51
|
Zhang C, Li X, Liu N, Feng Z, Zhang C. MicroRNA-96 is downregulated in sepsis neonates and attenuates LPSinduced inflammatory response by inhibiting IL-16 in monocytes. Comb Chem High Throughput Screen 2020; 25:90-96. [PMID: 33308119 DOI: 10.2174/1386207323666201211091312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neonatal sepsis (NS) remains one of the leading causes of mortality among newborns. This study found the deregulated microRNA-96 (miR-96) in NS neonates, and aimed to evaluate the clinical significance of miR-96, as well as its effect on LPS-induced inflammatory response in monocytes. In addition, the relationship of interleukin-16 (IL16) and miR-96 was investigated to understand the underlying mechanisms. METHODS Expression of miR-96 was examined using real-time quantitative PCR. Monocytes stimulated by LPS was used to mimic excessive inflammation in the pathogenesis of NS. The enzyme-linked immunosorbent assay was applied to evaluate pro-inflammatory cytokines levels. A luciferase reporter assay was used to confirm the interaction between miR-96 and IL16. RESULTS Serum miR-96 expression was decreased in NS newborns and had considerable diagnostic value for NS screening. LPS inhibited miR-96 expression in monocytes, and the overexpression of miR-96 could reverse the effects of LPS on the inflammation of monocytes. IL-16 was a target gene of miR-96 and negatively correlated with miR-96 levels in NS neonates. The inhibited inflammatory responses induced by miR-96 overexpression was abolished by the elevated IL-16 in monocytes. CONCLUSION All the data reveal that serum decreased miR-96 may serve as a candidate non-invasive biomarker for NS diagnosis. In addition, miR-96 inhibits LPS-induced inflammatory responses by targeting IL-16 in monocytes. The miR96/IL-16 axis may provide novel therapeutic targets for NS treatment.
Collapse
Affiliation(s)
- Chunlei Zhang
- Neonatology Department, Weifang Maternal and Child Health Hospital, Weifang 261011. China
| | - Xiuting Li
- Children's Rehabilitation Department, Weifang Maternal and Child Health Hospital, Weifang 261011. China
| | - Na Liu
- Neonatology Department, Weifang Maternal and Child Health Hospital, Weifang 261011. China
| | - Zijian Feng
- Neonatology Department, Weifang Maternal and Child Health Hospital, Weifang 261011. China
| | - Chengyuan Zhang
- Neonatology Department, Weifang Maternal and Child Health Hospital, Weifang 261011. China
| |
Collapse
|
52
|
Bai ZZ, Li HY, Li CH, Sheng CL, Zhao XN. M1 Macrophage-Derived Exosomal MicroRNA-326 Suppresses Hepatocellular Carcinoma Cell Progression Via Mediating NF-κB Signaling Pathway. NANOSCALE RESEARCH LETTERS 2020; 15:221. [PMID: 33263825 PMCID: PMC7710788 DOI: 10.1186/s11671-020-03432-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/11/2020] [Indexed: 05/05/2023]
Abstract
Accumulating evidence has shown that microRNA (miR) derived from M1 macrophage-derived exosomes can regulate the progression of hepatocellular carcinoma (HCC). However, the effect of miR-326 derived from M1 macrophage-derived exosomes on HCC has not been reported. Therefore, the objective of the present study was to explore the mechanism of exosomal miR-326 from M1 macrophages in regulating HCC cell progression. RT-qPCR detected miR-326 expression in HCC cell lines. miR-326 expression in HCC was altered by transfection, and the effect of miR-326 on CD206 and NF-κB expression, cell proliferation, colony formation, migration, apoptosis and invasion was detected. Subsequently, exosomes were isolated from M1 macrophages. RT-qPCR identified miR-326 expression in M1 macrophage-derived exosomes. miR-326 expression in M1 macrophage-derived exosomes was changed by transfection. M1 macrophage-derived exosomes were co-cultured with HCC cells to figure out their effects on the biological progress of HCC cells. Finally, in vivo experiments were performed to verify the in vitro results. MiR-326 was decreased in HCC cells and enriched in M1 macrophage-derived exosomes. Up-regulating miR-326 would inhibit HCC cell proliferation, colony formation, migration, invasion, and CD206 and NF-κB expression and promoted apoptosis, and inhibited the growth of HCC tumors in vivo, while down-regulating miR-326 showed opposite effects. M1 macrophage-derived exosomes inhibited HCC cell proliferation, colony formation, migration, invasion, and CD206 and NF-κB expression and enhanced apoptosis, while overexpression of miR-326 enhanced the effect of M1 macrophage-derived exosomes on HCC cells. It is revealed that M1 macrophages-derived exosomal miR-326 suppresses proliferation, migration and invasion as well as advances apoptosis of HCC through down-regulating NF-κB expression.
