column, and approximately 5-8 mg of pure protein was obtained per liter of culture. The primary sequence and the predicted partial tertiary structure of the potential recombinant zebrafish Sp1 protein are similar to those of human Sp1. The DNA affinity precipitation assay and dual-luciferase promoter activity assay further confirm the nature of the recombinant zebrafish Sp1 protein as a transcription factor. Our results show that zebrafish Sp1-like protein is structurally and functionally comparable to human Sp1.
Collapse
Affiliation(s)
- Cha-Jang Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
75
|
Tan GK, Ng JKW, Trasti SL, Schul W, Yip G, Alonso S. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis 2010; 4:e672. [PMID: 20436920 PMCID: PMC2860513 DOI: 10.1371/journal.pntd.0000672] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/18/2010] [Indexed: 11/18/2022] Open
Abstract
The spread of dengue (DEN) worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia. Here we describe a non-mouse-adapted DEN2 virus strain (D2Y98P) that is highly infectious in AG129 mice (lacking interferon-α/β and -γ receptors) upon intraperitoneal administration. Infection with a high dose of D2Y98P induced cytokine storm, massive organ damage, and severe vascular leakage, leading to haemorrhage and rapid death of the animals at the peak of viremia. In contrast, very interestingly and uniquely, infection with a low dose of D2Y98P led to asymptomatic viral dissemination and replication in relevant organs, followed by non-paralytic death of the animals few days after virus clearance, similar to the disease kinetic in humans. Spleen damage, liver dysfunction and increased vascular permeability, but no haemorrhage, were observed in moribund animals, suggesting intact vascular integrity, a cardinal feature in DEN shock syndrome. Infection with D2Y98P thus offers the opportunity to further decipher some of the aspects of dengue pathogenesis and provides a new platform for drug and vaccine testing. The spread of dengue (DEN) worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Infection with DEN virus can be asymptomatic or trigger a wide spectrum of clinical manifestations, ranging from mild acute febrile illness to classical dengue fever and to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Progress in understanding DEN disease and in developing effective treatments has been hampered by the lack of a suitable animal model that can reproduce all or part of the disease's clinical manifestations and outcome. Only a few of the DEN virus strains reported so far elicit a virulent phenotype in mice, which results at best in an acute infection where mice die within few days with no, few or irrelevant disease manifestations. Here we describe a DEN virus strain which is highly virulent in mice and reproduces some of the aspects of severe DEN in humans, including the disease kinetics, organ damage/dysfunction and increased vascular permeability. This DEN virus strain thus offers the opportunity to further decipher some of the mechanisms involved in DEN pathogenesis, and provides a new platform for drug and vaccine testing in the mouse model.
Collapse
Affiliation(s)
- Grace K. Tan
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Jowin K. W. Ng
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Scott L. Trasti
- Comparative Medicine Centre, National University of Singapore, Singapore, Singapore
| | - Wouter Schul
- Novartis Institute for Tropical Diseases (NITD), Singapore, Singapore
| | - George Yip
- Department of Anatomy, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|