Collapse
Affiliation(s)
- Zhen-Zi Bai
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Hong-Yan Li
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Cheng-Hua Li
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Chuan-Lun Sheng
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Xiao-Nan Zhao
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China.
| |
Collapse
|
53
|
Wang H, Ashton R, Hensel JA, Lee JH, Khattar V, Wang Y, Deshane JS, Ponnazhagan S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol Cancer Ther 2020; 19:2585-2597. [PMID: 33199500 DOI: 10.1158/1535-7163.mct-20-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Reading Ashton
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
54
|
Jung S, Singh K, Del Sol A. FunRes: resolving tissue-specific functional cell states based on a cell-cell communication network model. Brief Bioinform 2020; 22:5974949. [PMID: 33179736 PMCID: PMC8293827 DOI: 10.1093/bib/bbaa283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
The functional specialization of cell types arises during development and is shaped by cell-cell communication networks determining a distribution of functional cell states that are collectively important for tissue functioning. However, the identification of these tissue-specific functional cell states remains challenging. Although a plethora of computational approaches have been successful in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell states. To address this issue, we present FunRes, a computational method designed for the identification of functional cell states. FunRes relies on scRNA-seq data of a tissue to initially reconstruct the functional cell-cell communication network, which is leveraged for partitioning each cell type into functional cell states. We applied FunRes to 177 cell types in 10 different tissues and demonstrated that the detected states correspond to known functional cell states of various cell types, which cannot be recapitulated by existing computational tools. Finally, we characterize emerging and vanishing functional cell states in aging and disease, and demonstrate their involvement in key tissue functions. Thus, we believe that FunRes will be of great utility in the characterization of the functional landscape of cell types and the identification of dysfunctional cell states in aging and disease.
Collapse
Affiliation(s)
- Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Bizkaia, 48160, Spain
| | - Kartikeya Singh
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, L-4362, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, L-4362, Luxembourg.,Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Bizkaia, 48160, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48013, Spain
| |
Collapse
|
55
|
Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L, Ni H, Zhuge Q, Yang S. Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway. Front Neurosci 2020; 14:848. [PMID: 33013286 PMCID: PMC7461850 DOI: 10.3389/fnins.2020.00848] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Ischemic stroke-induced inflammation and inflammasome-dependent pyroptotic neural death cause serious neurological injury. Nano-sized plasma exosomes have exhibited therapeutic potential against ischemia and reperfusion injury by ameliorating inflammation. To enhance its therapeutic potential in patients with ischemic injury, we isolated exosomes from melatonin-treated rat plasma and assessed the neurological protective effect in a rat model of focal cerebral ischemia. Methods Basal plasma exosomes and melatonin-treated plasma exosomes were isolated and intravenously injected into a rat model of focal cerebral ischemia. Neurological recovery was evaluated by determining the modified neurological severity score (mNSS), infarct volume, and brain water content. Pyroptosis in the ischemic cortex was detected through dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) release, and gasdermin D (GSDMD) cleavage. NLRP3 inflammasome assembly and global inflammatory cytokine secretion were detected by enzyme-linked immunosorbent assay (ELISA) and Western blot assay. In immunized Sprague-Dawley rats, microglia pyroptosis was determined through a positive percentage of IBA1+ and caspase-1 (p20)+ cells. Finally, the microRNA (miRNA) profiles in melatonin-treated plasma exosomes were analyzed by exosome miRNA microarray analysis. Results Melatonin treatment enhanced plasma exosome therapeutic effects against ischemia-induced inflammatory responses and inflammasome-mediated pyroptosis. In addition, we confirmed that ischemic stroke-induced pyroptotic cell death occurred in the microglia and neuron, while the administration of melatonin-treated exosomes further effectively decreased the infarct volume and improved recovery of function via regulation of the TLR4/NF-κB signaling pathway. Finally, the altered miRNA profiles in the melatonin-treated plasma exosomes demonstrated the regulatory mechanisms involved in neurological recovery after ischemic injury. Conclusion This study suggests that nano-sized plasma exosomes with melatonin pretreatment might be a more effective strategy for patients with ischemic brain injury. Further exploration of key molecules in the plasma exosome may provide increased therapeutic value for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junnan Ru
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
56
|
Li Z, Cheng Y, Wu F, Wu L, Cao H, Wang Q, Tang W. The emerging landscape of circular RNAs in immunity: breakthroughs and challenges. Biomark Res 2020; 8:25. [PMID: 32665846 PMCID: PMC7348111 DOI: 10.1186/s40364-020-00204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently linked RNAs that exhibit individual strand with a closed-loop framework compared with a conserving, steady and abundant linear counterpart. In recent years, as high-throughput sequencing advancement has been developing, functional circRNAs have been increasingly recognized, and more extensive analyses expounded their effect on different diseases. However, the study on the function of circRNAs in the immune system remains insufficient. This study discusses the basic principles of circRNAs regulation and the systems involved in physiology-related and pathology-related processes. The effect of circRNAs on immune regulation is elucidated. The ongoing development of circRNAs and basic immunology has multiplied their potential in treating diseases. Such perspective will summarize the status and effect of circRNAs on various immune cells in cancer, autoimmune diseases and infections. Moreover, this study will primarily expound the system of circRNAs in T lymphocytes, macrophages and other immune cells, which creates a novel perspective and lay a theoretical basis for treating diseases.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| |
Collapse
|
57
|
Guan H, Peng R, Fang F, Mao L, Chen Z, Yang S, Dai C, Wu H, Wang C, Feng N, Xu B, Chen M. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer. J Cell Physiol 2020; 235:9729-9742. [PMID: 32406953 DOI: 10.1002/jcp.29784] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) are vital constituents in mediating cell-to-cell communication within the tumor microenvironment. However, the molecular mechanisms underlying the interplay between TAMs and tumor cells that guide cell fate are largely undetermined. Extracellular vesicles, also known as exosomes, which are derived from TAMs, are the components exerting regulatory effects. Thus, understanding the underlying mechanism of "onco-vesicles" is of crucial importance for prostate cancer (PCa) therapy. In this study, we analyzed micro RNA sequences in exosomes released by THP-1 and M2 macrophages and found a significant increase in miR-95 levels in TAM-derived exosomes, demonstrating the direct uptake of miR-95 by recipient PCa cells. In vitro and in vivo loss-of-function assays suggested that miR-95 could function as a tumor promoter by directly binding to its downstream target gene, JunB, to promote PCa cell proliferation, invasion, and epithelial-mesenchymal transition. The clinical data analyses further revealed that higher miR-95 expression results in worse clinicopathological features. Collectively, our results demonstrated that TAM-mediated PCa progression is partially attributed to the aberrant expression of miR-95 in TAM-derived exosomes, and the miR-95/JunB axis provides the groundwork for research on TAMs to further develop more-personalized therapeutic approaches for patients with PCa.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Chen
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuai Yang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyuan Dai
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongliang Wu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengyong Wang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
58
|
Zhu K, Meng Q, Zhang Z, Yi T, He Y, Zheng J, Lei W. Aryl hydrocarbon receptor pathway: Role, regulation and intervention in atherosclerosis therapy (Review). Mol Med Rep 2019; 20:4763-4773. [PMID: 31638212 PMCID: PMC6854528 DOI: 10.3892/mmr.2019.10748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand‑activated transcription factor originally isolated and characterized as the dioxin or xenobiotic receptor. With the discovery of endogenous ligands and studies of AhR knockout mice, AhR has been found to serve an important role in several biological processes, including immune responses and developmental and pathological regulation. In particular, it has been considered as a new major player in cardiovascular diseases. Recent studies have revealed that the development of atherosclerosis is closely associated with AhR function. However, the roles of the AhR in the pathological development of atherosclerosis and atherosclerosis‑associated diseases remain unclear. The current review presents the molecular mechanisms involved in the regulation of AhR expression during inflammation, oxidative stress and lipid deposition. Additionally, the role of the AhR in atherosclerosis and atherosclerosis‑associated diseases is reviewed.
Collapse
Affiliation(s)
- Kaixi Zhu
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Tao Yi
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
59
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|